Farid Febrian , Semester II 2010/2011 1

dokumen-dokumen yang mirip
Studi Optimasi Kinerja Sucker Rod Pump Pada Sumur A-1, A-2,Z-1, Dan Z-2 Menggunakan Perangkat Lunak Prosper

Poso Nugraha Pulungan , Semester II 2010/2011 1

ANALISA SISTEM NODAL DALAM METODE ARTICIAL LIFT

aintis Volume 12 Nomor 1, April 2011, 22-28

BAB I PENDAHULUAN 1.1. Latar Belakang

ISSN JEEE Vol. 4 No. 2 Musnal

OPTIMASI PRODUKSI HASIL PERENCANAAN SUCKER ROD PUMP TERPASANG PADA SUMUR TMT-Y DI TAC-PERTAMINA EP GOLWATER TMT

OPTIMASI PRODUKSI LAPANGAN GAS UNTUK SUPPLY GAS INJEKSI SUMUR SUMUR GAS LIFT SECARA TERINTEGRASI

EVALUASI PERHITUNGAN POTENSI SUMUR MINYAK TUA DENGAN WATER CUT TINGGI

Optimasi Injeksi Gas untuk Peningkatan Produksi pada Lapangan Gas Lift dengan Sistem yang Terintegrasi

BAB I PENDAHULUAN. dunia saat ini. Terutama kebutuhan energi yang berasal dari sumber daya alam yang

Optimasi Produksi Terintegrasi Untuk Lapangan Dengan Sumur ESP Oleh : Ria Perdana Putra* Dr.Ir. Pudjo Sukarno**

PENINGKATAN PRODUKSI SUCKER ROD PUMP (SRP) DENGAN MENGACU PADA BREAK EVENT POINT (BEP) SUMUR JRK-X DI PT. PERTAMINA EP REGION SUMATERA FIELD PENDOPO

DESAIN SUCKER ROD PUMP UNTUK OPTIMASI PRODUKSI SUMUR SEMBUR ALAM L5A-X DI PERTAMINA EP

PERSAMAAN USULAN UNTUK PERAMALAN KINERJA LAJU ALIR MINYAK BERDASARKAN HUBUNGAN WATER OIL RATIO DAN DECLINE EXPONENT

Seminar Nasional Cendekiawan 2015 ISSN:

BAB IV ANALISA DATA DAN PEMBAHASAN

EVALUASI PERBANDINGAN DESAIN ELECTRICAL SUBMERSIBLE PUMP DAN SUCKER ROD PUMP UNTUK OPTIMASI PRODUKSI PADA SUMUR M-03 DAN M-05

Analisis Performance Sumur X Menggunakan Metode Standing Dari Data Pressure Build Up Testing

BAB III METODOLOGI PENELITIAN

Ilhami Nur , Semester II 2009/2010 1

HALAMAN PERNYATAAN KEASLIAN KARYA ILMIAH

TUGAS AKHIR. Oleh: LUSY MARYANTI PASARIBU NIM :

EVALUASI POMPA ELECTRIC SUBMERSIBLE PUMP (ESP) UNTUK OPTIMASI PRODUKSI PADA SUMUR P-028 DAN P-029 DI PT. PERTAMINA EP ASSET 2 PENDOPO FIELD

Digital Well Analyzer Sebagai Inovasi Pengukuran Fluid Level Untuk Mendukung Program Optimasi Produksi

Prosiding Seminar Nasional XII Rekayasa Teknologi Industri dan Informasi 2017 Sekolah Tinggi Teknologi Nasional Yogyakarta

STUDI EFEK PUMP OFF/FLUID POUND PADA POMPA ANGGUK TERHADAP KERUSAKAN GEAR BOX

Optimalisasi Production Well Test Untuk Mendukung Performance Produksi Dengan Cara Tiering System Pada Area X Lapangan Y

EVALUASI TEKNIS DAN EKONOMIS WELL COMPLETION UNTUK UKURAN TUBING PADA SUMUR MINYAK X-26 DI PT. PERTAMINA EP ASSET 2 PENDOPO FIELD

Jl. Raya Palembang-Prabumulih KM 32 Indralaya Sumatera Selatan, Indonesia Telp/Fax. (0711) ;

EVALUASI POMPA ESP TERPASANG UNTUK OPTIMASI PRODUKSI MINYAK PT. PERTAMINA ASSET I FIELD RAMBA

STUDI PENGARUH UKURAN PIPA PRODUKSI TERHADAP TINGKAT LAJU PRODUKSI PADA SUMUR PRODUKSI Y-19, W-92, DAN HD-91 DI PT. PERTAMINA EP ASSET-1 FIELD JAMBI

RE-DESIGN ELECTRIC SUBMERSIBLE PUMP PADA PT CHEVRON PACIFIC INDONESIA MINAS PEKANBARU

STUDI PENEMPATAN SUMUR HORIZONTAL UNTUK MENINGKATKAN PRODUKSI DAN RECOVERY

Perencanaan Pengangkatan Buatan dengan Sistim Pemompaan Berdasarkan Data Karakteristik Reservoir

FORUM TEKNOLOGI Vol. 03 No. 4

PENGARUH KENAIKAN CASING PRESSURE TERHADAP LAJU ALIR PRODUKSI DI LAPANGAN MINYAK DURI

FULL DEVELOPMENT OF PIPELINE NETWORKING AT X FIELD

STUDI PENINGKATAN PEROLEHAN MINYAK DI ZONA A LAPANGAN X DENGAN METODE INJEKSI AIR

Program Studi Teknik Perminyakan Universitas Islam Riau

APLIKASI VSD DALAM MENGATASI MASALAH WATER CUT DAN GAS YANG BERLEBIH PADA SUMUR ESP

EVALUASI DAN DESAIN ULANG ELECTRIC SUBMERGIBLE PUMP (ESP) PADA SUMUR X DI LAPANGAN Y

Penentuan Absolute Open Flow Pada Akhir Periode Laju Alir Plateau Sumur Gas Estimation Absolute Open Flow Of The End Of Plateau Rate Of Gas Well

