KAJIAN PORTAL BETON BERTULANG UNTUK GEDUNG 3 DAN 4 LANTAI DI WILAYAH GEMPA I

dokumen-dokumen yang mirip
KONTROL ULANG PERENCANAAN PORTAL AS-7 GEDUNG FAKULTAS KEDOKTERAN UNIVERSITAS MUHAMMADIYAH SURAKARTA DENGAN PRINSIP DAKTAIL PARSIAL

BAB III METODE PENULISAN

PERENCANAAN GEDUNG SEKOLAH MENENGAH ATAS EMPAT LANTAI DAN SATU BASEMENT DI SURAKARTA DENGAN PRINSIP DAKTAIL PARSIAL

KAJIAN PORTAL BETON BERTULANG UNTUK GEDUNG 3 DAN 4 LANTAI DI WILAYAH GEMPA I. Tugas Akhir

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

Naskah Publikasi. Untuk memenuhi sebagian persyaratan Mencapai derajat Sarjana S-1 Teknik Sipil. diajukan oleh: AGUNG PRABOWO NIM : D

PERENCANAAN GEDUNG SEKOLAH 4 LANTAI ( 1 BASEMENT ) DENGAN PRINSIP DAKTAIL PARSIAL DI SUKOHARJO

KEBUTUHAN MATERIAL PADA PERENCANAAN PORTAL GEDUNG BETON BERTULANG DI WILAYAH GEMPA 1 DENGAN SISTEM ELASTIK DAN DAKTAIL PENUH

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN STRUKTUR GEDUNG KAMPUS 5 LANTAI DENGAN METODE DAKTAIL PARSIAL DI WILAYAH GEMPA 3. Naskah Publikasi

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

BAB VI KONSTRUKSI KOLOM

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

PERENCANAAN GEDUNG PERKANTORAN 4 LANTAI (+ BASEMENT) DI WILAYAH SURAKARTA DENGAN DAKTAIL PARSIAL (R=6,4) (dengan mutu f c=25 MPa;f y=350 MPa)

T I N J A U A N P U S T A K A

BAB III LANDASAN TEORI. A. Pembebanan

BAB II TINJAUAN PUSTAKA

PERENCANAAN GEDUNG SMA EMPAT LANTAI DENGAN SISTEM PERENCANAAN DAKTAIL PARSIAL DI SURAKARTA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

PERENCANAAN GEDUNG RAWAT INAP RUMAH SAKIT KANKER EMPAT LANTAI (+ 1 BASEMENT) DENGAN SISTEM DAKTAIL PARSIAL DI SURAKARTA

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS

BAB II TINJAUAN PUSTAKA

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERENCANAAN STRUKTUR GEDUNG KAMPUS 7 LANTAI DAN 1 BASEMENT DENGAN METODE DAKTAIL PARSIAL DI WILAYAH GEMPA 3. Naskah Publikasi

ANALISA KOLOM STRUKTUR PADA PEKERJAAN PEMBANGUNAN LANTAI 1 KAMPUS II SD MUHAMMADIYAH METRO PUSAT KOTA METRO

PERENCANAAN BANGUNAN GEDUNG UNTUK PERKANTORAN 8 LANTAI (+2 BASEMENT) DI SURAKARTA DENGAN PRINSIP DAKTAIL PENUH

ABSTRAKSI. Basuki Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammdiyah Surakarta Jalan A.Yani Tromol Pos I Pabelan Kartasura Surakarta 57102

PERENCANAAN GEDUNG HOTEL 5 LANTAI + 1 BASEMENT DENGAN PRINSIP DAKTAIL PARSIAL DI WILAYAH GEMPA 3. Naskah Publikasi

BAB I PENDAHULUAN A. Latar Belakang

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

BAB II TINJAUAN PUSTAKA

Pengenalan Kolom. Struktur Beton II

4. e = = = 54,882 mm. Kelompok : IV. Halaman : TUGAS PERENCANAAN STRUKTUR BETON Semester Ganjil

PERANCANGAN GEDUNG HOTEL 4 LANTAI DI DAERAH SOLO BARU, SUKOHARJO DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH. Tugas Akhir

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA MAHASIWA UNIVERSITAS NEGERI YOGYAKARTA. Oleh : CAN JULIANTO NPM. :

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

Tugas Akhir. Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil. Diajukan oleh :

