IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI)

dokumen-dokumen yang mirip
IMPLEMENTASI INVERS KINEMATICS PADA SISTEM PERGERAKAN MOBILE ROBOT RODA MEKANUM

TELAH DI-REVIEW DAN DISETUJUI ISINYA OLEH :

IV. PERANCANGAN SISTEM

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560

NAVIGASI 4 WHEEL OMNI DRIVE ROBOT MANUAL PADA KRAI 2014 BERBASIS TRAJEKTORI i. JUDUL TUGAS AKHIR

PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH

Gambar 1. Screw conveyor dan Belt conveyor

Perancangan Alat Fermentasi Kakao Otomatis Berbasis Mikrokontroler Arduino Uno

SISTEM PENGATURAN KECEPATAN MOTOR PADA ROBOT LINE FOLLOWER BERBEBAN MENGGUNAKAN KONTROLER PID

RANCANG BANGUN SIMULATOR PENGENDALIAN POSISI CANNON PADA MODEL TANK MILITER DENGAN PENGENDALI PD (PROPOSIONAL DERIVATIVE)

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID

IMPLEMENTASI SISTEM KESEIMBANGAN ROBOT BERODA DUA DENGAN MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DIFERENSIAL

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

SISTEM PENGENDALI PERLAMBATAN KECEPATAN MOTOR PADA ROBOT LINE FOLLOWER DENGAN SENSOR ULTRASONIK

PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR

PERANCANGAN SISTEM KESEIMBANGAN BALL AND BEAM DENGAN MENGGUNAKAN PENGENDALI PID BERBASIS ARDUINO UNO. Else Orlanda Merti Wijaya.

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

Sistem Pengaturan Kecepatan Motor DC pada Alat Pengaduk Adonan Dodol Menggunakan Kontroler PID

I. PENDAHULUAN.

II. PERANCANGAN SISTEM

Perancangan Robot Auto Line Follower yang Menerapkan Metode Osilasi Ziegler-Nichols Untuk Tuning Parameter PID pada Kontes Robot Indonesia

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

(Dimasyqi Zulkha, Ir. Ya umar MT., Ir Purwadi Agus Darwito, MSC)

PENGATURAN KUAT CAHAYA PADA SOLATUBE MENGGUNAKAN KONTROLER PID BERBASIS MIKROKONTROLER

PENGENDALIAN SUHU DAN KELEMBABAN PROSES PEMATANGAN KEJU MENGGUNAKAN KONTROLER PID BERBASIS PLC. Publikasi Jurnal Skripsi

DAFTAR ISI. SKRIPSI... ii

Pengontrol PID pada Robot Beroda untuk Kontes Robot Cerdas Indonesia

BAB III PERANCANGAN ALAT

IMPLEMENTASI INVERSE KINEMATIC PADA PERGERAKAN MOBILE ROBOT KRPAI DIVISI BERKAKI

PENERAPAN ALGORITMA KENDALI PROPORTIONAL INTEGRAL DERIVATIVE PADA SISTEM REAL TIME UNTUK MEMPELAJARI TANGGAPAN TRANSIEN

SISTEM PENGENDALIAN SUHU PADA TUNGKU BAKAR MENGGUNAKAN KONTROLER PID

Kampus PENS-ITS Sukolilo, Surabaya

PENGENDALIAN SUDUT CERMIN DATAR PADA SOLATUBE MENGGUNAKAN KONTROLER PID BERBASIS MIKROKONTROLER

BAB 1 PENDAHULUAN. poros yang cukup besar sehingga sangat banyak digunakan. Dalam mengatasi sesuatu

Kata Kunci : Robot Beroda, KRCI, Sensor UVtron, Sensor Jarak Ultrasonic, Pengontrol Mikro Atmega128.

