ANALISIS TEORITIS LAYER METHOD DAN EKSPERIMENTAL PERKUATAN BALOK BETON BERTULANG MENGGUNAKAN TULANGAN LONGITUDINAL DENGAN SELIMUT MORTAR

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA

INFO TEKNIK Volume 10 No. 1, Juli 2009 (34-42)

ek SIPIL MESIN ARSITEKTUR ELEKTRO

Perkuatan Lentur Pelat Lantai Tampang Persegi dengan Penambahan Tulangan Tarik dan Komposit Mortar

Analisis Perilaku Lentur Balok Beton Bertulang Tampang T Menggunakan. Response-2000

KAJIAN DAKTILITAS DAN KEKAKUAN PERKUATAN BALOK T DENGAN KABEL BAJA PADA MOMEN NEGATIF

KERUNTUHAN LENTUR BALOK PADA STRUKTUR JOINT BALOK-KOLOM BETON BERTULANG EKSTERIOR AKIBAT BEBAN SIKLIK

KAJIAN PERILAKU LENTUR PELAT KERAMIK BETON (KERATON) (064M)

FAKTOR DAKTILITAS KURVATUR BALOK BETON BERTULANG MUTU NORMAL (PEMANFAATAN OPEN SOURCE RESPONSE2000)

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

PENGUJIAN LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN MODIFIKASI ALAT UJI TEKAN

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB IV METODOLOGI PENELITIAN

SEMINAR NASIONAL TEKNIK FST-UNDANA TAHUN 2017 Hotel On The Rock, Kupang, November 2017

STUDI EKSPERIMENTAL KUAT LENTUR PADA BALOK BETON BERTULANG DENGAN PERKUATAN BAJA RINGAN PROFIL U

PENGARUH PENAMBAHAN KAIT PADA TULANGAN BAMBU TERHADAP RESPON LENTUR BALOK BETON BERTULANGAN BAMBU

KAPASITAS LENTUR BALOK BETON TULANGAN BAMBU PETUNG DENGAN TAKIKAN TIDAK SEJAJAR TIPE U LEBAR 1 CM DAN 2 CM PADA TIAP JARAK 5 CM

INFRASTRUKTUR KAPASITAS LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN AGREGAT KASAR TEMPURUNG KELAPA

BAB 4 PENGOLAHAN DATA DAN ANALISA

SLOOF PRACETAK DARI BAMBU KOMPOSIT

PENGGUNAAN CARBON FIBER REINFORCED PLATE SEBAGAI BAHAN KOMPOSIT EKSTERNAL PADA STRUKTUR BALOK BETON BERTULANG

PENGARUH TEBAL SELIMUT BETON TERHADAP KUAT LENTUR BALOK BETON BERTULANG

ANALISIS EKSPERIMEN LENTUR KOLOM BATATON PRACETAK AKIBAT BEBAN AKSIAL EKSENTRIS

INTISARI. Istiawan 2, Fadillawaty 3, Hakas Prayuda 4

KOMPOSIT BETON-PROFIL LIP CHANNEL UNTUK MENCEGAH TEKUK LATERAL-TORSIONAL

ANALISIS KUAT LENTUR BALOK BETON BERTULANG DENGAN CARBON FIBER WRAP

Spektrum Sipil, ISSN Vol. 4, No. 2 : 25-34, September 2017

Suprapto, S.Pd.,M.T.

Indonesia, Indonesia

BAB I PENDAHULUAN 1.1 Latar Belakang

PERILAKU BALOK BETON SANDWICH DALAM MENERIMA BEBAN LENTUR TESIS MAGISTER OLEH FIRDAUS

STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK

Pengaruh Variasi Tebal Terhadap Kekuatan Lentur Pada Balok Komposit Menggunakan Response 2000


Seminar Nasional VII 2011 Teknik Sipil ITS Surabaya Penanganan Kegagalan Pembangunan dan Pemeliharaan Infrastruktur

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB II STUDI PUSTAKA

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

Studi Eksperimental Kuat Geser Pelat Beton Bertulang Bambu Lapis Styrofoam

BAB I PENDAHULUAN. 1.1 Latar Belakang. Perkembangan pada setiap bidang kehidupan pada era globalisasi saat ini

PERILAKU LENTUR BALOK BETON DENGAN PERKUATAN BAMBU PETUNG DAN PEREKAT BERBAHAN DASAR SEMEN (160S)

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB I PENDAHULUAN. A. Latar Belakang. mengakibatkan kerusakan struktur maupun non-struktur pada bangunan yang