PERENCANAAN APARTEMEN 7 LANTAI (+1 BASEMENT) DI SURAKARTA DENGAN PRINSIP DAKTAIL PARSIAL

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

Desain Struktur Beton Bertulang Tahan Gempa

BAB I PENDAHULUAN A. Latar Belakang

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

BAB III ANALISA PERENCANAAN STRUKTUR

PERENCANAAN GEDUNG PERKULIAHAN 5 LANTAI DI SUKOHARJO DENGAN PRINSIP DAKTAIL PENUH

PERANCANGAN ULANG STRUKTUR GEDUNG BANK MODERN SOLO

BAB II TINJAUAN PUSTAKA

PERENCANAAN GEDUNG PERHOTELAN EMPAT LANTAI DAN SATU BASEMENT DI PACITAN DENGAN PRINSIP DAKTAIL PARSIAL

BAB II TINJAUAN PUSTAKA

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

PERENCANAAN RUSUNAWA EMPAT LANTAI DENGAN PRINSIP DAKTAIL PARSIAL

TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM. Naskah Publikasi

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

PERENCANAAN STRUKTUR GEDUNG KANTOR SEWAKA DHARMA MENGGUNAKAN SRPMK BERDASARKAN SNI 1726:2012 DAN SNI 2847:2013 ( METODE LRFD )

KOLOM (ANALISA KOLOM LANGSING) Winda Tri W, ST,MT

PERANCANGAN RUMAH SUSUN SEDERHANA SEWA (RUSUNAWA) DI JEPARA

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

BAB I PENDAHULUAN A. Latar Belakang

STUDI PERENCANAAN STRUKTUR BETON BERTULANG PADA GEDUNG SUPERMARKET PRASADA DENGAN MENGGUNAKAN METODE SK SNI T DI KABUPATEN BLITAR.

BAB I PENDAHULUAN. maka kegiatan pemerintahan yang berkaitan dengan hukum dan perundangundangan

Ma ruf Hadi Sutanto NIM : D NIRM :

PERANCANGAN STRUKTUR GEDUNG WISMA ATLIT BONTANG KALIMANTAN TIMUR. Laporan Tugas Akhir. Universitas Atma Jaya Yogyakarta. Oleh : LUSIA NILA KUSUMAWATI

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

KEBUTUHAN MATERIAL PADA PERENCANAAN PORTAL BETON BERTULANG DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 2. Naskah Publikasi

DAFTAR NOTASI. xxvii. A cp

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

BAB I PENDAHULUAN. dua dari banyak faktor yang dapat memancing orang dari luar daerah untuk datang

PERENCANAAN STRUKTUR BETON BERTULANG PADA GEDUNG SEKOLAH DASAR IT AN NAWI KOTA METRO MENGACU PADA STANDAR NASIONAL INDONESIA

c. Semen, pasta semen, agregat, kerikil

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

BAB I PENDAHULUAN A. Latar Belakang

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

EFISIENSI KEBUTUHAN MATERIAL PADA PERENCANAAN PORTAL TAHAN GEMPA WILAYAH 4 DENGAN EFISIENSI ELEMEN STRUKTUR BALOK DAN KOLOM

BAB II TINJAUAN PUSTAKA

BAB VII PENUTUP 7.1 Kesimpulan

KAJIAN KUAT LENTUR BALOK BETON BERTULANG BIASA DAN BALOK BETON BERTULANGAN KAYU DAN BAMBU PADA SIMPLE BEAM. Naskah Publikasi

PERANCANGAN STRUKTUR GEDUNG KULIAH UMUM UNIVERSITAS ISLAM INDONESIA YOGYAKARTA TUGAS AKHIR SARJANA STRATA SATU

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3

Transkripsi:

KAJIAN PORTAL BETON BERTULANG UNTUK GEDUNG 3 DAN 4 LANTAI DI WILAYAH GEMPA I Nur Fitri Rohima Arum (D 100 070 047) Program Studi Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Surakarta ABSTRAKSI Tujuan penelitian ini untuk mengetahui perbandingan antara hasil perencanaan portal beton bertulang 3 dan 4 lantai, serta mengetahui kemungkinan penambahan satu lantai tingkat pada portal 3 lantai tersebut ditinjau dari segi keamanan gedung. Penelitian dilaksanakan dengan mengambil contoh dua buah portal gedung kantor 3 lantai yang direncanakan oleh Asroni (2010b), dan portal 4 lantai yang akan direncanakan. Kedua portal tersebut dari denah bangunan yang sama, dibangun di wilayah gempa satu, dan direncanakan dengan sistem elastik penuh. Kombinasi beban (beban mati, beban hidup, dan beban gempa) diberikan pada kedua portal untuk diteliti. Kombinasi beban tersebut mengikuti peraturan beton di Indonesia (Tatacara Perhitungan Struktur Beton Untuk Bangunan Gedung, SNI 03-2847-2002). Dimensi portal (balok, kolom, sloof, dan fondasi) serta penulangannya direncanakan dengan baik/cukup untuk mendukung bebanbeban yang bekerja. Berdasarkan dimensi dan penulangan yang diperoleh, dapat diketahui perbandingan jumlah tulangan dan jarak begel pada kedua portal, serta kemungkinan aman / tidaknya struktur portal 3 lantai bila ditambah satu lantai tingkat di atasnya. Hasil penelitian menunjukkan bahwa dimensi struktur (balok, kolom, sloof, dan fondasi) pada portal 4 lantai lebih besar daripada portal 3 lantai, jumlah tulangan longitudinal lebih banyak, dan jarak begel pada balok tepi lebih rapat. Selain itu, penambahan satu lantai tingkat pada portal gedung 3 lantai akan berbahaya bagi keamanan gedung dan pengguna gedung. Kata kunci : penambahan lantai, portal, elastik penuh, wilayah gempa satu