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN

APLIKASI KONTROL PID UNTUK PENGATURAN POSISI MOTOR DC PADA PISAU PEMOTONG ALAT PEMBAGI ADONAN ROTI ( DOUGH DIVIDER )

BAB 1 PENDAHULUAN 1.1. Latar Belakang

PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt

Pengendalian Gerak Robot Penghindar Halangan Menggunakan Citra dengan Kontrol PID

DESAIN DAN IMPLEMETASI GRID-BASED MAP SEBAGAI SISTEM PENGENALAN POSISI PADA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) DIVISI BERODA

Kata kunci: Arduino Mega 2560, Pengendalian Suhu Kelembaban Relatif, Kontroler PID

Makalah Seminar Tugas Akhir

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan PID

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

Eka Mandayatma *a), Fahmawati Hamida a), Hanifa Hasna Fawwaz a),

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. Sistem pendeteksi pada robot menghindar halangan banyak

DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar.

BAB I PENDAHULUAN. suatu lingkungan tertentu. Mobile-robot tidak seperti manipulator robot yang

IMPLEMENTASI KONTROLER PID PADA TWO WHEELS SELF BALANCING ROBOT BERBASIS ARDUINO UNO

SISTEM KONTROL KECEPATAN MOTOR DC D-6759 BERBASIS ARDUINO MEGA 2560

BAB IV PENGUJIAN SISTEM. Pengujian minimum system bertujuan untuk mengetahui apakah minimum

BAB III METODE PENELITIAN. diperlukan dengan beberapa cara yang dilakukan, antara lain:

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

Pengontrolan Kecepatan Mobile Robot Line Follower Dengan Sistem Kendali PID

DAFTAR ISI. LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii. LEMBAR PENGESAHAN PENGUJI...

PRESENTASI TUGAS AKHIR. Oleh : M. NUR SHOBAKH

DAFTAR ISI KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... xiv. DAFTAR GAMBAR... xvi BAB I PENDAHULUAN Kontribusi... 3

IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL

NASKAH PUBLIKASI PROTOTYPE ROBOT PEMINDAH BARANG BERODA MEKANUM 4WD DENGAN PENGENDALI NIRKABEL JOYSTICK PLAYSTATION 2 KARYA ILMIAH

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8

SISTEM PENGENDALIAN SUHU PADA PROSES DISTILASI VAKUM BIOETANOL DENGAN MENGGUNAKAN ARDUINO

BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras

BAB I PENDAHULUAN Tujuan Merancang dan merealisasikan robot pengikut dinding dengan menerapkan algoritma logika fuzzy.

DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

ALAT PENGONTROL SUHU LILIN MALAM PADA PROSES PEMBUATAN BATIK BERBASIS MIKROKONTROLER (SOFTWARE) SKRIPSI

Pengaturan Kecepatan Motor DC Menggunakan Kendali Hybrid PID-Fuzzy

BAB III PERANCANGAN ALAT

SISTEM MONITORING LEVEL AIR MENGGUNAKAN KENDALI PID

BAB I PENDAHULUAN 1.1 Latar Belakang

PERANCANGAN SISTEM KENDALI PID UNTUK KECEPATAN MOTOR DC BERBASIS MIKROKONTROLER ATMEGA16 SKRIPSI

ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER. Muchamad Nur Hudi. Dyah Lestari

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah

pengendali Konvensional Time invariant P Proportional Kp

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha

PERANCANGAN KONTROL DAN MONITORING KECEPATAN MOTOR DC MELALUI JARINGAN INTRANET

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

POLITEKNIK NEGERI SRIWIJAYA PALEMBANG

PENGENDALIAN KECEPATAN MOTOR DC DENGAN KONTROL PID BERBASIS MIKROKONTROLER ATMEGA 8535

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING

IMPLEMENTASI KONTROL LOGIKA FUZZY PADA SISTEM KESETIMBANGAN ROBOT BERODA DUA

RANCANG BANGUN ACRYLIC BENDING MACHINE DENGAN SUDUT YANG DAPAT DITENTUKAN

BAB 4 HASIL DAN PEMBAHASAN

Makalah Seminar Tugas Akhir

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC

Kontrol Keseimbangan Robot Mobil Beroda Dua Dengan. Metode Logika Fuzzy

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

Perbaikan Sistem Kendali Robot Tangan EH1 Milano Menggunakan Sistem Kendali Loop Tertutup

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PENYATAAN... INTISARI... ABSTRACT... HALAMAN MOTTO... HALAMAN PERSEMBAHAN... PRAKATA...