Seminar Nasional Cendekiawan 2015 ISSN: Perencanaan Ulang Sumur Gas Lift pada Sumur X

OPTIMASI PRODUKSI SUMUR-SUMUR GAS LIFT DI LAPANGAN A

BAB V HASIL DAN PEMBAHASAN 5.1 PENERAPAN SISTEM PEMOMPAAN. Sumur XY-15 terletak dalam lapangan Onshore Lapangan XX Indonesia

Seminar Nasional Cendekiawan 2015 ISSN:

BAB I PENDAHULUAN. diterapkan apabila tekanan reservoir atau metoda sembur alam sudah tidak

Eoremila Ninetu Hartantyo, Lestari Said ABSTRAK

OPTIMASI PRODUKSI LAPANGAN MINYAK MENGGUNAKAN METODE ARTIFICIAL LIFT DENGAN ESP PADA LAPANGAN TERINTEGRASI

BAB VI KESIMPULAN DAN SARAN. disimpulkan beberapa hal sebagai berikut, yaitu: dibandingkan lapisan lainnya, sebesar MSTB.

Analisis Ekonomi Pemilihan Electric Submersible Pump Pada Beberapa Vendor

ANALISIS PERBANDINGAN PENGGUNAAN METODE PCP DAN GAS LIFT PADA SUMUR I LAPANGAN H

Kata kunci: recovery factor, surfactant flooding, seven-spot, saturasi minyak residu, water flooding recovery factor.

PERANCANGAN POMPA ELECTRIC SUBMERSIBLE (ESP) PADA SUMUR XY-15 DI LAPANGAN XX INDONESIA

METODE PENENTUAN LOKASI SUMUR PENGEMBANGAN UNTUK OPTIMASI PENGEMBANGAN LAPANGAN X DENGAN MENGGUNAKAN

PENANGGULANGAN KEPASIRAN PADA SUMUR PRODUKSI DI LAPANGAN SANGATTA

ISSN: Ali Musnal Jurusan Teknik Perminyakan Fakultas Teknik Universitas Islam Riau Jalan Kaharuddin Nasution 113 Pekanbaru

Oleh Herry Susanto Teofilus Marpaung Ir. Djoko Askeyanto. MS UPN Veteran Yogyakarta ABSTRAK

OPTIMASI PRODUKSI SUMUR-SUMUR CONTINUOUS GAS LIFT PADA LAPANGAN Y SKRIPSI. Oleh : AULIA RAHMAN PRABOWO / TM

RE-DESIGN POMPA SUCKER ROD BERDASARKAN DATA SONOLOG, DAN DIAGRAM GOODMAN PADA SUMUR X LAPANGAN Y SKRIPSI

Oleh : Fikri Rahmansyah* Dr. Ir. Taufan Marhaendrajana**

Seminar Nasional Cendekiawan 2015 ISSN: OPTIMASI PRODUKSI PADA PAD G-76 DENGAN PROGRAM TERINTEGRASI SUMUR DAN JARINGAN PIPA PRODUKSI

Bab I Pendahuluan I.1 Latar Belakang

PERENCANAAN PATTERN FULL SCALE UNTUK SECONDARY RECOVERY DENGAN INJEKSI AIR PADA LAPANGAN JAN LAPISAN X1 DAN LAPISAN X2

PENGARUH TEMPERATUR DAN TEKANAN TERHADAP DESAIN PARAMETER HIDROLIKA PADA MANAGED PRESSURE DRILLING JENIS CONSTANT BOTTOM HOLE PRESSURE TUGAS AKHIR

TESIS. satu syarat. Oleh NIM

PERNYATAAN KEASLIAN KARYA ILMIAH

ANALISIS BOTTLENECK PADA SISTEM PRODUKSI DI SUATU LAPANGAN MINYAK YANG TERDIRI TIGA RESERVOIR BERBEDA TESIS

OPTIMASI PRODUKSI PADA LAPANGAN X DENGAN PEMODELAN PRODUKSI TERINTEGRASI

Edwil Suzandi; PT.Semberani Persada Oil (SemCo) Sigit Sriyono; PT.Semberani Persada Oil (SemCo) Made Primaryanta; PT.Semberani Persada Oil (SemCo)

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB IV SIMULASI RESERVOIR REKAH ALAM DENGAN APLIKASI MULTILATERAL WELL

ANALISA UJI DELIVERABILITAS RESERVOIR GAS BERDASARKAN DATA UJI SUMUR UNTUK OPTIMASI LAJU ALIR MAKSIMUM PADA SUMUR X LAPANGAN S PROPOSAL TUGAS AKHIR

Perencanaan Rotative Gas Lift untuk Sistem Sumur yang Terintegrasi Oleh : Gesa Endah Prastiti* Dr.Ir. Pudjo Sukarno**

PENGEMBANGAN METODE USULAN PERAMALAN WATER CUT SUMURAN MENGGUNAKAN DATA PERMEABILITAS RELATIF DAN METODE X-PLOT

STUDY DELIVERABILITY PRODUKSI GAS DI PROVINSI X DENGAN MENGGUNAKAN SIMULATOR FORGAS TUGAS AKHIR. Oleh: GILANG PRIAMBODO NIM :

EVALUASI KEBERHASILAN PEREKAHAN HIDROLIK PADA SUMUR R LAPANGAN X

PENGEMBANGAN KORELASI USULAN UNTUK PENENTUAN LAMA WAKTU LAJU ALIR PLATEAU PADA SUMUR GAS KONDENSAT DENGAN FAKTOR SKIN TUGAS AKHIR.

DAFTAR ISI. HALAMAN JUDUL... i. HALAMAN PENGESAHAN... ii. PERNYATAAN KEASLIAN KARYA ILMIAH... iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR...

