Studi Perilaku Tiang Pancang Kelompok Menggunakan Plaxis 2D Pada Tanah Lunak (Very Soft Soil Soft Soil) ABSTRAK

dokumen-dokumen yang mirip
STUDI PERILAKU TIANG PANCANG KELOMPOK MENGGUNAKAN PLAXIS 2D PADA TANAH LUNAK ( VERY SOFT SOIL SOFT SOIL )

ANALISA DEFORMASI PONDASI TIANG BOR DENGAN MODEL ELEMEN HINGGA PADA TANAH STIFF CLAY

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan

1. Dosen Jurusan Teknik Sipil Universitas Hasanuddin, Makassar Mahasiswa Jurusan Teknik Sipil Universitas Hasanuddin, Makassar 90245

STUDI EFEKTIFITAS TIANG PANCANG KELOMPOK MIRING PADA PERKUATAN TANAH LUNAK

BAB 4 HASIL DAN PEMBAHASAN

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( )

ANALISIS KAPASITAS DAYA DUKUNG PONDASI TIANG PANCANG DENGAN MENGGUNAKAN METODE ANALITIS DAN ELEMEN HINGGA

BAB I PENDAHULUAN 1.1. Latar belakang

ABSTRAK. Kata kunci : pondasi, daya dukung, Florida Pier.

Analisis Daya Dukung dan Penurunan Fondasi Rakit dan Tiang Rakit pada Timbunan di Atas Tanah Lunak

BAB I PENDAHULUAN. alternatif ruas jalan dengan melakukan pembukaan jalan lingkar luar (outer ring road).

DAFTAR ISI HALAMAN JUDUL... LEMBAR PENGESAHAN... BERITA ACARA TUGAS AKHIR... MOTO DAN LEMBAR PERSEMBAHAN... KATA PENGANTAR... DAFTAR ISI...

ANALISA PENGARUH KETEBALAN PILE CAP DAN JARAK ANTAR TIANG TERHADAP KAPASITAS KELOMPOK PONDASI DENGAN MENGGUNAKAN PLAXIS 3D

PERENCANAAN PERKUATAN PONDASI JEMBATAN CABLE STAYED MENADO DENGAN MENGGUNAKAN PROGRAM GROUP 5.0 DAN PLAXIS 3 DIMENSI

ANALISA PONDASI PILE RAFT PADA TANAH LUNAK DENGAN PLAXIS 2D

Jurnal Rekayasa Tenik Sipil Universitas Madura Vol. 1 No.2 Desember 2016 ISSN

BAB II TINJAUAN PUSTAKA. paling bawah dari suatu konstruksi yang kuat dan stabil (solid).

Analisis Daya Dukung Lateral Fondasi Tiang Tunggal Menggunakan Metode Elemen Hingga

ANALISIS DAYA DUKUNG PONDASI BORED PILE TUNGGAL DIAMETER 100 cm PADA PROYEK PEMBANGUNAN HOTEL GRANDHIKA, MEDAN TUGAS AKHIR

STUDI STABILITAS SISTEM PONDASI BORED PILE PADA JEMBATAN KERETA API CIREBON KROYA

BAB IV STUDI KASUS 4.1 UMUM

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R.

BAB II TINJAUAN PUSTAKA. dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya

ANALISIS PENURUNAN BANGUNAN PONDASI TIANG PANCANG DAN RAKIT PADA PROYEK PEMBANGUNAN APARTEMEN SURABAYA CENTRAL BUSINESS DISTRICT

BAB IV PERENCANAAN PONDASI. Dalam perencanaan pondasi ini akan dihitung menggunakan dua tipe pondasi

BAB XI PERENCANAAN PONDASI TIANG PANCANG

BAB III LANDASAN TEORI

PENGARUH METODE KONSTRUKSI PONDASI SUMURAN TERHADAP KAPASITAS DUKUNG VERTIKAL (148G)

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

BAB I PENDAHULUAN. Salah satu masalah yang sedang dihadapi masyarakat di Provinsi Sumatera

SOAL A: PERENCANAAN PANGKAL JEMBATAN DENGAN PONDASI TIANG. 6.5 m

BAB I PENDAHULUAN. 1.1 Umum

BAB 3 METODOLOGI. Penelitian ini dimulai dengan melakukan identifikasi masalah tentang