BAB 4 IMPLEMENTASI DAN EVALUASI. (secara hardware).hasil implementasi akan dievaluasi untuk mengetahui apakah

DT-51 Application Note

APLIKASI KONTROL PID UNTUK MENGENDALIKAN GERAK ROBOT PEMANJAT TIANG PADA KONTES ROBOT ABU INDONESIA

BAB III METODE PENELITIAN. Tujuan dari tugas akhir ini yaitu akan membuat sebuah mobile Robot

BAB IV PENGUJIAN DAN ANALISIS

Sistem Pengendalian Kecepatan Motor Pendorong Robot Hovercraft Line Follower Menggunakan Kontroler PID Berbasis Mikrokontroler ATmega 8535

Transkripsi:

IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI) Publikasi Jurnal Skripsi Disusun Oleh : RADITYA ARTHA ROCHMANTO NIM : 916317-63 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 214

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 167 Telp & Fax. 341 554166 Malang 65145 KODE PJ-1 PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA NAMA NIM : 916317-63 : RADITYA ARTHA ROCHMANTO PROGRAM STUDI : TEKNIK ELEKTRONIKA JUDUL SKRIPSI : IMPLEMENTASI ROBOT THREE OMNI- DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI) TELAH DI-REVIEW DAN DISETUJUI ISINYA OLEH: Pembimbing I Pembimbing II M. Aziz Muslim, ST., MT., Ph.D. Moch. Rif an, ST., MT NIP. 1974123 212 1 1 NIP. 197131 212 1 1

IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI) Raditya Artha Rochamnto 1, M. Aziz Muslim, ST., MT., Phd. 2, Mochammad Rif an, ST., MT. 3 1 Mahasiswa Teknik Elektro UB, 2,3 Dosen Teknik Elektro UB raditya.artha@gmail.com Abstrak-Kontes Robot Abu Indonesia merupakan ajang perlombaan nasional yang diadakan setiap tahun. Salah satu tugas pada perlombaan ini adalah robot harus dapat memindahkan obyek pada titik titik tertentu di lapangan perlombaan dengan cara yang cepat dan efisien. Tugas akhir ini merancang dan mengimplementasikan robot three omni-directional menggunakan kontroler PID pada robot KRAI. Kelebihan robot three omnidirectional adalah dapat bergerak ke segala arah tanpa harus mengubah arah hadapnya. Arah gerak pada robot ini bergantung pada perbandingan kecepatan pada tiap roda yang didapat dari perhitungan kinematika robot. Kontroler PID digunakan untuk mengatur kecepatan roda sehingga didapat respon kecepatan yang cepat mencapai set point dan stabil. Penentuan parameter kontroler PID menggunakan metode hand tunning. Hasil tunning parameter PID pada roda 1 diperoleh nilai Kp = 3, Ki =,8, dan Kd = 1. Pada roda 2 diperoleh nilai Kp=3, Ki=,1, dan Kd=,5 dan pada roda 3 diperoleh nilai Kp=3, Ki=,8, dan Kd=1. Penggunaan parameter kontroler PID yang tepat membuat robot dapat bergerak sesuai dengan arah yang diinginkan dengan rata rata kesalahan arah gerak robot sebesar 4, dan rata rata kesalahan arah hadap robot sebesar 5,75. Kata kunci : robot three omni-directional, kontroler PID, KRAI. A. PENDAHULUAN Kontes Robot Indonesia (KRI) merupakan salah satu kompetisi robotika tingkat nasional yang diadakan secara teratur setiap tahun oleh Direktorat Jendral Pendidikan Tinggi. Kompetisi ini dibagi menjadi beberapa divisi yakni Divisi Kontes Robot Abu Indonesia (KRAI), Divisi Kontes Robot Pemadam Api Indonesia (KRPAI), dan Kontes Robot Sepak Bola Indonesia (KRSBI). Masing masing divisi memiliki aturan, tugas dan arena yang berbeda. Pada Kontes Robot Abu Indonesia (KRAI) peraturan yang digunakan selalu berubahubah tiap tahun bergantung pada tuan rumah ABU ROBOCON diadakan.[1] Dengan aturan yang berbeda beda robot tetap memiliki tugas yang sama. Robot harus dapat berpindah tempat pada arena perlombaan yang cukup luas untuk memindahkan obyek - obyek pada tempat yang telah ditentukan. Oleh karena itu, dibutuhkan sistem pergerakan yang tepat agar robot dapat menyelesaikan misi dengan cepat. Salah satu solusi metode yang dapat digunakan untuk mengatasi masalah ini adalah dengan menggunakan omni-directional drive yang memiliki lebih banyak derajat kebebasan. Omni directional drive merupakan salah satu pergerakan robot dengan memanfaatkan kecepatan putaran tiga roda omni sehingga robot dapat bergerak ke berbagai arah tanpa harus mengubah arah hadapnya atau biasa disebut holonomic robot. Kecepatan putaran roda berpengaruh sangat penting pada arah gerak robot, maka dari itu dibutuhkan suatu sistem untuk menunjang metode tersebut untuk menstabilkan kecepatan putaran motor pada robot. Dalam skripsi ini akan dibahas Implementasi Robot Three Omni-Directional Menggunakan Kontroler Proportional Integral Derivative (PID) pada Robot KRAI (Kontes Robot Abu Indonesia). Sistem ini dirancang untuk mendapatkan sistem pergerakan yang cepat dan hadal sehingga mobile robot dapat dengan cepat menyelesaikan tugasnya. B. TINJAUAN PUSTAKA A. Sistem Pergerakan Robot Three Omnidirectional Drive Salah satu sistem pergerakan robot yang sedang berkembang pesat adalah robot dengan three omni-directional drive. Robot ini berbentuk segitiga sama sisi dengan roda omni diletakkan pada tiap ujungnya. Gambar skematik robot dapat dilihat dalam Gambar 1. Gambar 1 Bentuk Skematik Robot Three Omni-directional Melalui Gambar 2 persamaan kinematik dari sistem pergerakan ini dapat diperoleh. Persamaan yang digunakan pada sistem kontrol robot adalah: 1