LEMBAR PENGESAHAN KAJIAN PORTAL BETON BERTULANG UNTUK GEDUNG 3 DAN 4 LANTAI DI WILAYAH GEMPA I Tugas Akhir Diajukan dan dipertahankan pada Ujian Pendadaran Tugas Akhir dihadapan Dewan Penguji Pada tanggal 26 September 2012 diajukan oleh : NUR FITRI ROHIMA ARUM NIM : D 100 070 047 NIRM : 07 06 106 03010 5 0047 Susunan Dewan Penguji:

PENDAHULUAN Manusia adalah makhluk Tuhan yang paling sempurna karena adanya akal dan fikiran mereka. Dari waktu ke waktu manusia berusaha untuk menaikkan taraf hidup mereka dengan adanya perkembangan dan kemajuan teknologi yang sampai sekarang ini semakin canggih. Dengan adanya peningkatan taraf hidup ini, kebutuhan dan permintaan manusiapun semakin banyak dan kompleks. Manusia perlu bekerja keras mencari nafkah dengan cara apa saja untuk dapat memenuhi seluruh kebutuhannya. Pada tahun 2011 jumlah populasi manusia di dunia mencapai 7 miliar jiwa ( http://uniqpost.com/12665/tahun-2011-akhir-total-manusia-berjumlah-7-miliarjiwa/ ). Jumlah tersebut terus meningkat seiring dengan bertambahnya waktu, sedangkan ruang gerak yang tersedia bagi mereka semakin terbatas terutama di daerah perkotaan. Penambahan ruang gerak diperlukan untuk mempermudah manusia untuk memenuhi kebutuhan mereka dengan cara menambah pengadaan dan pembangunan infrastruktur di berbagai sektor, misalnya pada gedung perkantoran. Gedung perkantoran merupakan bangunan gedung yang difungsikan sebagai tempat aktivitas manusia sebagai pusat kegiatan administrasi, pusat koordinasi kegiatan dan perekonomian. Gedung perkantoran juga dapat di definisikan sebagai sebuah tempat yang dapat digunakan untuk kegiatan bisnis atau pekerjaan, yang terpisah dari tempat tinggal, komersil atau pertokoan, industri dan rekreasi. Perkembangan sektor perekonomian, memerlukan penambahan ruang gerak yang cukup untuk menunjang setiap kegiatan manusia. Penambahan perluasan gedung secara vertikal, yaitu dengan menambah tingkat lantai pada gedung merupakan solusi terbaik yang dapat diambil ketika perluasan lahan tidak memungkinkan lagi untuk dilakukan. Berdasarkan pengalaman tersebut, maka dipandang perlu untuk membuat kajian gedung perkantoran 3 lantai dan 4 lantai. Dalam perancangan ini perencana harus merancang sebaik mungkin, yaitu dengan perencanaan struktur gedung yang kuat serta mampu menahan gempa yang terjadi dan nyaman demi terciptanya suasana yang nyaman. Hal ini memerlukan perhitungan gaya-gaya yang cukup

teliti dan cermat, agar diperoleh struktur gedung bertingkat yang kuat terhadap segala kemungkinan beban yang terjadi, termasuk beban akibat gempa. Sistem perencanaan gedung menurut SNI 03-2847-2002 dibagi menjadi 3 macam, yaitu : 1). Sistem elastik penuh 2). Sistem daktail parsial 3). Sistem daktail penuh Dalam Standar Nasional Indonesia SNI-1726-2002 menjelaskan bahwa struktur gedung yang ketahanan gempanya direncanakan menurut standar ini dapat berfungsi sebagai berikut : 1). Menghindari runtuhnya gedung akibat gempa yang kuat, sehingga menghindari terjadinya korban jiwa manusia; 2). Membatasi kerusakan gedung akibat gempa ringan sampai sedang, sehingga masih dapat diperbaiki; 3). Membatasi ketidaknyamanan penghunian bagi penghuni gedung ketika terjadi gempa ringan sampai sedang; 4). Mempertahankan setiap saat layanan vital dari fungsi gedung. Sistem perencanaan gedung 4 lantai yang dipilih yaitu menggunakan prinsip elastik penuh di wilayah gempa I, karena untuk dibandingkan/dikaji dengan gedung 3 lantai yang telah direncanakan oleh Asroni (2010b). LANDASAN TEORI A. Perencanaan Struktur Portal dengan Prinsip Elastik Penuh 1. Perencanaan tulangan balok Balok merupakan elemen struktur portal dengan bentang yang arahnya horisontal. Agar mampu menahan beban yang bekerja, maka perlu diperhitungkan tulangan longitudinal balok dan tulangan geser balok. a). Perhitungan tulangan longitudinal balok. Balok yang menahan momen akan mengalami tegangan tekan pada bagian atas yang ditahan beton dan menahan tegangan tarik pada bagian bawah yang ditahan baja