ANALISIS PERBANDINGAN PENGUJIAN LENTUR BALOK TAMPANG PERSEGI SECARA EKSPERIMENTAL DI LABORATORIUM DENGAN PROGRAM RESPONSE 2000

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB II TINJAUAN PUSTAKA

Received Date: 26 Mei 2017 Approved Date: 20 Juli 2017

PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER

KEKUATAN LENTUR BALOK DENGAN PERKUATAN GFRP AKIBAT RENDAMAN AIR LAUT SELAMA 2 TAHUN

BAB II TINJAUAN PUSTAKA

PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S)

PENGARUH PANJANG SAMBUNGAN LEWATAN LEBIH DARI SYARAT SNI TERHADAP KUAT LENTUR PADA BALOK BETON BERTULANG TULANGAN BAJA ULIR

BAB I PENDAHULUAN. 1.1 Latar Belakang

Letak Utilitas. Bukaan Pada Balok. Mengurangi tinggi bersih Lantai 11/7/2013. Metode Perencanaan Strut and Tie Model

MEKANISME KERUNTUHAN BALOK BETON YANG DIPASANG CARBON FIBER REINFORCED PLATE

BAB II TINJAUAN PUSTAKA

PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK

ANALISIS BALOK BETON BERTULANG TAMPANG T YANG DIPERKUAT DENGAN WIRE ROPE MENGGUNAKAN PROGRAM RESPONSE-2000 DAN METODE PIAS

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

STUDI EKSPERIMENTAL BALOK BERONGGA DENGAN PEMANFAATAN LIMBAH BOTOL PET

KAJIAN PERKUATAN STRUKTUR BANGUNAN BERLANTAI ENAM RUMAH SAKIT MITRA MEDIKA TEMBUNG AKIBAT PERUBAHAN FUNGSI RUANGAN

PENGUJIAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG KONVENSIONAL

PERILAKU RUNTUH BALOK BETON BERTULANG YANG DIPERKUAT DENGAN LAPIS GLASS FIBRE REINFORCED POLYMER (GFRP)

LENTUR PADA BALOK PERSEGI ANALISIS

PEMANFAATAN BETON SERAT ANYAMAN KAWAT SEBAGAI PERKUATAN METODE PREPACKED CONCRETE PADA BALOK BETON BERTULANG (161S)

BAB III LANDASAN TEORI

Rojul Gayuh Leksono et al., Analisis dan Pengujian Batang Elemen Struktur Beton Bertulang Berlubang 1

KAJIAN EKSPERIMENTAL PERILAKU BALOK BETON TULANGAN TUNGGAL BERDASARKAN TIPE KERUNTUHAN BALOK ABSTRAK

Perilaku Lentur pada Keadaan Layan dan Batas Balok Beton Bertulang Berlubang Memanjang

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal

UJI EKSPERIMENTAL KEKUATAN DRAINASE TIPE U-DITCH PRACETAK

KUAT LENTUR BALOK BETON TULANGAN BAMBU PETUNG VERTIKAL

Desain Elemen Lentur Sesuai SNI

DESAIN BALOK ELEMEN LENTUR SESUAI SNI

PERKUATAN LENTUR PELAT BENTANG 5 METER DENGAN PENAMBAHAN PLAT BAJA MENGGUNAKAN PEREKAT EPOXY

PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling

PENGARUH JARAK SENGKANG TERHADAP KAPASITAS BEBAN AKSIAL MAKSIMUM KOLOM BETON BERPENAMPANG LINGKARAN DAN SEGI EMPAT

PENGARUH VARIASI LUAS PIPA PADA ELEMEN BALOK BETON BERTULANG TERHADAP KUAT LENTUR

I. PENDAHULUAN. Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan

BAB I PENDAHULUAN PENDAHULUAN

BAB I PENDAHULUAN. Universitas Kristen Maranatha 1

TINJAUAN KUAT LENTUR BALOK BETON BERTULANG BAJA DENGAN PENAMBAHAN KAWAT YANG DIPASANG DIAGONAL DI TENGAH TULANGAN SENGKANG.

Ngudiyono*, Joedono*, Nurun Ainuddin*

TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM. Naskah Publikasi

KAPASITAS LENTUR DAN DAKTILITAS BALOK BETON BERTULANG YANG DIPASANG CARBON WRAPPING

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

INFO TEKNIK Volume 14 No. 1 Juli 2013 (65-73)

EVALUASI KEKUATAN STRUKTUR YANG SUDAH BERDIRI DENGAN UJI ANALISIS DAN UJI BEBAN (STUDI KASUS GEDUNG SETDA KABUPATEN BREBES)

BAB I PENDAHULUAN. tarik yang tinggi namun kuat tekan yang rendah.kedua jenis bahan ini dapat. bekerja sama dengan baik sebagai bahan komposit.