( ) ( )...(2-1) ( ) ( )...(2-2)...(2-3) ( )...(2-4) Dengan : r : jari-jari roda omni (cm) w : kecepatan angular dari roda (rad/detik) Rotari Encoder 2 ATmega 8 Slave 2 Motor 1 Driver motor SPI Rotari Encoder 1 ATmega 8 Slave 1 SPI ATmega 32 master SPI Joystick playstation LCD Driver motor SPI Motor 2 ATmega 8 Slave 3 Driver motor Gambar 2 Representasi Kinematika dari Sistem Pergerakan Three Omni-directional Jadi kecepatan pada tiap roda didapatkan dengan mengalikan antara kecepatan sudut roda dengan jari-jari roda secara analisis teori. Setiap roda disusun secara simetris dengan perbedaan sudut tiap roda (12 ) dengan = (6 ). Jadi persamaan 2-1, 2-2, dan 2-3 dapat ditulis dengan suatu bentuk matrik.[2] [ ] [ ] [ ]... (2-5) B. Kontroler PID Gabungan aksi proporsional, integral, dan diferensial mempunyai keunggulan dibandingkan dengan masing-masing dari tiga aksi kontrol tersebut. Masing-masing kontroler P, I, dan D berfungsi untuk mempercepat reaksi sistem, menghilangkan offset dan mendapatkan energi ekstra ketika terjadi perubahan load. Persamaan kontroler PID ini dapat dinyatakan pada persamaan berikut,[3] m(t) = Kp. e(t) + C. PERANCANGAN SISTEM A. Perancangan Sistem Keseluruhan Prinsip kerja sistem ini adalah awalnya mikrokontroller master akan mengolah input dari tombol analog joystick playstation untuk menentukan arah gerak robot. Sudut arah gerak robot ini menjadi masukan rumus kinematika robot. Hasil dari rumus ini berupa kecepatan untuk masing masing roda. Mikrokontroller master akan mengirimkan data berupa kecepatan roda ke masing-masing mikrokontroller slave. Mikrokontroller slave akan mengontorol kecepatan putaran tiap roda dengan feedback dari rotary encoder. Diagram blok keseluruhan sistem ditunjukkan dalam Gambar 3 Rotari Encoder 3 Motor 3 Gambar 3 Diagram Blok Perancangan Perancangan Keras (hardware) Sistem Secara Keseluruhan B. Perancangan Desain mekanik Sistem mekanik yang baik berpengaruh besar pada pergerakan robot, oleh karena itu perancangan mekanik dalam hal ini bodi dan rangka robot haruslah dibuat sepresisi mungkin. Gambar 4 menunjukkan penampakan mekanik robot. Gambar 4. (a) Rancangan robot tampak atas, (b) Rancangan robot tampak perspektif Badan robot terbuat dari aluminium dengan lebar 2 cm, ketiga roda memakai roda omni berdiameter 12,5 cm dengan tebal 3 cm. Ukuran robot 7 x 7 cm C. Perancangan Rangkaian Driver Motor Robot pada perancangan ini menggunakan sistem driver relay. Sistem ini terdiri atas sepasang relay yang bekerja secara terbalik untuk mengatur putaran motor dan komponen E-MOSFET untuk mengatur kecepatan pada motor. Secara keseluruhan rangkaian pengendali arah putaran dan kecepatan motor ditunjukkan dalam Gambar 5. Gambar 5. Rangkaian Keseluruhan Driver Motor M 2