tulangan. Langkah - langkah perhitungan tulangan longitudinal balok digambarkan pada Gambar II.1. : Mulai Data dimensi balok (b,h,d,d s,d s ), mutu bahan (f c,f y) dan beban (M u) =. M u Dihitung dengan tulangan tunggal tidak K K max (?) ya Dihitung dengan tulangan rangkap : Diambil K 1 = 0,8. K max : Dihitung tulangan tarik A s (pilih yang besar) : Ditambahkan dengan tulangan tekan As sebanyak 2 batang. Dihitung : Tulangan tarik A s,u = A 1 + A 2 Tulangan tekan A s,u = A 2 Selesai Gambar II.1. Bagan alir perhitungan tulangan longitudinal balok b). Perhitungan tulangan geser (begel balok). Tulangan begel dimaksudkan untuk menghindari kegagalan balok dalam menahan gaya geser, terutama pada ujung balok yang mengalami gaya geser paling besar. Langkah - langkah perhitungan tulangan geser (begel) balok digambarkan pada Gambar II.2.:

Mulai Data dimensi balok (b,h,d,d s,d s ), mutu bahan (f c,f y) dan gaya geser (V u,v a) Gaya eser terfaktor yang ditahan beton (.V c) : Ditentukan daerah penulangan Daerah V u <.V c/2 Daerah.V c/2 < V u <.V c Daerah V u>.v c Gaya geser yang ditahan begel Tidak perlu begel, atau : Dipakai begel dengan diameter kecil ( 6) spasi s d/2 dan s 600 mm Dipakai luas begel perlu minimal per meter panjang balok (A v,u) yang besar : (S = 1000 mm) V s 1/3. f c.b.d dengan = 0,75 Dipilih luas begel perlu per meter panjang balok (A v,u) yang besar : Untuk V s<1/3. f c.b.d Untuk V s>1/3. f c.b.d Dhitung spasi begel (s) : dengan n dan dp = jumlah kaki dan diameter begel Dihitung spasi begel (s) : dengan S = 1000 mm Dikontrol spasi begel (s) : s d/2 dan s 600 mm Dikontrol spasi begel (s) : s d/4 dan s 300 mm Selesai Gambar II.2. Bagan alir perhitungan begel balok c). Perhitungan tulangan torsi balok. Torsi (twist) atau momen punter adalah momen yang bekerja terhadap sumbu longitudinal balok/elemen struktur. Dasar perencanaan terhadap torsi yang digunakan dalam SNI 03-2847-2002

adalah analogi pipa dinding tipis dan analogi ruang. Langkah - langkah perhitungan tulangan torsi balok digambarkan pada Gambar II.3.: Mulai Data : dimensi balok (b, h, d, d s), mutu bahan (f c,f y), dan beban torsi (T u) Kontrol dimensi penampang dengan Persamaan (III-27a) s/d Persamaan (III-27c) tidak Tidak perlu tulangan torsi Luas begel perlu per meter (A v,u) ya Luas tul. longitudinal terpasang (A st = A s + A s ) Dihitung Avt/s, dan luas tulangan sengkang torsi per meter (Avt) : (S = 1000 mm, dan sudut θ = 45 ) Dihitung tulangan longitudinal torsi (At) : Dikontrol luas total tulangan longitudinal (tulangan lentur dan torsi) dengan syarat : Dikontrol luas total begel (geser dan torsi) dengan syarat : Dihitung jumlah tulangan longitudinal torsi : Dihitung jarak begel (s) : s p h/8 dan s 300 mm Jika V s< 1/3. f c.b.d, maka s d/2 Jika V s> 1/3. f c.b.d, maka s d/4 Tulangan longitudinal torsi dipasang di sekeliling begel tertutup dengan jarak s 300 mm. Selesai Gambar II.3. Bagan alir hitungan tulangan torsi 2. Perencanaan kolom a) Perencanaan tulangan longitudinal kolom. Hitungan tulangan memanjang dilaksanakan dengan membuat diagram interaksi kuat rencana