EVALUASI CEPAT DESAIN ELEMEN BALOK BETON BERTULANGAN TUNGGAL BERDASARKAN RASIO TULANGAN BALANCED

BAB II TINJAUAN PUSTAKA

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke

ABSTRAK. Kata Kunci: gempa, kolom dan balok, lentur, geser, rekomendasi perbaikan.

BAB II TINJAUAN PUSTAKA

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL

PENELITIAN BALOK BETON BERTULANG DENGAN DAN TANPA PEMAKAIAN SIKAFIBRE

PENGARUH TULANGAN CRT DAN TULANGAN BJTD PADA KOMPONEN LENTUR DENGAN MUTU BETON F C 24,52 MPA (182S)

TINJAUAN KUAT LENTUR BALOK BETON BERTULANG DENGAN PENAMBAHAN KAWAT YANG DIPASANG LONGITUDINAL DI BAGIAN TULANGAN TARIK.

TINJAUAN MOMEN LENTUR BALOK BETON BERTULANG DENGAN PENAMBAHAN KAWAT YANG DIPASANG MENYILANG PADA TULANGAN GESER. Naskah Publikasi

Transkripsi:

78 INFO TEKNIK, Volume 14 No. 1, Juli 211 ANALISIS TEORITIS LAYER METHOD DAN EKSPERIMENTAL PERKUATAN BALOK BETON BERTULANG MENGGUNAKAN TULANGAN LONGITUDINAL DENGAN SELIMUT MORTAR Nursiah Chairunnisa Abstrak - Strengthenning and Retrofitting methods already had applicated in buildings. Beam is One of structure elements can be strengthenned in order to maintain efficient serviceability structure that can be caused change of function from structures likes overloading or lack of quality control at construction so it can fulfill the code of structures to day and future. This research had to know about effectiveness strengthening methods of reinforced concrete beams using longitudinal compression and tension reinforcement with jacketing mortar as flexural strengthening and had to know effectiviness of theoritical methods for interpreting result. In this research specimen models consist of four specimens: one was control beam (BK), one was monolith beam (BM) and one was strengthened beam (BP)without bonding agent and BP2 was strengthenned beam with bonding agent. All beams were tested under 2-point loading midspan as flexural load and also instrumented for the measurement of mid-span deflection and crack pattern. Test result were compared to analytical method and program computer based layer method (software Response-2). The result shows performanced of Response-2 as layer method an theoritical methods provided equal performances if compared with experimenta method. It can be shown that the percentags of Ultimate Load between Response 2 with experimental method was 17 % - 19% for BK, 11,42-111,4% for BM, 83,77% - 83,81% forbp1 dan 87,66-87,7 for BP2. Failure patterns of the control beam (BK) and monolithical beam (BM) were flexural while the strengthened beams had debonding. At this researched, an analythical method (Response- 2)also presented equal performance at failure patterns. It can be shown two specimens (BK and BM) were flexural failured an others (BP1 and BP2) were debonding failured too. Keywords: Reinforced concrete beam, strengthenning, Response 2, Layer Method PENDAHULUAN Dewasa ini Perkuatan (strengthenning) dan Perbaikan (Retrofitting) pada struktur yang telah dibangun semakin banyak dilakukan. Perkuatan (strengthenning) dilakukan karena ada perubahan fungsi bangunan yang sudah berdiri dan yang tentu saja akan menyebabkan perubahan kemampuan menahan beban yang lebih besar dari struktur yang telah ada. Perbaikan (Retrofitting) pada struktur dilakukan karena Bangunan yang sudah berdiri mengalami kerusakan baik akibat gempa ataupun akibat kelebihan Beban sehingga perlu adanya perbaikan di elemen struktur tersebut. Banyak sekali penelitian mengenai cara Perkuatan (strengthenning) dan Perbaikan (Retrofitting) yang dilakukan pada Balok Beton Bertulang. Perkuatan (strengthening) adalah suatu tindakan modifikasi struktur, mungkin belum terjadi kerusakan dengan tujuan untuk meningkatkan kekuatan atau stabilitas (Triwiyono, 26). Chairunnisa (29) meneliti tentang penambahan tulangan longitudinal tarik dan tekan dengan selimut mortar mutu tinggi hasil penelitian Wancik (28). Benda Uji terdiri dari 3 tipe yaitu Balok Kontrol, Balok monolit dan Balok Perkuatan. Balok Kontrol dengan ukuruan 1 x 2 mm, balok monolit dengan ukuran 19 x 33 mm sedangkan balok perkuatan adalah balok kontrol yang diperkuat dengan satu buah tulangan tekan dengan diamater 13 dan dua buah tulangan tarik dengan diameter yang sama dengan