KECEPATAN RODA (RPM) KECEPATAN RODA (RPM) D. Perancangan Antarmuka Joystick Playstation dengan Mikrokontroler ATmega32 Antarmuka antara joystick playstastion (PS) dengan mikrokontroler ATmega32 menggunakan komunikasi SPI. Rangkaian antarmuka antara joystick PS dengan mikrokontroler ATmega32 dapat dilihat dalam gambar 6.[4] F. Perancangan Sistem Tuning Kontroler PID Menggunakan Metode Kedua Ziegler- Nichols pada Robot Three Omni- Directional Proses Tunning PID pada perancangan ini menggunakan metode kedua Ziegler Nichols sehingga harus dicari terlebih dahulu nilai Kp saat terjadi osilasi berkesinambungan pada masing masing motor dengan nilai Ki dan Kd adalah. Dari nilai Kp saat terjadi osilasi berkesinambungan dapat dicari Kcr dan Pcr. Dengan nilai Kcr dan Pcr, dapat dihitung nilai Ki dan Kd dengan persamaan Nilai Ki dan Kd didapatkan dengan menggunakan perhitungan sebagai berikut. Gambar 6 Rangkaian Antarmuka Joystick Playstation dengan Mikrokontroler ATmega32 E. Perancangan Sistem Kinematika Robot Three Omni Directional Pada robot three omni-directional untuk bergerak ke sudut yang dinginkan maka harus diketahui terlebih dahulu perbandingan kecepatan motor (V 1, V 2, V 3 ). Nilai dari V 1, V 2, dan V 3 dapat diperoleh dari penjabaran persamaan 2-5 sebagai berikut Nilai V 1, V 2,V 3 digunakan sebagai perbandingan kecepatan tiap roda dan dikalikan dengan kecepatan tertentu, dalam skripsi ini ditetapkan kecepatan yang digunakan sebagai pengali adalah 3 rpm. Kecepatan yang digunakan ini harus sama atau lebih pelan dibandingkan dengan kecepatan maksimal roda yang paling pelan diantara tiga roda tersebut. Kecepatan roda untuk pergerakan robot ke beberapa sudut dapat dilihat dalam tabel 1 Tabel 1 Kecepatan Tiap Roda No Sudut Gerak V1(rpm) V2(rpm) V3(rpm) Robot ( ) 1 - - 198 2 45 5-19 14 3 9 17-17 4 135 19-5 -14 5 18-198 6 225-5 19-14 7 27-17 17 8 315-19 5 14 Nilai negatif menunjukkan arah perputaran roda yang searah dengan arah jarum jam dan nilai positif berlawanan arah jarum jam. 1. Perancangan Tuning Parameter PID Pada Roda 1 Hasil pengujian respon putaran roda dengan menggunakan kontroler proporsional dengan nilai 1 (Kp=1) dapat dilihat dalam Gambar 7 Kp=1, Ki=, Kd= 45 4 35 3 25 2 15 1 5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 DATA KE Gambar 7 Grafik respon kecepatan roda 1 dengan Kp=1, Ki=, Kd= Hasil tuning parameter PID dengan menggunakan metode kedua Ziegler-Nichols pada roda 1 diperoleh nilai Kp = 6, Ki = 92,31, dan Kd =,96. 2. Perancangan Tuning Parameter PID Pada Roda 2 Hasil pengujian respon putaran roda dengan menggunakan kontroler proporsional dengan nilai 13 (Kp=13) dapat dilihat dalam Gambar 8. 35 3 25 2 15 1 5 Pcr Kp=13, Ki=, Kd= 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 DATA KE - Gambar 8. Grafik respon kecepatan roda 2 dengan Kp=13, Ki=, Kd= Hasil tuning parameter PID dengan menggunakan metode kedua Ziegler-Nichols pada roda 2 diperoleh nilai Kp = 7,8, Ki =12, dan Kd =,1248. 3