KEGIATAN OPERASI DAN PRODUKSI MINYAK DAN GAS BUMI DI PT. MEDCO E&P INDONESIA ( S&C SUMATERA ) FIELD SOKA

ANALISA PRESTASI ELECTRICAL SUBMERSIBLE PUMP DI SUMUR X LAPANGAN Y

BAB V PEMBAHASAN. yaitu sumur AN-2 dan HD-4, kedua sumur ini dilakukan treatment matrix acidizing

Optimasi Laju Injeksi Pada Sumur Kandidat Convert to Injection (CTI) di Area X Lapangan Y. Universitas Islam Riau

EVALUASI POMPA ELECTRIC SUBMERSIBEL (ESP) SUMUR KWG WK DI LAPANGAN KAWENGAN AREA CEPU PT. PERTAMINA EP REGION JAWA

Evaluasi Efisiensi Proses Crude Oil Dehydtation di CGS 5 Lapangan X Provinsi Riau

STUDI SIMULASI PEMBANGKIT LISTRIK TENAGA ARUS LAUT MENGGUNAKAN HORIZONTAL AXIS TURBIN DENGAN METODE CFD

EVALUASI ELECTRIC SUBMERSIBLE PUMP (ESP) DAN OPTIMASI LAJU PRODUKSI PADA SUMUR TY 008 DI LAPANGAN BALAM PT. CHEVRON PACIFIC INDONESIA SKRIPSI

OPTIMASI PRODUKSI TERINTEGRASI PADA LAPANGAN GAS TERDIPLESI

METODOLOGI PENELITIAN

Renaldy Nurdwinanto, , Semester /2011 Page 1

Analisis Bottlenecking dalam Jaringan Perpipaan Lapangan Minyak. Analysis of Bottlenecking Problem in Oil Field Piping Network

ABSTRAK. Kata kunci : tata tetak (layout), penataan mesin, meminimumkan jarak perpindahan, load distance. viii. Universitas Kristen Maranatha

STUDI SIMULASI INJEKSI LEAN GAS KE DALAM RESERVOIR X UNTUK MENINGKATKAN PEROLEHAN MINYAK TESIS

STUDI KELAYAKAN PENERAPAN INJEKSI SURFAKTAN DAN POLIMER DI LAPANGAN X MENGGUNAKAN SIMULATOR NUMERIK TESIS EMA FITRIANI NIM :

Optimasi Produksi Reservoir Gas Kering ADF dengan Mempertimbangkan Penentuan Waktu Buka Sumur Produksi TUGAS AKHIR. Oleh: Dimas Ariotomo

KAJIAN METODE BUCKLEY LEVERETT UNTUK PREDIKSI PENINGKATAN PEROLEHAN MINYAK DI SUMUR MT-02 LAPANGAN X

LAPORAN HASIL PENELITIAN HIBAH PENELITIAN STRATEGIS NASIONAL DIPA UNIVERSITAS BRAWIJAYA TAHUN 2010

STUDI OPTIMASI DEASIN PEREKAHAN HIDRAULIK PADA RESERVOIR BATUAN PASIR DENGAN TENAGA DORONG AIR DARI BAWAH TUGAS AKHIR. Oleh: PRISILA ADISTY ALAMANDA

Seminar Nasional Cendekiawan 2015 ISSN:

Transkripsi:

PENGEMBANGAN PEDOMAN OPTIMASI SUCKER ROD PUMP (SRP) Farid Febrian* Ir. Tutuka Ariadji, M.Sc., Ph.D.** Sari Untuk melakukan pengangkatan fluida yang sudah tidak dapat mengalir secara alami, mekanisme pengangkatan buatannya harus didesain secara baik. Selain desain yang baik, kontrol dan peninjauan ulang kinerja SRP diperlukan untuk menjamin produksi di lapangan. Setelah berproduksi beberapa lama, parameter-parameter yang mempengaruhi desain SRP sudah seharusnya dibandingkan dengan kegiatan produksi di lapangan. Sehingga dapat diketahui apakah sumur sudah berproduksi dengan laju alir optimumnya atau belum. untuk keperluan ini, dibangun suatu studi yang bertujuan untuk mengembangkan pedoman optimasi Sucker Rod Pump (SRP). Pedoman optimasi Sucker Rod Pump (SRP) dibangun dengan melakukan plot data antara laju alir dengan kebutuhan dayanya. Plot data tersebut dibagi menjadi kelas yang tiap kelasnya menjelaskan tentang hasil optimasi yang dilakukan. Hubungan antara laju alir dan kebutuhan daya tersebut diharapkan dapat menjadi justifikasi auntuk menentukan status optimasi desain SRP. Pengembangan pedoman didasarkan optimasi data lapangan suatu area yang menggunakan SRP sebagai mekanisme pengangkatan buatannya. Optimasi yang dilakukan menghasilkan kenaikan laju alir total sebesar 10.81%, tetapi kenaikan laju alir ini juga diikuti dengan naiknya kebutuhan daya sebesar 26.82%. Jika ditinjau per lapangan, Lapangan X2 merupakan lapangan yang memberikan hasil optimasi yang paling baik. Lapangan X2 mengalami kenaikan laju alir setelah optimasi sebesar 19.74% dan kenaikan paling besar diantara lapangan lain ini juga diperkuat dengan kenaikan daya yang dapat diabaikan. Abstract To lift of the fluid can not flow naturally, artificial lift mechanism must be designed properly. In addition to good design, control and review the performance of SRP is required to ensure production in the field. After producing for some time, parameters that affect the design of the SRP was supposed to be compared with production activities in the field. So that can be known whether the wells already in production with optimum flow rate or not. For this purpose, developed a study that aims tp develop guidelines for optimization of SRP. Sucker Rod Pump (SRP) optimization guide was built by the data plot between the flow rate with power needs. Plot the data is divided into classes where each class describes the results of the optimization is performed. The relationship between flow rate and power demand is expected to be a justification for determining the status of the SRP design optimization. Optimization is done to produce a total flow rate increase of 10.81 %, but increase the flow rate was also followed with increasing power demand of 26.82 %. If the observed per field, field X2 is a field that gives the best optimization results. Field X2 flow rate increased after optimization of 19.74 % and the largest increase among the other field is also strengthened with the increase of power which can be ignored. Keywords : Sucker Rod Pump, optimation. *) Mahasiswa Program Studi Teknik Perminyakan Institut Teknologi Bandung. **) Dosen Pembimbing Program Studi Teknik Perminyakan Institut Teknologi Bandung. Farid Febrian 12206011, Semester II 2010/2011 1