79 INFO TEKNIK, Volume 14 No. 1, Juli 211 menggunakan selimut mortar mutu tinggi. Panjang bentang semua benda uji adalah 2mm. Hasil penelitian menyebutkan bahwa kekuatan lentur untuk balok perkuatan meningkat, tetapi peningkatan ini tidak linier karena terjadi pelepasan selimut mortar (debonding). Sejalan dengan hasil penelitian tersebut dipandang perlu untuk melakukan penelitian lebih lanjut tentang Perkuatan Balok beton bertulang ini dengan membandingkan Hasil eksperimen dengan Analisis Software Response-2. Software Response 2 adalah suatu program yang menganalisis balok dan kolom dengan kombinasi beban aksial, momen dan geser berdasarkan layer method. Tujuan analisis dengan Software Response 2 dalam penelitian ini adalah untuk memperluas interpretasi hasil dari eksperimen yang telah dilakukan dan memvalidasi keakuratan Software Response 2 dalam menganalisis suatu struktur. KAJIAN TEORITIS Analisis kekuatan lentur balok yang dipakai pada penelitian ini untuk mengetahui Mu dari balok mengacu kepada asumsi dalam Peraturan SNI 3-2847-22 Pasal 12.2 dan Pasal 12.3 yang mengasumsikan batasan <,75 b yang merupakan rasio tulangan yang menghasilkan kondisi regangan seimbang akan memberikan perilaku yang liat (ductile). Untuk menghindari penulangan yang getas, maka beberapa peraturan mensyaratkan kemampuan balok hanya dibatasi sampai dengan 75% b. Dalam penelitian ini, untuk analisis perhitungan juga dilakukan dengan menggunakan Software Response 2 (Bentz, E.,21). Software Response 2 adalah suatu program yang menganalisis balok dan kolom dengan kombinasi beban aksial, momen dan geser. Tujuan analisis dengan Software Response 2 dalam penelitian ini adalah untuk memperluas interpretasi hasil dari eksperimen yang telah dilakukan. METODOLOGI PENELITIAN Benda uji Balok Kode Panjang (mm) Lebar (mm) Tinggi (mm) Perlakuan Tul.Utama Tul. Tul. Perkuatan Atas Sengkang Bawah Atas Bawah BK 2 1 2-2D6 3D13 P8-4 - - BM 2 19 33-2D6 3D13 P8-4 1D13 2D13 BP-1 2 19 33 2D6 Tanpa perlakuan 3D13 P8-4 1D13 2D13 BP-2 2 19 33 Bonding agent 2D6 3D13 P8-4 1D13 2D13 Keterangan : BK : Balok kontrol BM : Balok kontrol yang diperkuat 1 tulangan tekan dan 2 tulangan tarik dicor monolit. BP-1 : Balok kontrol yang diperkuat 1 tulangan tekan dan 2 tulangan tarik dicor terpisah tanpa perlakuan BP-2 : Balok kontrol yang diperkuat 1 tulangan tekan dan 2 tulangan tarik dicor terpisah dengan perlakuan berupa bonding agent.