KECEPATAN RODA (RPM) 3. Perancangan Tuning Parameter PID Pada Roda 3 Hasil pengujian respon putaran roda dengan menggunakan kontroler proporsional dengan nilai 12 (Kp=12) dapat dilihat dalam Gambar 9. mulai Inisialisasai PORT I/O, SPI, T=2 45 4 35 3 25 2 15 1 5 Kp=12, Ki=, Kd= Pcr 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 DATA KE - T=? Hitung PID Gambar 11. Diagram alir program utama mikrokontroler slave Y T Gambar 9.Grafik respon kecepatan roda 3 dengan Kp=12, Ki=, Kd= Hasil tuning parameter PID dengan menggunakan metode kedua Ziegler-Nichols pada roda 3 diperoleh nilai Kp = 7,2, Ki =73,47, dan Kd =,1764. G. Perancangan Perangkat Lunak 1. Perancangan Program Mikrokontroler Master Program utama mikrokontroler master dirancang untuk melakukan proses antarmuka dengan joystick playstation, menghitung kinematika robot dan komunikasi SPI dengan tiga mikrokontroler slave. Diagram alir program utama master ditunjukkan dalam Gambar 1. start D. PERANCANGAN SISTEM Pengujian dan analisis dilakukan untuk mengetahui kinerja sistem, apakah sistem telah sesuai dengan perancangan. Pengujian dilakukan per blok sistem kemudian secara keseluruhan. A. Pengujian Data Joystick Playstation Pengujian ini dilakukan dengan tujuan untuk mengetahui apakah pembacaan sudut yang dibaca oleh mikrokontroler sesuai dengan sudut pergerakan yang dilakukan pada tombol analog joystick. Pada Pengujian ini, tombol analog digerakkan ke sudut, 45, 9, 135, 18, 225, 27, dan 315. Perangkat joystick akan mengirimkan data komunikasi SPI ke mikrokontroler. Mikrokontroler mengolah data yang didapat menjadi sudut arah tombol analog dan ditampilkan pada LCD. Hasil pengujian ditunjukkan dalam Gambar 12. Inisialisasai PORT I/O, SPI, LCD baca joystik playstation hitung kinematika robot kirim kecepatan ke slave 1 kirim kecepatan ke slave 2 kirim kecepatan ke slave 3 Gambar 1. Diagram alir program utama master 2. Perancangan Program Mikrokontroler slave Program utama mikrokontroler slave dirancang untuk melakukan proses komunikasi dengan mikrokontroler master dengan SPI, data kecepatan rotary dan melakukan proses perhitungan PID. Diagram alir program utama slave ditunjukkan dalam Gambar 11. Gambar 12. Arah Tombol Analog dan Tampilan Pada LCD Dari hasil pengujian joystick terlihat bahwa joystick dapat mengirimkan data ke mikrokontroler. Mikrokontroler dapat mengolah data digital yang diperoleh dari joystick menjadi sudut sesuai dengan arah tombol analog. Data 4