I. Pendahuluan 1.1 Latar Belakang Agar menghasilkan pengangkatan yang efektif, Sucker Rod Pump (SRP) harus didesain berdasarkan parameter-parameter yang bekerja didalamnya. Desain yang terlalu berlebihan akan berakibat meningkatnya biaya dan tenaga yang dibutuhkan untuk mengoperasikan SRP, sebaliknya desain yang tidak mencapai standar akan berakibat tidak tercapainya target pengangkatan yang dibutuhkan. Untuk mengoperasikan komponen SRP yang berada di permukaan dan bawah permukaan, dibutuhkan daya penggerak. Salah satu tantangan terbesar dalam melakukan optimasi SRP adalah menghasilkan desain dengan kenaikan laju alir yang optimal dengan kebutuhan daya yang tidak terlalu besar, sehingga optimasi akan memberikan nilai yang ekonomis. Selain desain yang baik dan benar, setelah berproduksi data desain awal yang digunakan pada SRP sudah seharusnya dibandingkan dengan kegiatan produksi di lapangan saat ini. Hal ini betujuan untuk mengetahui apakah desain yang digunakan dapat memberikan laju alir yang sudah optimal atau belum. Namun, kontrol yang dilakukan terhadap hal ini tidak terjadi pada keadaan lapangan. Dalam hubungannya dengan pedoman optimasi SRP, dibutuhkan suatu hubungan dan pengelompokan yang jelas atas sumur-sumur yang berproduksi menggunakan SRP agar dapat menghasilkan penjelasan yang cepat dan jelas mengenai keadaan suatu sumur berdasarkan laju alir dan kebutuhan dayanya. Sehingga bila suatu saat data sumur ditambah, maka dari pengelompokan ini dapat menghasilkan justifikasi optimasi yang dapat dipertanggung jawabkan. 1.2 Tujuan Penelitian ini memiliki dua tujuan utama: 1. Memberikan hasil desain SRP optimum yang menghasilkan laju alir yang maksimal atau memberikan daya yang minimal. 2. Memvalidasi data dengan melihat hubungan antara parameter desain SRP dengan kebutuhan dayanya. 3. Memberikan usulan pedoman optimasi pada suatu lapangan dengan menggunakan data yang tersedia.. II. Metodologi Penelitian dilakukan berdasarkan studi literatur mengenai materi kajian. Studi yang dilakukan melingkupi kemampuan sumur dari kurva IPR, perhitungan desain SRP, perhitungan kebutuhan daya, gambaran hubungan antara parameterparameter desain IPR dengan kebutuhan daya, dan pembuatan kelas laju alir dan kebutuhan daya Berikut merupakan tahapan-tahapan penelitian, antara lain: 2.1 Pengumpulan Data Data yang digunakan sebagai input merupakan laporan per bulan dari suatu perusaan minyak. Fokus data terletak pada sumur-sumur yang menggunakan mekanisme pengangkatan buatan SRP, yang terdapat pada 43 sumur di lima lapangan berbeda. Selain laporan bulanan, data lain yang digunakan pada penelitian ini adalah laporan cadangan yang berisikan data umum dan PVT lapangan-lapangan yang menjadi materi kajian. 2.2 Penentuan Kemampuan Sumur Penentuan kemampuan sumur dilakukan dengan menggunakan perangkat lunak perminyakan yang memiliki kemampuan untuk membentuk kurva IPR dengan pilihan metode Fetkovich Multirate test. Setelah kurva terbentuk, dapat ditentukan apakah laju alir keadaan saat ini masih dapat dioptimasi atau tidak. Laju alir optimal inilah yang menjadi target untuk dicapai dengan desain ulang SRP. 2.3 Prosedur Desain SRP Berikut merupakan prosedur desain SRP, antara lain: Farid Febrian 12206011, Semester II 2010/2011 2

1. Penentuan kemampuan sumur dan displacement sumur. 2. Penentuan working fluid level dan kedalaman pompa. 3. Penentuan Panjang stroke, ukuran plunger, ukuran tubing, ukuran rod, dan kecepatan pemompaan berdasarkan Grafik Atlantik untuk pemilihan pompa angguk. 4. Perhitungan specific gravity. 5. Penentuan faktor-faktor dari tabel dan gambar, antara lain: - Berat rata-rata rod di udara (W r ) - Konstanta elastis rod (Er) - Faktor frekuensi rod string (Fc) - Konstanta elastisitas tubing (Et). 6. Perhitungan parameter tidak berdimensi. Parameter ini terdiri dari: - Beban total fluida di plunger. - Konstanta elastisitas rod string. - Beban penyebab terjadinya strech pada rod string. - Kecepatan pompa tanpa dimensi dengan rod string yang tidak tappered. - Kecepatan pompa tanpa dimensi dengan tappered rod. - Konstanta elastisitas bagian tubing yang tidak diangker. 7. Penentuan displacement pompa hasil optimasi. Bila displacement pompa hasil optimasi lebih kecil dibandingkan displacement pompa sebelumnya maka parameter-parameter yang ada pada poin tiga harus disesuaikan sampai mencapai hasil yang lebih besar dari sebelumnya. 2.4 Prosedur Desain Kebutuhan Daya Prosedur desain kebutuhan daya didasarkan pada parameter-parameter yang telah dipilih dan dihitung pada desain SRP. Parameter desain SRP yang menjadi input pada desain kebutuhan daya antara lain: diameter tubing, diameter plunger, panjang dan diameter rod, panjang stroke, dan kecepatan pemompaan. Sedangkan input data lain yang digunakan pada desain kebutuhan daya berasal dari tes PVT serta kelengkapan pompa lain yang terdiri dari efisiensi pompa dan faktor keamanan. Kebutuhan daya dihitung berdasarkan persamaan berikut:...(1) Kedua kondisi baik sebelum maupun sesudah optimasi desain SRP dihitung dayanya untuk kemudian dilakukan perbandingan. Hasil yang diharapkan dari perhitungan kebutuhan daya adalah hasil yang tidak terlalu jauh perbedaannnya antara sebelum dan sesudah optimasi, apabila terjadi penurunan daya semakin baik. 2.5 Studi Hubungan Parameter Desain SRP dengan Kebutuhan Daya Tujuan bagian ini adalah untuk memvalidasi data dengan membuktikan hasil yang didapatkan sesuai dengan teori mengenai SRP. Fokus parameter yang akan dicari hubungannya dengan kebutuhan daya adalah: ukuran tubing, panjang stroke, dan kecepatan pemompaan. Hubungan akan diidentifikasi dengan melakukan perbandingan antara perubahan yang terjadi pada parameter sebelum dan sesudah optimasi dengan rata-rata perubahan kebutuhan daya melalui grafik batang. 2.6 Pengklasifikasian Data Berdasarkan Laju Alir dan Kebutuhan Daya Tujuan akhir dari studi ini adalah untuk memberikan usulan pedoman optimasi pada suatu lapangan dengan menggunakan data berupa laju alir dan kebutuhan daya. Data tidak berdimensi hasil perbandingan data sebelum dan sesudah optimasi kemudian dimasukkan ke dalam suatu grafik. Kemudian grafik akan dibagi kedalam beberapa kelas atau kelompok sehingga dapat dilihat status optimasi dari suatu sumur. III. Hasil dan Pembahasan 3.1 Optimasi Desain SRP dan Kebutuhan Daya Berdasarkan hasil optimasi yang telah dilakukan, perolehan sumur yang menggunakan mekanisme pengangkatan buatan Sucker Rod Pump (SRP) yang direpresentasikan dengan laju alir dimungkinkan untuk ditingkatkan. Laju alir total pada Area A yang sebelumnya 8527 bbl/hari dapat ditingkatkan menjadi 9448.5 bbl/hari. Namun, peningkatan laju alir ini diikuti dengan meningkatnya daya yang dibutuhkan, dari sebelumnya membutuhkan 164.4 HP, meningkat Farid Febrian 12206011, Semester II 2010/2011 3