tanpa satuan. Dipilih rasio tulangan total (ρ t ) terbesar yang diambil dari rasio tulangan ρ yang didapat dari berbagai kombinasi beban yang bekerja (masing - masing kombinasi N u dan M u ). Langkah - langkah perhitungan tulangan longitudonal kolom digambarkan pada Gambar II.4.: Mulai Dihitung derajad hambatan pada ujung kolom. λ n,k dan λ n,b = panjang bersih kolom dan balok I k = 0,70.I bruto kolom I b = 0,35.I bruto balok Dihitung panjang efektif kolom (k): Kolom dapat bergoyang Kolom tidak dapat bergoyang 1) Kedua ujung terjepit Diambil nilai k terkecil : k = 0,7 + 0,05.(ψ A + ψ B) k = 0,85 + 0,05.ψ min k 1 ψ min = nilai terkecil antara rata - rata dari dan dan 2) Ujung jepit, lainnya sendi atau bebas : k = 2,0 + 0,3. ψ = 0 (uj. jepit) ψ = 10 (uj. sendi) ψ = (uj. bebas) Dihitung r = I/A atau r = 0,3.h (kolom segi-4) dan dikontrol : Kolom panjang tidak ya Kolom pendek Dihitung : = dihitung dari berbagai kombinasi beban Kolom dapat bergoyang Kolom tidak dapat bergoyang Dihitung N u,k dan M u,k dari berbagai kombinasi beban Dihitung faktor pembesaran momen : Dihitung faktor pembesaran momen : C m = 1 dengan beban transfersal Dihitung pembesaran momen M c dari masing masing β c : M 1c = M 1b + δ s.m 1s M 2c = M 2b + δ s.m 2s Dihitung pembesaran momen M c dari masing masing β c : M c = δ b.m 2b M c = δ b.p u.(15 + 0,03.h) Dihitung dengan cara membuat diagram baru (Asroni, 2010c) Selesai Gambar II.4. Skema hitungan tulangan longitudinal kolom

b). Perencanaan tulangan geser (begel) kolom. Gaya geser pada kolom pada perhitungannya hanya ditahan gaya tarik baja tulangan sedang pengaruh kekasaran agregat diabaikan. Langkah - langkah perhitungan tulangan longitudonal kolom digambarkan pada Gambar II.5.: Mulai Data dimensi kolom (b,h,d,d s,d s ), mutu bahan (f c,f y), gaya geser (V u,v n), gaya aksial N u,k Gaya geser berfaktor yang ditahan beton (.V c) : Dengan = 0,75 kolom kecil diper- Ukuran terlalu (harus besar) Gaya geser yang ditahan begel : Dipilih luas begel peru per meter panjang kolom (A v,u) yang besar : Dihitung spasi begel (s) : dengan n dan dp = jumlah kaki dan diameter begel Untuk V s< 1/3. f c.b.d Untuk V s> 1/3. f c.b.d Dikontrol spasi begel (s) : s d/2 dan s 600 Dikontrol spasi begel (s) : s d/4 dan s 300 Selesai Gambar II.5. Skema hitungan begel kolom

B. Perencanaan Fondasi Dalam perencanaan gedung perkantoran ini menggunakan fondasi telapak menerus. Fondasi ini dibuat dari beton bertulang, dengan kedalaman tanah kuat sampai 2,00 m. Pemilihan fondasi ini dikarenakan letak kolom berdekatan dan daya dukung tanah relative kecil. Agar kedudukan kolom lebih kokoh dan kuat maka antara kolom satu dan yang lainnya dijepit oleh balok sloof. Balok sloof dicor bersamaan dengan fondasi. Langkah - langkah perhitungan fondasi telapak menerus digambarkan pada Gambar II.6.:

Mulai Data : tebal fondasi (h,d,ds), mutu bahan (f c,f y ), beban (P u,m u ), daya dukung tanah (σ t ) Penentuan ukuran telapak fondasi (B,L) : Dihitung tegangan tanah di dasar fondasi : Kontrol kuat geser 1 arah : Kontrol kuat geser 2 arah : Penulangan fondasi telapak menerus : 1) M u = 1/2. σ maks.x 2 ; x = B/2 - b sloof /2 2) Dihitung K dan a 3) Tulangan pokok : Panjang penyaluran tegangan tulangan : Jarak tulangan diplih yang kecil : Panjang tersedia : s 3.h ; s 450 mm 4) Tulangan bagi dipilih yang besar : A s,b = 20%.A s,u A s,b = {0,002 2.10-6.(f c 300)}.b.h Jarak tulangan dipilih yang kecil : Kuat dukung fondasi : s 5.h ; s 450 mm Selesai Gambar II.6. Skema hitungan fondasi