BAB III DATA DAN TINJAUAN DESAIN AWAL

BAB IV HASIL DAN PEMBAHASAN

PERENCANAAN PONDASI TIANG BOR PADA PROYEK CIKINI GOLD CENTER

ANALISIS DAYA DUKUNG TIANG BOR (BORED PILE) PADA STRUKTUR PYLON JEMBATAN SOEKARNO DENGAN PLAXIS 3D

BAB IV PERHITUNGAN DAN ANALISIS

BAB II TINJAUAN PUSTAKA. Dalam mendesain bangunan geoteknik salah satunya konstruksi Basement, diperlukan

ANALISIS DAYA DUKUNG DAN PENURUNAN PONDASI MELAYANG (FLOATING FOUNDATION) PADA TANAH LEMPUNG LUNAK DENGAN MENGGUNAKAN SOFTWARE PLAXIS VERSI 8.

BAB 4 HASIL DAN PEMBAHASAN

D4 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II DASAR TEORI

BAB III PROSEDUR ANALISIS

JUDUL HALAMAN PENGESAHAN BERITA ACARA MOTTO DAN PERSEMBAHAN KATA PENGANTAR ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR LAMPIRAN

BAB II TINJAUAN PUSTAKA

I. PENDAHULUAN. Bangunan sipil terbagi atas dua bagian yaitu bangunan di atas tanah (upper

BAB II TINJAUAN PUSTAKA. menahan gaya beban diatasnya. Pondasi dibuat menjadi satu kesatuan dasar

BAB III DATA PERENCANAAN

II. TINJAUAN PUSTAKA

BAB I PENDAHULUAN. 1.1 Latar Belakang. Tanah selalu mempunyai peranan yang penting pada suatu lokasi


DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2

BAB 4 ANALISA DAN PENGOLAHAN DATA

REKAYASA GEOTEKNIK DALAM DISAIN DAM TIMBUNAN TANAH

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini

PERBANDINGAN DAYA DUKUNG AKSIAL TIANG PANCANG TUNGGAL BERDASARKAN DATA SONDIR DAN DATA STANDARD PENETRATION TEST

TUGAS AKHIR. Disusun Oleh : WILDA NASUTION

ANALISA PONDASI PILE RAFT PADA TANAH LUNAK DENGAN PLAXIS 2D

Jl. Ir. Sutami 36A, Surakarta 57126; Telp

Perilaku Tiang Pancang Tunggal pada Tanah Lempung Lunak di Gedebage

BAB IV ALTERNATIF DESAIN DAN ANALISIS PERKUATAN FONDASI

BAB I PENDAHULUAN Latar Belakang. Pemerintah Provinsi DKI Jakarta menyiapkan pembangunan rumah susun

LAMPIRAN 1. Langkah Program PLAXIS V.8.2

TUGAS AKHIR. Diajukan untuk melengkapi tugas-tugas dan memenuhi syarat penyelesaian pendidikan sarjana teknik sipil.

KAPASITAS DUKUNG TIANG

PEMBUATAN PROGRAM APLIKASI UNTUK PERHITUNGAN DAYA DUKUNG DAN PENURUNAN PONDASI TIANG DENGAN MENGGUNAKAN MATLAB

BAB 3 DATA TANAH DAN DESAIN AWAL

PENGARUH DIAMETER TERHADAP KAPASITAS DUKUNG LATERAL TIANG TUNGGAL ABSTRAK

Analisis Kinerja Fondasi Kelompok Tiang Bor Gedung Museum Pendidikan Universitas Pendidikan Indonesia

BAB 2 TINJAUAN KEPUSTAKAAN. Pondasi merupakan bagian dari struktur bangunan yang paling dasar yang

BAB IV PERENCANAAN PONDASI. Berdasarkan hasil data pengujian di lapangan dan di laboratorium, maka

ANALISIS PONDASI JEMBATAN DENGAN PERMODELAN METODA ELEMEN HINGGA DAN BEDA HINGGA

STUDI PRILAKU KELOMPOK TIANG MIRING PADA TANAH LUNAK DENGAN METODE ELEMEN HINGGA AKIBAT BEBAN AXIAL DAN LATERAL

Evaluasi Data Uji Lapangan dan Laboratorium Terhadap Daya Dukung Fondasi Tiang Bor

DAFTAR ISI ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN 1 1.