menjadi 208.5 HP. Dari total 43 sumur yang menggunakan SRP, 28 sumur memiliki potensi untuk ditingkatkan laju alirnya. Namun, peningkatan laju alir ini, juga diikuti dengan kebutuhan daya yang lebih besar pada 35 sumur. Secara prosentase, lapangan yang memiliki potensi peningkatan laju alir paling besar adalah Lapangan X2 dengan prosentase potensi kenaikan laju alir sebesar 19 %. Besarnya potensi peningkatan ini juga diperkuat dengan penggunaan daya yang tidak terlalu meningkat. Walaupun daya yang dibutuhkan setelah proses optimasi tidak menurun seperti yang terjadi pada Lapangan X1, Lapangan X2 hanya mengalami peningkatan penggunaan daya sebesar 0.5%. Jumlah tersebut sangat kecil bila dibandingkan dengan peningkatan penggunaan daya tiga lapangan lain yang berkisar antara tiga belas sampai 92 %. Peningkatan laju alir diperoleh dengan melakukan desain ulang SRP. Didasarkan pada kurva IPR, sumur-sumur yang masih mungkin untuk dinaikkan laju alirnya kemudian dioptimasi. Optimasi desain SRP didasarkan pada desain API 11RL dengan menggunakan ketentuan desain sumur dangkal atau masih mepertimbangkan gerak harmonis. Konsiderasi desain yang dijadikan fokus pada penelitian terdiri dari empat parameter utama, antara lain ukuran pompa tubing, ukuran plunger, panjang stroke, dan kecepatan pemompaan. Desain hasil optimasi per sumur menunjukkan hasil yang hampir sama (SL-34 dan PS-20), dapat dikatakan sebagai kombinasi minimum dalam desain menggunakan API 11RL untuk sumur dangkal, karena sumur-sumur yang menggunakan SRP pada area ini memiliki tren yang sama pula yaitu sumur-sumur yang sangat dangkal, tekanan reservoir yang kecil, dengan laju produksi yang tidak begitu besar. Perbedaan signifikan pada desain sebelum dan setelah optimasi disebabkan karena tidak digunakannya standar API11RL pada desain yang berlaku sekarang, sehingga secara keseluruhan panjang stroke yang ada pada keadaan sekarang terlalu besar dan kecepatan pemompaannya terlalu kecil sehingga berpotensi menimbulkan kerusakan alat dan tidak efektifnya alat bekerja. Beban rod yang terlalu besar akibat terlalu besarnya panjang stroke mengakibatkan kecepatan pemompaan yang tidak bisa terlalu besar. Perbedaan desain antara sebelum dan setelah optimasi akan memberikan hasil perhitungan yang berbeda pula pada kebutuhan daya pada tiap sumur. Besar empat konsiderasi yang menjadi fokus penelitian mempengaruhi secara langsung kebutuhan daya. Semakin besar ukuran pompa tubing, ukuran plunger, panjang stroke, dan kecepatan pemompaan akan memberikan kebutuhan daya yang semakin besar pula. 3.2 Hubungan Parameter Desain SRP dengan Perubahan Kebutuhan Daya Parameter desain SRP yang akan dipelajari pola perubahannya dengan kebutuhan daya pada penelitian ini antara lain: - Ukuran pompa tubing. - Panjang stroke. - Kecepatan pemompaan. Penelitian dilakukan dengan menghitung selisih antara parameter sesudah dan sebelum optimasi. Kemudian hasil yang didapatkan dibandingkan dengan jumlah selisih perubahan kebutuhan daya sesudah dengan sebelum optimasi yang dirataratakan. Agar lebih mudah didentifikasi dan dilihat polanya, selisih antara parameter sesudah dan sebelum optimasi dikelompokkan menjadi beberapa kelompok, sehingga kelompok inilah yang nantinya akan dilihat pola perubahan kebutuhan dayanya. 3.2.1 Pola Perubahan Ukuran Pompa Tubing Untuk menghasilkan pengangkatan yang lebih besar, umumnya digunakan ukuran pompa tubing yang lebih besar pula. Karena sebagian besar sumur mengalami peningkatan laju alir, maka penggunaan ukuran pompa tubing yang lebih besar akan dibutuhkan. Dari berbagai kenaikan ataupun penurunan ukuran pompa tubing diharapkan dapat diidentifikasi suatu pola perubahan dalam hubungannya dengan perubahan kebutuhan daya. Hubungan keduanya dapat dilihat pada gambar 4. Angka positif pada perubahan ukuran pompa tubing dapat diartikan sebagai naiknya diameter pompa tubing, sebaliknya angka negatif dapat diartikan sebagai turunnya diameter pompa tubing. Kemudian angka yang didapatkan dikelompokkan Farid Febrian 12206011, Semester II 2010/2011 4