METODE PENELITIAN Penelitian ini dilaksanakan dalam 6 (enam) tahap seperti terlihat dalam bagan alir pada Gambar IV.1, yaitu sebagai berikut : 1). Tahap I: Pengumpulan data Pada tahap ini dikumpulkan data - data penelitian berupa data hasil perhitungan perencanaan gedung 3 lantai yang telah ada (Asroni, 2010c). 2). Tahap II : Perencanaan portal gedung 4 lantai Pada tahap ini dilakukan desain gambar rencana portal gedung 4 lantai. 3). Tahap III : Analisa pembebanan Pada tahap ini dilakukan analisa pembebanan (beban mati, beban hidup, dan beban gempa) serta penentuan beban kombinasi yang terjadi pada struktur portal beton bertulang. 4). Tahap IV : Penentuan kecukupan dimensi balok dan kolom Pada tahap ini dilakukan analisis mengenai dimensi balok dan kolom apakah cukup atau tidak. Apabila tidak cukup, maka dimensi balok dan kolom direncanakan ulang. Apabila cukup, maka dilanjutkan ke penulangan balok dan kolom. 5). Tahap V : Perencanaan pondasi Pada tahap ini dilakukan analisis mengenai kecukupan dimensi, dan penulangan fondasi dengan menggunakan fondasi telapak menerus. 6). Tahap VI : Kajian portal gedung 3 lantai dan 4 lantai Pada tahap ini dilaksanakan pengkajian hasil perhitungan struktural antara gedung 3 lantai dan 4 lantai. Kajian tersebut berupa perbandingan dimensi kolom maupun balok pada kedua portal serta perbandingan banyaknya tulangan (longitudinal dan begel) yang digunakan. HASIL PENELITIAN Pada bab ini, akan dikaji bagaimana pengaruh penambahan 1 lantai tingkat pada portal 3 lantai dari segi keamanan, serta membandingkan antara struktur Portal 3 lantai (Asroni,2010b) dan struktur Portal 4 lantai yang direncanakan pada Bab VI. Perbandingan antara portal 3 lantai dan portal 4 lantai terebut ditinjau

berdasarkan dimensi portal, penulangan balok, penulangan kolom, penulangan fondasi dan penulangan sloof. A. Dimensi Portal Tabel IV.1. Dimensi portal bertingkat empat dan tiga Dimensi yang dipakai (mm) Jenis struktur Portal 4 lantai Portal 3 lantai Perbandingan (1) (2) (3) = (1)/(2) Balok lantai atap 250/350 Tidak ada --- Balok lantai 4 250/400 250/400 1 Balok lantai 3 300/450 300/450 1 Balok lantai 2 300/500 300/500 1 Kolom lantai 4 350/350 Tidak ada --- Kolom lantai 3 400/400 350/350 1,306 Kolom lantai 2 420/420 380/380 1,222 Kolom lantai 1 450/450 400/400 1,266 Sloof 400/900 400/800 1,125 Fondasi 280/1850 250/1250 1,658 B. Penulangan Balok Tabel IV.2. Penulangan longitudinal balok Jenis dan letak struktur Balok tepi lantai atap Balok tengah lantai atap Balok tepi lantai 4 Balok tengah lantai 4 Portal 4 lantai Portal 3 lantai Bentang Tulangan Tulangan A s (mm 2 ) Atas Bawah Atas Bawah A s (mm 2 ) Kiri 4D19 2D19 1701,172 --- --- --- Lapangan 2D19 2D19 1134,115 --- --- --- Kanan 5D19 2D19 1984,701 --- --- --- Kiri 3D19 2D19 1417,644 --- --- --- Lapangan 2D19 2D19 1134,115 --- --- --- Kanan 3D19 2D19 1417,644 --- --- --- Kiri 8D19 3D19 3118,816 3D19 2D19 1417,644 Lapangan 2D19 3D19 1417,644 2D19 2D19 1134,115 Kanan 8D19 3D19 3118,816 4D19 2D19 1701,172 Kiri 6D19 2D19 2268,230 3D19 2D19 1417,644 Lapangan 2D19 2D19 1134,115 2D19 2D19 1134,115 Kanan 6D19 2D19 2835,287 3D19 2D19 1417,644

Tabel IV.2. (lanjutan) Jenis dan letak struktur Balok tepi lantai 3 Balok tengah lantai 3 Balok tepi lantai 2 Balok tengah lantai 2 Portal 4 lantai Portal 3 lantai Bentang Tulangan Tulangan Atas Bawah A s (mm 2 ) Atas Bawah A s (mm 2 ) Kiri 8D19 3D19 3118,816 8D19 2D19 2835,287 Lapangan 2D19 3D19 1417,644 2D19 3D19 1417,644 Kanan 8D19 3D19 3118,816 8D19 2D19 2835,287 Kiri 7D19 4D19 3118,816 5D19 2D19 1984,701 Lapangan 2D19 2D19 1134,115 2D19 2D19 1134,115 Kanan 7D19 4D19 3118,816 5D19 2D19 1984,701 Kiri 9D19 3D19 3402,345 8D19 3D19 3118,816 Lapangan 2D19 3D19 1417,644 2D19 3D19 1417,644 Kanan 9D19 3D19 3402,345 8D19 3D19 3118,816 Kiri 8D19 4D19 3402,345 6D19 3D19 2551,759 Lapangan 2D19 2D19 1134,115 2D19 2D19 1134,115 Kanan 8D19 4D19 3402,345 6D19 3D19 2551,759 Tabel IV.3. Penulangan geser (begel) balok Jenis dan letak struktur Balok tepi lantai atap Balok tengah lantai atap Balok tepi lantai 4 Portal 4 lantai Bentang dari muka kolom kiri ke kanan (m) Tulangan Portal 3 lantai Bentang dari muka kolom kiri ke kanan (m) Tulangan 1,10 m 6-130 --- --- 1,10 m 6-130 --- --- 1,25 m 6-130 --- --- 1,10 m 6-130 --- --- 1,10 m 6-130 --- --- 0,70 m 6-130 --- --- 0,70 m 6-130 --- --- 0,85 m 6-130 --- --- 0,70 m 6-130 --- --- 0,70 m 6-130 --- --- 1,10 m 6-65 1,10 m 6-170 1,10 m 6-105 1,10 m 6-170 1,20 m 6-120 1,10 m 6-170 1,10 m 6-110 1,10 m 6-170 1,10 m 6-65 1,10 m 6-170