Kecepatan Putar Roda (RPM) Kecepatan Putar Roda (RPM) kecepatan Roda (RPM) sudut yang ditampilkan pada LCD sesuai dengan arah tombol analog digerakkan. B. Pengujian Komunikasi SPI Antara Mikrokontroler Master dan slave Pengujian ini dilakukan untuk mengetahui dan memeriksa perangkat lunak yang disusun dalam perangkat mikrokontroler apakah sudah dapat menangani komunikasi SPI antara mikrokontroler master (ATmega32) dengan mikrokontroler slave (ATmega8). Tabel 2 menunjukkan hasil pengujian komunikasi SPI dari tiga kali percobaan. Tabel 2. Hasil Pengujian komunikasi SPI master slave Arah tekan Nilai pada LCD Nilai pada komp. tombol V 1 V 2 V 3 Slave Slave Slave analog ( ) (rpm) (rpm) (rpm) 1 2 3 9 18 17 17 198 198 17 17 198 198 Dari hasil pengujian komunikasi SPI (Serial Peripheral Interface) terlihat bahwa mikrokontroler master dapat mengirimkan data konstanta ke mikrokontroler slave. Data yang ditampilkan pada mikrokontroler slave di komputer sama dengan data yang ditampilkan oleh mikrokontroler master pada LCD. Hasil pengujian ini juga menunjukkan bahwa program yang terdapat pada MK slave dan master dapat bekerja dengan baik dalam berkomunikasi secara SPI. C. Pengujian Sensor Rotary Encoder Pengujian ini bertujuan untuk melihat apakah sensor rotary encoder yang dipakai dapat menghasilkan pulsa sesuai dengan datasheet dari rotary encoder. Pada datasheet, rotary encoder dapat menghasilkan 5 pulsa dalam satu putaran. Pada pengujian ini, sensor rotary encoder diputar sebesar ¼, ½, ¾, dan 1 putaran. Pada masing masing putaran dilihat berapa pulsa yang terbaca oleh mikrokontroler. Jumlah pulsa yang terbaca ditampilkan pada komputer. Hasil pengujian yang diperoleh dari beberapa pengambilan data ditunjukkan pada Tabel 3. Penguj ian ke - Tabel 3 Hasil Pengujian data pulsa rotary encoder Besar Rotary Rotary encoder 1 encoder 2 putaran 1 1/4 2 1/2 3 3/4 Jumlah Pulsa 126 247 25 248 Jumlah Pulsa 25 25 251 373 374 Rotary encoder 3 Jumlah Pulsa 127 126 25 249 249 376 4 1 5 52 51 5 498 51 51 5 5 Berdasarkan Tabel 3 dapat diperoleh hasil bahwa kesalahan rata rata yang terjadi saat pembacaan jumlah pulsa rotary encoder sebesar.75 pulsa atau dibulatkan menjadi 1 pulsa. Kesalahan pembacaan terbesar yaitu 3 pulsa. Pada pengujian, kesalahan pembacaan berupa jumlah pulsa yang kurang atau lebih besar dari nilai seharusnya. Kesalahan ini dapat terjadi karena kesalahan dalam memutar rotary encoder. D. Pengujian Hasil Tuning Parameter PID Tujuan dari pengujian ini adalah untuk melihat respon roda dari nilai parameter kontrol PID (Kp, Ki dan Kd) dengan menggunakan metode Osilasi Ziegler-Nichols yang telah didapat sebelumnya. Grafik respon kecepatan roda hasil tuning dengan metode kedua Ziegler-Nichols ditunjukkan dalam Gambar 13. 6 4 2 Grafik Respon Kecepatan Putaran Roda 1, 2, dan 3 1 4 7 1 13 16 19 22 25 28 31 34 37 4 43 46 49 52 55 58 Data Ke- Roda 1 Roda 2 Roda 3 Gambar 13 grafik respon kecepatan roda hasil tuning dengan metode kedua Ziegler - Nichols Gambar 13 menunjukkan respon kecepatan yang tidak stabil sehingga digunakan metode hand tuning. Gambar 14 menunjukkan respon kecepatan roda pada roda 1, 2, dan 3 setelah dilakukan proses tuning dengan metode hand tuning. Kp=3, Kd=1, Ki=,8 3 2 1 3 2 1 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 Data Ke- (a) Kp=3, Kd=,5, Ki=,1 1 7 131925313743495561677379859197 (b) Data Ke- 5