menjadi beberapa kelas sesuai besarnya kenaikan atau penurunan diameter, dan didapatkan lima kelas untuk parameter ini, antara lain: -0.75, -0.25, 0.25, 0.75, dan 1.25. Sementara untuk melihat hubungan perubahan diameter yang direpresentasikan oleh kelas-kelas tersebut dengan perubahan kebutuhan daya dilakukan perbandingan antara keduanya melalui grafik batang. Perubahan daya tiap kelas dijumlahkan dan dibagi dengan jumlah sumur tiap kelas, sehingga menghasilkan perubahan kebutuhan daya rata-rata tiap kelas. Hasil yang positif menunjukkan daya yang dibutuhkan sesudah optimasi akan naik dan angka yang semakin besar menunjukkan kebutuhan daya yang semakin besar pula, begitu juga sebaliknya. Dari hasil plot pada grafik batang, pola yang terbentuk menunjukkan sebuah tren yang menggambarkan bahwa semakin besar perubahan diameter pompa tubing maka daya yang dibutuhkan semakin besar pula, sebaliknya bila pompa yang digunakan setelah optimasi ukurannya lebih kecil maka daya yang dibutuhkan semakin menurun. Ketidakkonsistenan pola terjadi pada kelas 0.75 dan 1.25, daya yang dibutuhkan kelas 1.25 lebih kecil dibandingkan kelas 0.75. Hal ini dapat terjadi karena pengaruh besar-kecilnya parameter lain sehingga hasil perhitungan daya memberikan pola yang berbeda. Ketidakkonsistenan ini juga dimungkinkan terjadi karena jumlah data tiap-tiap kelas yang tidak sama. 3.2.2 Pola Perubahan Panjang Stroke Seperti yang dilakukan pada paramater pertama, grafik batang merupakan media utama penelitian. Klasifikasi perubahan panjang stroke dilakukan dengan menghitung selisih antara panjang stroke sebelum-sesudah optimasi dan dikelompokkan menjadi kelompok 20 yang merepresentasikan sumur dengan perubahan panjang stroke sebesar 20-29, kelompok 30 yang mrepresentasikan perubahan stroke sebesar 30-39, dan seterusnya sampai kelompok dengan perubahan terbesar yaitu kelompok 60. Sedangkan untuk perhitungan perubahan kebutuhan daya dilakukan dengan cara yang sama, menjumlahkan perubahan daya tiap kelas untuk kemudian dibagi dengan jumlah sumur tiap kelas. Pola yang ditunjukkan pada grafik batang menggambarkan bahwa semakin besar kenaikan perubahan panjang stroke maka kebutuhan daya akan semkain besar. Hal ini sesuai dengan logika dasar desain yang menyatakan bahwa semakin besar parameter yang dibutuhkan untuk mendesain SRP, dalam hal ini panjang stroke, maka semakin besar kebutuhan dayanya. Dan pada parameter kedua ini tidak terjadi ketidakkonsistenan pola kenaikan grafik batang seperti yang ditunjukan pada gambar 5. 3.2.3 Pola Perubahan Kecepatan Pemompaan Parameter terakhir yang diidentifikasi adalah kecepatan pemompaan, medianya masih sama yaitu grafik batang. Kelas yang digunakan dipilih dengan cara menghitung jumlah selisih kecepatan pemompaan. Kelas yang dihasilkan memiliki jarak yang sangat dekat satu sama lainnya, hanya berbeda 1 SPM saja. Kelas pada parameter ini terdiri dari delapan kelas, yaitu kelas 7-8-9, 10, 11, sampai kelas 16. Pola yang ditunjukkan pada dasarnya tidak berbeda dengan dua parameter sebelumnya seperti yang ditunjukan pada gambar 6, yaitu semakin besar perubahan kecepatan pemompaan maka kebutuhan daya akan semakin besar. Hanya saja yang berbeda adalah banyaknya ketidakkonsistenan pola. Hal ini terjadi karena kelas yang terlalu dekat jaraknya sehingga data masing- masing kelas jumlahnya tidak terlalu banyak dan kurang merepresentasikan jumlah daya yang dibutuhkan. 3.3 Usulan Pedoman Optimasi Sucker Rod Pump (SRP) Pedoman optimasi dibangun berdasarkan hubungan antara laju alir tak berdimensi dengan kebutuhan daya tak berdimensi. Parameter tak berdimensi ini dihasilkan dari perbandingan parameter sebelum dan sesudah optimasi. Dari gambar diharapkan dapat dianalisis kelakuan-kelakuan sumur saat ini berdasarkan laju alir dan kebutuhan dayanya. Setelah dibangun, kemudian grafik diklasifikasikan menjadi tiga kelas sama besar yang ditinjau dari masing-masing parameter. Seperti yang ditunjukkan pada gambar 7. Farid Febrian 12206011, Semester II 2010/2011 5