Tabel IV.3. (lanjutan) Jenis dan letak struktur Portal 4 lantai Bentang dari muka kolom kiri ke kanan (m) Tulangan Portal 3 lantai Bentang dari muka kolom kiri ke kanan (m) Tulangan 0,70 m 6-155 0,70 m 6-170 0,70 m 6-155 0,70 m 6-170 Balok tengah lantai 4 0,80 m 6-155 0,85 m 6-170 0,70 m 6-155 0,70 m 6-170 0,70 m 6-155 0,70 m 6-170 1,10 m 6-95 1,10 m 6-110 1,10 m 6-180 1,10 m 6-180 Balok tepi lantai 3 1,18 m 6-195 1,10 m 6-180 1,10 m 6-165 1,10 m 6-170 1,10 m 6-90 1,10 m 6-90 0,70 m 6-180 0,70 m 6-180 0,70 m 6-180 0,70 m 6-180 Balok tengah lantai 3 0,78 m 6-180 0,85 m 6-180 0,70 m 6-180 0,70 m 6-180 0,70 m 6-180 0,70 m 6-180 1,10 m 6-100 1,10 m 6-120 1,10 m 6-180 1,10 m 6-195 Balok tepi lantai 2 1,15 m 6-195 1,10 m 6-195 1,10 m 6-155 1,10 m 6-190 1,10 m 6-90 1,10 m 6-190 0,70 m 6-195 0,70 m 6-195 0,70 m 6-195 0,70 m 6-195 Balok tengah lantai 2 0,75 m 6-195 0,85 m 6-195 0,70 m 6-195 0,70 m 6-195 0,70 m 6-195 0,70 m 6-195 C. Penulangan Kolom Tabel IV.4. Penulangan kolom Jenis dan letak struktur Portal 4 lantai Portal 3 lantai Tulangan A s (mm 2 ) Begel Tulangan A s (mm 2 ) Begel Kolom tepi lantai 4 6D25 2945,243 10-145 --- --- --- Kolom tengah lt.4 6D25 2945,243 10-145 --- --- ---

Tabel IV.4. (lanjutan) Jenis dan letak struktur Portal 4 lantai Portal 3 lantai Tulangan A s (mm 2 ) Begel Tulangan A s (mm 2 ) Begel Kolom tepi lantai 3 12D25 5890,486 10-170 8D25 3926,991 10-145 Kolom tengah lt.3 14D25 6872,234 10-170 10D25 4908,739 10-145 Kolom tepi lantai 2 14D25 6872,234 10-170 12D25 5890,486 10-160 Kolom tengah lt.2 14D29 9247,278 10-170 14D25 6872,234 10-160 Kolom tepi lantai 1 12D29 7926,238 10-195 14D25 6872,234 10-170 Kolom tengah lt.1 12D29 7926,238 10-195 16D25 7853,982 10-170 D. Penulangan Sloof Tabel VII.5. Penulangan longitudinal sloof Nama sloof S1 S2 Posisi ujung Portal 3 lantai Portal 4 lantai Tulangan Tulangan A s (mm 2 ) Atas Bawah Atas Bawah A s (mm 2 ) Kiri 3D22 3D22 2280,796 2D29 2D29 2642,079 Lapangan 12D22 3D22 5701,991 9D29 2D29 7265,718 Kanan 3D22 12D22 5701,991 2D29 9D29 7265,718 Kiri 3D22 12D22 5701,991 2D29 9D29 7265,718 Lapangan 3D22 3D22 2280,796 2D29 3D29 3302,599 E. Penulangan Fondasi Dari gambar penulangan fondasi (lihat lampiran) pada kedua portal, dapat diketahui bahwa pada portal 4 lantai dipasang tulangan yang lebih rapat, yaitu tulangan pokok 10-90 dan tulangan bagi 8-90, sedangkan pada portal 3 lantai dipasang tulangan pokok Ø10-110 dan tulangan bagi 8-100. F. Penambahan Satu Lantai Tingkat pada Portal Untuk kasus yang diteliti dengan model dua buah struktur portal beton bertulang (3 lantai dan 4 lantai) dari suatu gedung kantor yang dibangun di wilayah gempa satu, dapat diketahui bahwa penambahan satu lantai tingkat di atas portal gedung 3 lantai yang sudah dibangun sebelumnya sangat sulit untuk dilaksanakan (kecuali dengan penanganan khusus).