Kecepatan Putar Roda (RPM) 3 2 1 (c) Gambar 14 Grafik respon kecepatan (a) Roda 1, (b) Roda 2, (c) Roda 3. E. Pengujian Keseluruhan Sistem Pengujian keseluruhan sistem ini bertujuan untuk mengetahui performansi robot three omnidirectional untuk bergerak ke sudut sudut tertentu. Prosedur pengujian dilakukan dengan mengendalikan robot dengan menggunakan joystick untuk bergerak ke sudut - sudut tertentu seperti yang ditunjukkan dalam gambar 15. Gambar 15 Arah Gerak Robot Hasil pengujian untuk respon robot saat dikendalikan untuk bergerak ke arah tertentu setelah beberapa kali percobaan dapat dilihat dalam tabel 4 Tabel 4 Hasil Pengujian Arah Gerak Robot Sudut Joystick ( Sudut gerak Perubahan hadap ) robot ( ) robot( ) 45 9 135 18 225 27 315 Kp=3, Kd=1, Ki=.8 1 8 15 22 29 36 43 5 57 64 71 78 85 92 5 5 5 6 5 58 9 88 91 132 128 132 19 175 181 218 218 22 273 272 268 323 319 323 Data Ke- 6 7 6 1 14 13-13 -1-1 -5-6 -5 4 3-6 Berdasarkan tabel diatas dapat diperoleh hasil rata rata kesalahan sudut gerak robot sebesar 4,. Hasil pengujian menunjukan rata rata eror hadap robot sebesar 5,75. Pada error hadap 6 robot terdapat nilai sudut positif dan negatif, untuk positif menandakan robot berputar berlawanan arah jarum jam, sedangkan nilai negatif menandakan robot berputar searah jarum jam dari posisi awalnya. E. KESIMPULAN Dari hasil perancangan dan pengujian yang telah dilakukan, dapat disimpulkan beberapa hal sebagai berikut. 1. Metode osilasi ziegler-nichols tidak dapat diterapkan karena dengan parameter kontroler PID yang diperoleh, respon putaran roda tidak dapat mencapai kestabilan. Parameter kontroler PID diperoleh dengan metode hand tunning. Pada roda 1 diperoleh nilai Kp = 3, Ki =,8, dan Kd = 1. Pada roda 2 diperoleh nilai Kp = 3, Ki =,1, dan Kd =,5. Pada roda 3 diperoleh nilai Kp = 3, Ki =,8, dan Kd = 1. 2. Dari hasil pengujian, robot three omnidirectional dapat bergerak ke sudut, 45, 9, 135, 18, 225, 27, dan 315. Hal ini terlihat dari rata rata kesalahan sudut gerak robot sebesar 4,. Kesalahan arah gerak robot terbesar adalah 11 saat sudut arah gerak robot 45. Terdapat perubahan hadap robot setelah bergerak dengan rata rata kesalahan sebesar 5,75. Daftar Pustaka [1] Dikti 213. Panduan Kontes Robot Indonesia 213. Jakarta: DIKTI. [2] Al-Ammri, Salam dan Iman Ahmed. 21. Control of Omni Directional Mobile Robot Motion. Baghdad: Al-Khwarizmi Engineering Journal. [3] Ogata, Katsuhiko. 17. Teknik Kontrol Automatik Jilid 1. Jakarta: Penerbit Erlangga [4] Nugroho Adi, Agung.29.Antarmuka Joystick Playstation dengan mikrokontroler AVR menggunkan CVAVR. http://nugroho. staff.uii.ac.id /files/29/1/psx.pdf. Diakses tanggal : 1 April 213.