Kelas pertama yang dilihat secara vertikal menjelaskan optimasi laju alir dan dibagi dari atas ke bawah menjadi kelas optimum, sedang, dan belum optimum. Semakin keatas menjelaskan bahwa laju sebelum dan sesudah optimasi besarnya sama atau hampir sama, sehingga optimasi yang dilakukan hanya memperbaiki desain SRP-nya yang tidak sesuai API 11 RL. Sedangkan bila data yang didapatkan semakin ke bawah maka dapat diartikan bahwa optimasi laju alir yang besar terjadi sumur tesebut. Sehingga diharapkan dapat memberikan usulan desain yang baik agar laju optimasi dapat tercapai. Kelas kedua dilihat secara horizontal dan diharapkan dapat menjelaskan optimasi kebutuhan daya suatu sumur. Dari kiri ke kanan kelas dibagi menjadi tiga sama besar, yaitu besar, sedang, dan kecil. Semakin ke kanan grafik tersebut menjelakan bahwa daya yang digunakan setelah optimasi semakin kecil. Untuk menghasilkan keuntungan yang besar, maka diharapkan suatu sumur memiliki laju alir yang besar dengan kebutuhan daya yang kecil. Berdasrkan gambar maka posisi yang diharapkan adalah titik pada kanan atas. Banyaknya data yang berada di kiri disebabkan tidak digunakannya API 11 RL sebagai metode optimasi, sehingga data sebelum optimasi dapat dianggap tidak seimbang. IV. Kesimpulan 1. Optimasi desain SRP menghasilkan rata-rata kenaikan laju alir sebesar 10.81%, tetapi kenaikan laju alir juga diikuti dengan kenaikan daya yang dibutuhkan sebesar 26.82%. 2. Lapangan X2 merupakan lapangan yang paling ekonomis untuk dikembangkan pada Area A. Lapangan X2 mengalami kenaikan laju alir setelah optimasi sebesar 19.74% dan kenaikan paling besar diantara lapangan lain ini juga diperkuat dengan kenaikan daya yang dapat diabaikan. 3. Pola parameter desain SRP setelah optimasi memiliki bentuk umum yang sama yaitu besar panjang stroke 34 dan kecepatan pemompaan 20 SPM. Hal ini karena kondisi sumur yang Sebagian besar sama, yaitu sumur dangkal dengan laju alir kecil. Pola ini berbeda dengan data yang ada dikarenakan tidak digunakannya standar desain API 11 RL. 4. Hubungan parameter desain SRP dengan kebutuhan daya menunjukan semakin besar perubahan parameter pada desain SRP akan memberikan hasil yang lebih besar pula. Parameternya antara lain panjang stroke, diameter pompa tubing, dan kecepatan pemompaan. Hali menyatakan bahwa data di lapangan sesuai dengan teori yang ada. 5. Usulan pedoman optimasi lapangan dapat digunakan sebagai justifikasi awal yang cepat dan dipertanggungjawabkan. V. Saran 1. Validasi data dan hasil dengan menggunakan perangkat lunak perminyakan. 2. Penggunaan data yang lebih banyak, agar dapat memvalidasi hubungan antara parameter desain dengan kebutuhan daya. VI. Daftar Pustaka 1. Brown, K.E., et al, The Technology of Artifial Lift method, Volume 2b, The Petroleum Publishing Company, Tulsa, 1980. 2. Guo, Boyun., Lyons, William C. dan Ghalambor, Ali, Petroleum Production Engineering A Computer Assisted Approach, Elsevier Science & Technology Books, 2007. 3. Tjondrodiputro, B., Bahan kuliah Teknik Produksi, Jurusan Teknik Perminyakan, ITB Bandung, 2004. Farid Febrian 12206011, Semester II 2010/2011 6

Parameter Satuan X1 X2 X3 X4 X5 FVF Oil Rb/STB 1.15 1.075 1.15 1.0689 1.088 Kedalaman Datum Feet 2207 1852 1390 625 1710 Temperatur Reservoir Degree F 208 192 190 170 204 Gravity Minyak API 33 37 37 31 34 GOR SCF/ STB 30 25 50 30 30 Tabel 1. Data-data yang berasal dari laporan cadangan Data Satuan Parameter Pump Water Cut % Kedalaman Pompa Feet SFL Feet WFL Feet Produksi BOPD Tabel 2. Data-data yang berasal dari laporan produksi per hari Populasi Artificial Lift Area A 14.8% ESP TBG PP PCP 24.6% 60.7% Gambar 1. Populasi penggunaan artificial lift di Area A Farid Febrian 12206011, Semester II 2010/2011 7

No Sumur Status Q Pump Size Stroke Length Pumping Speed Daya Sumur 001 Sumur 002 Current 127 1.75 100 9 6.1 Rekomendasi 127 2 34 20 5.5 Current 72 2.75 90 10 24.2 Rekomendasi 72 2 34 20 5.5 Tabel 1. Optimasi lapangan X1 No Sumur Status Q Pump Size Stroke Length Pumping Speed Daya Sumur 023 Sumur 036 Sumur 038 Current 294 2.75 100 10 7.4 Rekomendasi 337 2.5 34 20 5.6 Current 107 1.75 90 7 4.8 Rekomendasi 129 2 34 20 5.2 Current 174 1.75 100 8 6.4 Rekomendasi 222.5 2.5 42 20 7.9 Tabel 2. Optimasi Lapangan X2 No Sumur Status Q Pump Size Stroke Length Pumping Speed Daya Sumur 001 Sumur 008 Sumur 013 Sumur 016 Sumur 019 Sumur 020 Sumur 021 Current 568 2.75 100 12.5 16.4 Rekomendasi 568 2.5 48 20 10.8 Current 94 1.75 50 7 2.5 Rekomendasi 103 2.5 34 20 6.6 Current 144 2.75 100 5 5.4 Rekomendasi 151 2.5 34 19 6.1 Current 107 2.75 70 10 7 Rekomendasi 131 1 34 20 5.1 Current 110 1.75 100 8 5.3 Rekomendasi 115 2 34 20 5.2 Current 238 1.75 60 8 3.2 Rekomendasi 297 2.5 42 19 7.9 Current 283 1.75 80 5 3 Rekomendasi 315 2.5 48 20 6.8 Tabel 3. Optimasi Lapangan X3 Farid Febrian 12206011, Semester II 2010/2011 8