Dari uraian pada pembahasan pada Bab IV.A sampai dengan Bab IV.E di atas, maka dapat dipahami bahwa penambahan satu lantai tingkat pada portal gedung 3 lantai (sehingga menjadi 4 lantai) akan berbahaya bila ditinjau dari segi keamanan, baik keamanan bagi struktur gedung itu sendiri maupun keamanan bagi pengguna gedung, karena: 1). Dimensi portal 3 lantai (kolom, sloof, dan fondasi) harus diperbesar. 2). Tulangan longitudinal pada balok-balok lantai 2, lantai 3 maupun lantai 4 harus ditambah, kecuali pada lantai 2 bentang lapangan, lantai 3 bentang lapangan, serta balok tengah lantai 4 bentang lapangan. Begel-begel balok pada lantai 2, lantai 3 maupun lantai 4 (terutama begel balok di bagian ujung) harus dibuat lebih rapat. 3). Tulangan longitudinal pada semua kolom harus ditambah. 4). Tulangan longitudinal sloof harus ditambah dan begelnya juga dibuat lebih rapat. KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan hasil penelitian dan pembahasan terhadap portal gedung beton bertulang 3 lantai dan 4 lantai yang terletak di wilayah gempa satu untuk model portal yang ditinjau, dapat diambil kesimpulan berikut: 1). Dimensi balok lantai 4, lantai 3 dan lantai 2 pada portal 4 lantai sama besar dengan portal 3 lantai, tulangan longitudinal lebih banyak, jarak begel juga lebih rapat. 2). Dimensi kolom lantai 4, lantai 3 dan lantai 2 pada portal 4 lantai lebih besar daripada portal 3 lantai, tulangan longitudinal lebih banyak, tetapi jarak begel lebih renggang. 3). Dimensi fondasi dan sloof pada portal 4 lantai lebih besar daripada portal 3 lantai, jarak begel sloof juga lebih rapat. 4). Kemungkinan penambahan satu lantai tingkat pada portal 3 lantai akan berbahaya bagi keamanan gedung maupun pengguna gedung.

B. Saran Saran yang perlu diperhatikan terutama bagi perencana maupun pengguna gedung, yaitu: 1). Untuk menambah satu lantai tingkat pada gedung yang sudah jadi, perlu dikaji lebih dahulu apakah kekuatan struktur gedung dapat dijamin keamanannya. 2). Sebagai antisipasi terhadap keterbatasan lahan, lebih baik merencanakan gedung dengan tingkat yang lebih tinggi daripada tingkat semestinya, sehingga untuk menambah lantai tingkat berikutnya tidak menjadi masalah lagi. DAFTAR PUSTAKA Asroni, A., 2009. Struktur Beton Lanjut, Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta, Surakarta. Asroni, A., 2010a. Balok dan Pelat Beton Bertulang, Edisi pertama, Penerbit Graha Ilmu, Yogyakarta. Asroni, A., 2010b. Contoh Perencanaan Portal Beton Bertulang dengan Sistem Elastik Penuh Berdasarkan SNI 03-2847-2002, Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta, Surakarta. Asroni, A., 2010c. Kolom, Fondasi dan Balok T Beton Bertulang, Edisi pertama, Penerbit Graha Ilmu, Yogyakarta. Departemen Pekerjaan Umum, 1971. Peraturan Beton Bertulang Indonesia N.I.-2, Direktorat Penyelidikan Masalah Bangunan, Bandung. Departemen Pekerjaan Umum, 1984. Peraturan Bangunan Nasional, Yayasan Lembaga Penyelidikan Masalah Bangunan, Bandung. Departemen Pekerjaan Umum, 1987. Pedoman Perencanaan Ketahanan Gempa untuk Rumah dan Gedung, Yayasan Badan Penerbit PU, Bandung. Departemen Pekerjaan Umum, 1989. Peraturan Pembebanan Indonesia untuk Gedung, Yayasan Lembaga Penyelidikan Masalah Bangunan, Bandung.

Departemen Pekerjaan Umum, 2002a. Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung SNI-1726-2002, Departemen Pemukiman dan Prasarana Wilayah, Bandung. Departemen Pekerjaan Umum, 2002b. Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung SNI 03-2847-2002, Yayasan Lembaga Penyelidikan Masalah Bangunan, Bandung. Muto, Kiyoshi, 1993. Analisis Perancangan Gedung Tahan Gempa, Penerbit Erlangga, Jakarta. Suprayogi, 1991. Cara Praktis Perencanaan Kolom Beton Bertulang Berdasarkan Pedoman Beton 1989, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.