8 INFO TEKNIK, Volume 14 No. 1, Juli 211 Benda Uji BP-2 spesifikasinya sama dengan BP-1, perbedaannya terletak pada perlakuan dengan menggunakan bonding agent Sikadur 732 sebagai lem perekat antara beton lama dan mortar baru Perkuatan Benda Uji Perkuatan benda uji dilakukan dengan melekatkan tulangan longitudinal pada sisi bawah dan atas balok untuk perkuatan lentur, kemudian dilakukan pengecoran dengan mortar. Adapun tahap-tahap perkuatan adalah sebagai berikut: 1) Pembuatan bekisting untuk perkuatan tarik. Bekisting ini dilengkapi dengan tahu beton pada bagian ujung dan tengah penampang, hal ini dimaksudkan untuk meletakkan tulangan perkuatan longitudinal. Setelah itu meletakkan beton lama ke bekisting perkuatan dan pembuatan bekisting perkuatan daerah tekan langsung dibuat di atas benda uji seperti yang ditunjukkan pada Gambar 1 bonding agent Sikadur 732 yang berfungsi untuk melekatkan beton lama dengan mortar baru. Perlu diperhatikan masa tunggu dari bonding agent sekitar ± 3 menit. Proses pembersihan benda uji dan pengolesan bonding agent Sikadur 732 dapat dilihat pada Gambar 2 Gambar 1. Bekisting dan tulangan longitudinal untuk perkuatan daerah tarik dan tekan Pembersihan benda uji dari debu dan kotoran dengan Air Compressor, dilanjutkan dengan pengolesan Gambar 2. Pembersihan benda uji dan pengolesan Bonding Agent 2) Pengecoran perkuatan dengan mortar. Untuk pengecoran perkuatan tarik dilakukan dengan menggunakan seng tipis yang dimasukkan pada salah satu sisi badan benda uji. Proses pengecoran dilakukan melalui salah satu sisi benda uji dan dibiarkan mengalir sampai ke sisi lain dari benda uji, yang berarti pengecoran perkuatan sudah memenuhi keseluruhan rongga pada bekisting perkuatan. Pengecoran perkuatan tekan lebih mudah dilakukan seperti pengecoran balok biasa dan dilakukan ± 3 hari setelah pengecoran perkuatan tarik. Proses pada tahap ini dapat dilihat pada Gambar 3

Beban (kn) 81 INFO TEKNIK, Volume 14 No. 1, Juli 211 Tujuan perkuatan dengan penambahan tulangan longitudinal pada daerah tarik dan tekan dengan diselubungi mortar dimaksudkan agar balok tetap dalam keadaan underreinforced. Selain itu juga untuk mencegah tulangan baja perkuatan terkena korosi tulangan. Perbedaan Benda uji BM dan BP terletak pada sistem pengecoran, yaitu BM cor monolit dengan kuat tekan beton sebesar fc =28,514 MPa dan BP cor terpisah dengan menggunakan mortar mutu fc =56,125 MPa sebagai selimut perkuatan. HASIL DAN PEMBAHASAN Gambar 3. Pengecoran perkuatan dengan mortar Analisis teoritis berdasarkan SNI 3-2847-22 Besarnya nilai kapasitas lentur balok benda uji teoritis dihitung.berdasarkan metode SNI 3-2847-22 yang dapat dilihat pada Tabel 1 Tabel 1. Hasil pengujian lentur balok uji (metode SNI) No Benda Beban (kn) Peningkatan Uji retak1 Leleh Maks retak1 Leleh Maks P maks (%) 1 BK 14,32 94,249 97,,515 9,8 23,2 2 BM 31,377 18,56 217,63,384 6,9 18, 123,21 3 BP lower 31,377 18,56 217,63,384 6,9 18, 123,21 4 BP upper 58,85 188,83 23,24,534 5,61 29,93 136,14 Perhitungan analisis teoritis untuk balok perkuatan diasumsikan dengan lower analyze dan upper analyze. Hal ini dilakukan karena ada perbedaan mutu beton balok kontrol sebesar fc =28,514 MPa dan mutu mortar sebagai selimut Perkuatan sebesar fm = 56,125 MPa. Dalam analisis untuk lower analyze digunakan mutu beton sebesar 28,514 MPa dan pada analisis upper analyze digunakan mutu mortar 56,125 MPa Dari Tabel 1 terlihat bahwa balok monolit (BM) dan balok perkuatan lower estimate (BP lower ) menunjukkan peningkatan beban maksimum sebesar 123,21 % terhadap balok kontrol (BK) dan balok perkuatan upper estimate (BP upper ) mengalami peningkatan beban maksimum sebesar 136,14 % terhadap balok kontrol (BK). Hubungan beban lendutan hasil perhitungan berdasarkan SNI dilihat pada Gambar 4. 2 2 1 5 1 15 2 25 3 35 BK BM dan BP-lower BP-Upper Gambar 4. Hubungan beban lendutan rata-rata benda uji (SNI)