No Sumur Status Q Pump Size Stroke Length Pumping Speed Daya Sumur 003 Current 511 2.75 64 8.95 2.7 Rekomendasi 511 3 42 20 4.7 Sumur 008 Current 84 1.75 60 12 1 Rekomendasi 127 3 34 20 2.4 Sumur 010 Current 859 2.75 100 12 4.9 Rekomendasi 859 3 64 21 7.5 Sumur 013 Current 490 2.75 100 10 3.1 Rekomendasi 500 3 34 21 2.9 Sumur 029 Current 282 2.75 88 10 2.5 Rekomendasi 378 3 34 20 2.3 Sumur 032 Current 458 2.75 96 10 4.8 Rekomendasi 458 3 34 19 3.9 Sumur 035 Current 260 1.75 100 10 2 Rekomendasi 264 3 34 20 3.5 Sumur 038 Current 144 2.25 115 5 1.2 Rekomendasi 297 3 34 20 2.9 Sumur 046 Current 161 1.75 70 4 2.1 Rekomendasi 163 3 34 19 4.2 Sumur 048 Current 177 2.75 100 4 1.9 Rekomendasi 177 3 34 20 4.4 Sumur 050 Current 184 2.75 80 8 3.7 Rekomendasi 184 3 34 20 5.3 Sumur 051 Current 56 2.75 70 7 2.7 Rekomendasi 110 3 34 20 5.6 Sumur 054 Current 590 2.25 70 8 1.7 Rekomendasi 590 3 42 21 4 Sumur 056 Current 98 1.75 98 10.5 2.5 Rekomendasi 113 3 34 20 3.5 Sumur 074 Current 8 1.75 80 7 1 Rekomendasi 80 3 34 20 2.6 Sumur 076 Current 62 1.75 70 6 2 Rekomendasi 62 3 34 20 4.4 Sumur 081 Current 62 1.75 55 5 1 Rekomendasi 93 3 34 20 2.5 Sumur 085 Current 90 1.75 80 6 1.4 Rekomendasi 90 3 34 20 4.7 Sumur 092 Current 94 1.75 80 4 1 Rekomendasi 94 3 34 20 4.9 Sumur 099 Current 94 2.75 70 6 1 Rekomendasi 94 3 34 20 4.8 Sumur 101 Current 114 1.75 70 8 1.2 Rekomendasi 139 3 34 20 4.4 Sumur 104 Current 161 2.75 60 8 2.9 Rekomendasi 161 3 34 20 4.7 Sumur 106 Current 310 2.75 70 8 3.1 Rekomendasi 312 3 34 20 4.3 Sumur 107 Current 191 2.75 78 4 1.9 Rekomendasi 240 3 34 20 4.9 Sumur 144 Current 116 2.25 60 8.5 1.6 Rekomendasi 116 3 34 20 3.9 Sumur 147 Current 80 2.25 70 5 1.3 Rekomendasi 114 3 34 20 4.9 Sumur 149 Current 114 1.75 80 8 2.1 Rekomendasi 139 3 34 20 4 Tabel 4. Optimasi Lapangan X4 Farid Febrian 12206011, Semester II 2010/2011 9

No Sumur Status Q Pump Size Stroke Length Pumping Speed Daya Sumur 009 Sumur 011 Sumur 012 Current 43 2.75 80 6 6.7 Rekomendasi 43 2.5 34 20 6.1 Current 197 2.25 90 6 4 Rekomendasi 224 2.5 34 20 5.9 Current 119 1.75 90 6 37 Rekomendasi 149 2.5 34 20 6.2 Tabel 5. Optimasi Lapangan X5 Nama Lapangan Saat Ini (BOPD) Rekomendasi (BOPD) X1 199 199 0 X2 575 688.5 19.74 Perubahan Q (%) X3 1544 1680 8.81 X4 5850 6465 10.51 X5 359 416 15.88 Jumlah 8527 9448.5 10.81 Tabel 6. Optimasi Laju Alir Keseluruhan Nama Lapangan Saat Ini (HP) Rekomendasi (HP) Perubahan daya (%) Keterangan Lapangan X1 30.3 11-63.7 Penurunan kebutuhan daya X2 18.6 18.7 0.54 Relatif tidak berubah X3 42.8 48.5 13.32 Meningkat X4 58.3 112.1 92.28 Peningkatan paling besar X5 14.4 18.2 26.39 Meningkat Jumlah 164.4 208.5 26.82 Tabel 7. Optimasi Kebutuhan Daya Keseluruhan Farid Febrian 12206011, Semester II 2010/2011 10

Laju Alir Minyak (BIOPD) 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 Laju Alir Tiap Sumur X1 X2 X3 X4 X5 Jumlah Nama Sumur Saat Ini Rekomendasi Gambar 2. Grafik Optimasi Laju Alir 250 Kebutuhan Daya Tiap Sumur 200 Daya (HP) 150 100 50 Saat Ini Rekomendasi 0 X1 X2 X3 X4 X5 Jumlah Nama Sumur Gambar 3. Grafik Optimasi Kebutuhan Daya Farid Febrian 12206011, Semester II 2010/2011 11

Rata-rata Δ Perubahan Daya (HP) 5 0-5 -10-15 -20 Kenaikan Pertambahan Daya vs Perubahan Ukuran Tubing -0.75-0.25 0.25 0.75 1.25 Δ Ukuran Tubing Pompa (inch) Gambar 4. Grafik hubungan pertambahan daya dengan perubahan ukuran tubing Rata-rata Δ Perubahan Daya (HP) 3 2.5 2 1.5 1 0.5 0 Kenaikan Pertambahan Daya vs Perubahan Stroke Length 20 30 40 50 60 Δ Panjang Stroke (inch) Gambar 5. Grafik hubungan pertambahan daya dengan perubahan panjang stroke Farid Febrian 12206011, Semester II 2010/2011 12

Rata-rata Δ Peubahan Daya (HP) 3.5 3 2.5 2 1.5 1 0.5 0-0.5-1 Kenaikan Pertambahan Daya vs Perubahan Kecepatan Pemompaan 7,8,9 10 11 12 13 14 15 16 Δ Kecepatan Pompa (SPM) Gambar 6. Grafik hubungan pertambahan daya dengan perubahan kecepatan pemompaan Gambar 7. Grafik hubungan antara laju alir dengan kebutuhan daya Farid Febrian 12206011, Semester II 2010/2011 13