Beban (kn) 82 INFO TEKNIK, Volume 14 No. 1, Juli 211 Analisis dengan menggunakan Program Response-2 Analisis software yang dilakukan dalam penelitian ini menggunakan program Response-2. Hasil running dengan Program Response-2 kemudian diplot dalam grafik hubungan beban lendutan dan momen kurvature yang terjadi pada masing-masing benda uji. Pada analisis balok perkuatan dengan program Response-2 dilakukan dengan dua pendekatan yaitu balok perkuatan analisis lower estimate dan upper estimate. Hal ini dikarenakan untuk melakukan permodelan yang presisi seperti yang dilakukan di Laboratorium tidak dapat dilakukan pada program Response-2, sehingga untuk memperoleh hasil untuk balok perkuatan dilakukan analisis secara lower estimate dan upper estimate. Hasil output program Response-2 menganggap bahwa tanda titik (.) sebagai desimal. Hasil pengujian lentur dengan program Response-2 dari benda uji balok kontrol, balok monolit, balok perkuatan analisis lower estimate (BP lower ) dan balok perkuatan analisis upper estimate (BP under) ditunjukkan pada Tabel 2. Tabel 2. Hasil pengujian lentur balok uji (program Response-2) No Benda Beban (kn) Lebar retak (mm) Peningkatan Uji retak1 Leleh Maks retak1 Leleh Maks retak1 leleh maks P maks (%) 1 BK 11,65 95,76 99,9,529 12,33 24,47,2,45 1,7 2 BM 24,34 192,69 215,53,399 7,26 2,65,3,63 1,21 115,72 3 BP lower 24,34 192,69 215,53,399 7,26 2,65,3,63 1,21 115,72 4 BP upper 34,95 199,86 232,15,49 7, 27,15,4,63 1,75 132,38 Dari hasil analisis program Response- 2 pada Tabel 2 diperoleh besarnya kenaikan beban dari balok monolit (BM) dan balok perkuatan lower estimate sebesar 115,72% terhadap balok kontrol (BK) dan perkuatan upper estimate meningkat sebesar 132,38% terhadap balok kontrol (BK). Hubungan beban lendutan hasil perhitungan program Response-2 dilihat pada Gambar 5 2 2 Perhitungan nilai momen-curvature dari analisis hasil program Response-2 dapat dilihat pada Tabel 3 dan Gambar 6. 1 BK-Response BM dan BP lower- Response 2 BP Upper-Response 2 5 1 15 2 25 3 35 Gambar 5. Hubungan beban lendutan ratarata benda uji (Response-2)

Momen (k.nm) 83 INFO TEKNIK, Volume 14 No. 1, Juli 211 Tabel 3. Momen-curvature benda uji berdasarkan program Response-2 No Benda uji Momen (knm) Curvature (rad/km) Retak 1 Leleh Maks Retak 1 Leleh Maks 1 BK 4,37 35,91 37,46,95 17,71 57,388 2 BM 9,13 72,26 8,82,672 12,125 47,824 3 BP lower 9,13 72,26 8,82,672 12,125 47,824 4 BP upper 13,11 74,95 87,1,886 11,445 63,718 9 8 7 6 4 3 2 1 1 2 3 4 6 7 8 Curvature (rad/km) BK BM dan BP-lower BP-upper Gambar 6. Hubungan momen-curvature balok benda uji (Response-2) Perbandingan beban hasil teoritis dan hasil pengujian Besarnya beban maksimum yang mampu ditahan oleh balok berdasarkan eksperimen dan teoritis dapat dilihat pada Tabel 4. Tabel 4. Perbandingan beban hasil teoritis dengan hasil eksperimen No Benda uji P SNI (kn) P Rseponse-2 (kn) P eksperimen (kn) P eksp / P SNI (%) 1 BK 97,5 99,9 16,9 19,64 17,1 2 BM 217,63 215,53 24,3 11,42 111,49 3 BP-1 223,94* 223,84* 187,6 83,77 83,81 4 BP-2 223,94* 223,84* 196,3 87,66 87,7 Keterangan: * = Nilai diperoleh dari rata-rata antara BP lower dan BP upper P eksp /P Response-2 (%) Dari Tabel 4 terlihat bahwa hasil eksperimen memiliki nilai kapasitas lentur yang paling besar untuk balok kontrol (BK) dan balok monolit (BM) jika dibandingkan dengan perhitungan teoritis secara manual maupun program Response-2. Nilai kapasitas lentur untuk balok perkuatan tanpa bonding agent (BP-1) dan balok perkuatan dengan bonding agent (BP-2) memiliki nilai yang cenderung lebih rendah dibanding dengan perhitungan teoritis berdasarkan manual dan program Response-2 yaitu secara berturut turut sebesar 187,6 kn dan 196,3 kn, hal ini terjadi karena pada kedua

Beban (kn) Beban (kn) Beban (kn) Beban (kn) 84 INFO TEKNIK, Volume 14 No. 1, Juli 211 balok ini mengalami debonding pada beban tertentu sebelum balok mencapai beban maksimum. Hasil perhitungan teoritis dengan program Response-2 dari balok kontrol (BK) maupun balok monolit (BM) secara berturut-turut sebesar 99,9 kn dan 215,53 kn menunjukkan nilai yang relatif sama jika dibandingkan dengan hasil eksperimen yaitu secara berturut-turut sebesar 16,9 kn dan 24,3 kn, sehingga dapat dikatakan bahwa program Response- 2 cukup akurat dipergunakan untuk menganalisis kapasitas lentur dari balok benda uji. Secara keseluruhan perbandingan antara perhitungan teoritis dan eksperimen untuk masing-masing benda uji dapat dilihat pada Gambar 7 sampai 1. 2 2 1 1 2 3 4 6 7 BP-1 Eksperimen BP-lower Response 2 BP-upper Response 2 BP-upper SNI BP-lower SNI Gambar 9. Perbandingan kapasitas beban balok perkuatan (BP-1) 2 2 1 2 2 1 1 2 3 4 6 7 BK-Eksperimen BK-Response 2 BK-SNI Gambar 7. Perbandingan kapasitas beban balok kontrol (BK) 2 2 1 1 2 3 4 6 7 BM-Eksperimen BM-Response BM-SNI 1 2 3 4 6 7 BP-2 Eksperimen BP-2 lower Respon 2 BP-2upper Respon 2 BP-2 lower SNI BP-2 upper SNI Gambar 1. Perbandingan kapasitas beban balok perkuatan (BP-2) Pola Retak dan Keruntuhan Balok Kontrol (BK) Pola keruntuhan balok kontrol (BK) berdasarkan hasil pengujian dan program Response-2 terlihat pada Gambar 11 sampai Gambar 12. Gambar 8. Perbandingan kapasitas beban balok monolit (BM) Gambar 11. Pola Retak benda Uji balok kontrol (BK) hasil pengujian

85 INFO TEKNIK, Volume 14 No. 1, Juli 211.6.4.12.14.1 Member Crack Diagram.17.22 Gambar 12. Pola Retak benda Uji balok kontrol (BK) hasil program Response-2 Dari Gambar 11 dan Gambar 12 terlihat bahwa pola retak hasil pengujian mendekati hasil pola retak dengan program Response- 2. Hasil pengujian menunjukkan nilai lebar retak maksimum untuk balok kontrol adalah 1,2 mm, sedangkan program Response-2 dihasilkan bahwa lebar retak maksimum adalah sebesar 1,7 mm. Balok Monolit (BM) Pola keruntuhan balok monolit (BM) berdasarkan hasil pengujian dan program Response-2 terlihat pada Gambar 13 sampai dengan Gambar 14..12.4.23.53.77 1.7.23.53.77 1.7 maksimum hasil pengujian sebesar,8 mm dan untuk hasil program Response-2 dihasilkan sebesar 1,21 mm. Dari pengujian balok monolit diketahui bahwa pada balok monolit (BM) tulangan baja tarik bawah sudah mengalami leleh yang ditandai dengan pembacaan strain gauge menunjukkan pembacaan sebesar,2733 pada beban 155,8 kn. Pada pengujian kuat tarik tulangan baja diameter 13 yang dipergunakan sebagai tulangan baja tarik mencapai leleh pada regangan sebesar,247, sehingga dapat disimpulkan bahwa tulangan baja tarik bawah pada balok monolit ini sudah mencapai leleh. Pada balok monolit ini strain gauge dipasang pada setiap lapis (layer) tulangan baja tarik maupun tulangan baja tekan. Balok perkuatan dengan bonding agent (BP-2) Pola keruntuhan balok BP-2 berdasarkan hasil pengujian terlihat pada Gambar 15 (a) Pola retak benda uji BP-2 Gambar 13. Pola Retak benda Uji Balok Monolit (BM) hasil pengujian (b) Debonding selimut perkuatan BP-2 Member Crack Diagram.2.7.4.28.28.11.11.61.61.13.16.88.88.16.23 1.21 Gambar 14. Pola Retak benda Uji Balok Monolit (BM) hasil program Response-2 Dari Gambar 13 dan Gambar 14 terlihat bahwa hasil pembacaan lebar retak maksimum balok monolit (BM) mendekati dengan hasil lebar retak maksimum dari program Response-2, yaitu lebar retak 1.21 Gambar 15. Pola Retak dan terjadinya debonding benda uji BP-2 Untuk hasil program Response-2 pola keruntuhan balok perkuatan diasumsikan untuk BPlower estimate dan Bpupper estimate, sehingga pola keruntuhan balok ini dianggap sama untuk balok BP-1

86 INFO TEKNIK, Volume 14 No. 1, Juli 211 dan BP-2 hasil pengujian seperti terlihat pada Gambar 16 Member Crack Diagram.28.61.88 1.21 (a) Pola retak benda uji BPlower estimate.4.2.13.16.11.7 (b) Pola retak benda uji BPupper estimate.16.23 Gambar 16. Pola Retak benda uji BPlower estimate dan BPupper estimate pada program Response-2 Dari Gambar 15 dan Gambar 16 terlihat pembacaan lebar retak maksimum yang terjadi untuk hasil pengujian dan hasil program Response-2 tidak sama yaitu untuk hasil pengujian BP-1 sebesar,2 mm dan BP-2 sebesar,3 mm, sedangkan dengan program Response-2 diperoleh lebar retak antara 1,21 mm 1,75 mm. Hal ini dapat terjadi kemungkinan karena pembacaan lebar retak dari hasil pengujian dilakukan saat debonding terjadi, sedangkan pada program Response-2 tidak memperhitungkan terjadinya debonding. Pola retak yang terjadi pada balok uji dapat menunjukkan jenis keruntuhan yang terjadi pada balok uji tersebut. Secara umum retak lentur terjadi pada balok berupa retak halus dimulai dari sisi bawah di tengah bentang, kemudian menyebar ke arah tumpuan dan merambat menuju ke arah beban hingga benda uji runtuh. Pola keruntuhan yang terjadi pada benda uji adalah untuk balok kontrol (BK) dan balok monolit (BM) mengalami keruntuhan lentur. Kerusakan balok perkuatan untuk BP-1 dan BP-2 adalah kerusakan debonding (lepasnya lekatan antara beton lama dengan mortar baru)..11.4 Member Crack Diagram.13.16.11.7.16.24.12.17.52.96 1.31 1.75.28.61.88 1.21.17.52.96 1.31 1.75 KESIMPULAN Berdasarkan hasil analisis SNI, Software Response 2 dan hasil eksperimen yang telah dilakukan dalam penelitian ini, dapat ditarik beberapa kesimpulan penting antara lain adalah sebagai berikut: 1. Perbandingan kekuatan lentur berdasarkan hasil eksperimen dengan SNI untuk BK, BM, BP-1 dan BP-2 berturut-turut adalah 19,64%, 11,42%, 83,77% dan 87,66%, sedangkan perbandingan kekuatan lentur berdasarkan hasil eksperimen dengan program Response-2 secara berturut-turut adalah 17,1%, 114,36%, 83,81% dan 87,7%. 2. Retak awal debonding antara beton lama dengan mortar perkuatan untuk benda uji BP-1 terjadi pada beban 34,8 kn dan untuk benda uji BP-2 terjadi pada beban 12,9 kn, sehingga besarnya kemonolitan benda uji BP-2 lebih tinggi 247,4% dari BP-1. 3. Kegagalan benda uji sebelum diperkuat adalah kegagalan lentur dan setelah diperkuat adalah kegagalan debonding. 4. Penggunaan mortar dengan komposisi campuran sebagai selimut perkuatan pada penelitian ini memiliki kemudahan dalam segi pelaksanaan pengecoran. 5. Program Response-2 cukup baik dan cukup akurat untuk dapat digunakan dengan catatan debonding tidak terjadi. DAFTAR PUSTAKA Badan Standarisasi Nasional, 22, Tata Cara Perhitungan Struktur Beton UntukBangunan Gedung, Bandung. (SNI 3-2847-22) Bentz, E.,21, User Manual Program Response-2 version 1,Toronto, Canada.

87 INFO TEKNIK, Volume 14 No. 1, Juli 211 Chairunnisa, N., 29 Penambahan Tulangan Longitudinal dengan Komposit Mortar Sebagai altenatif Perkuatan Lentur pada Balok Beton Bertulang, Jurnal Info Teknik Vol.1 no 1, 29 :34-42 Dipohusodo, L, 1994, Struktur Beton Bertulang, Gramedia Pustaka Utama, Jakarta Triwiyono, A., 24, Evaluasi dan Rehabilitasi Bangunan Gedung, Program Pascasarjana UGM, Jogjakarta. Wancik, A., 28, Batako Styrofoam Komposit Mortar Semen, Tesis Pasca Sarjana UGM, Jogjakarta Saytarno, I., 1995, Hand out Mekanika Plastis, Program Pascasarjana UGM,Jogjakarta..