USU Medan ABSTRAK

DIV TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB I PENDAHULUAN

Nurmaidah Dosen Pengajar Fakultas Teknik Universitas Medan Area

ANALISIS SISTEM PONDASI PILE RAFT PADA PEMBANGUNAN PROYEK SILOAM HOSPITAL MEDAN

BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR

ANALISA TAHANAN LATERAL DAN DEFLEKSI FONDASI GRUP TIANG PADA SISTEM TANAH BERLAPIS DENGAN VARIASI JUMLAH TIANG DALAM SATU GRUP

DAFTAR ISI. Halaman Judul... i Lembar Pengesahan... ii Kata Pengantar... iii Abstrak... iv Daftar Isi... v Daftar Tabel... x Daftar Gambar...

Analisis Stabilitas dan Penurunan pada Timbunan Mortar Busa Ringan Menggunakan Metode Elemen Hingga

PENGARUH MUKA AIR TANAH TERHADAP PEKERJAAN GALIAN BASEMENT SWISS-BELHOTEL PONTIANAK

LANGKAH PEMODELAN ANALISA KAPASITAS LATERAL KELOMPOK TIANG PADA PROGRAM PLAXIS 3D FOUNDSTION

ANALISA DISTRIBUSI DAYA DUKUNG RAFT DAN PILE PADA SISTEM PONDASI PILE RAFT DENGAN PLAXIS 3D

Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan

TUGAS AKHIR. Diajukan Untuk Melengkapi Tugas Tugas dan. Memenuhi Syarat Untuk Menempuh Ujian. Sarjana Teknik Sipil. Disusun Oleh AHMAD RIVALDI NOVRIL

Output Program GRL WEAP87 Untuk Lokasi BH 21

Analisis Daya Dukung Tiang Tunggal Statik pada Tanah Lunak di Gedebage

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Pondasi adalah suatu konstruksi pada bagian dasar struktur bangunan yang

BAB IV KRITERIA DESAIN

Beby Hardianty 1 dan Rudi Iskandar 2

PENGGUNAAN BORED PILE SEBAGAI DINDING PENAHAN TANAH

Perhitungan Struktur Bab IV

DAFTAR ISI HALAMAN JUDUL

PENGARUH DIMENSI, KEDALAMAN, DAN RASIO KELANGSINGAN TERHADAP KAPASITAS DUKUNG LATERAL DAN DEFLEKSI PADA TIANG PANCANG SPUN PILE ABSTRAK

BAB 1 PENDAHULUAN. Bangunan yang berdiri di atas permukaan tanah terbagi menjadi 2 bagian

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018) ISSN: ( Print)

Transkripsi:

Studi Perilaku Tiang Pancang Kelompok Menggunakan Plaxis 2D Pada Tanah Lunak (Very Soft Soil Soft Soil) Nama Mahasiswa : Wildan Firdaus NRP : 307 00 07 Jurusan : Teknik Sipil FTSP-ITS Dosen Pembimbing : Musta in Arif ST.,MT ABSTRAK Dengan mengacu pada jurnal Numerical Analyses of Load Tests on Bored Piles, 2004 Dari hasil penelitiannya tersebut didapat kesimpulan bahwa model material Mohr Coulumb lebih kaku dari pada model material Hardening, dan model material Soft Soil Soil lebih kaku lagi dari model material Mohr Coulumb. Hal ini karena perbedaan dari rumus yang dipakai dari masing masing metode tersebut. Tugas akhir ini membandingkan beberapa bentuk konfigurasi dari tiang pancang kelompok, yang terdiri dari 2, 3, 4, 6, dan 8 tiang pancang dalam satu konfigurasi dengan jarak antar tiang pancang antara 2Ø sampai 4Ø, dalam menahan beban aksial dan lateral menggunakan bantuan program dalam pengerjaannya yaitu Plaxis 2D Versi 8 dengan model material Mohr Coulum, Hardening, Soft Soil. Berdasarkan hasil perhitungan menggunakan Plaxis 2D diperoleh hasil akibat berubahnya jarak antar tiang pancang berupa penambahan kemampuan tiang pancang dalam menahan beban Aksial dan Lateral, untuk beban yang sama, perubahan jarak antar tiang dapat mengurangi penurunan dan defleksi tiang pancang. Kata kunci : Plaxis 2D; Mohr Coulum; Hardening; Soft Soil. BAB PENDAHULUAN. LATAR BELAKANG Bangunan sipil terbagi atas dua bagian yaitu: bangunan di atas tanah (upper structure ) dan bangunan di bawah tanah (sub structure) yang membedakan diantara keduanya adalah bangunan atas dan tanah pendukung, (Wesley, 977). Apabila tanah pendukung yang dijumpai adalah tanah bermasalah, misalnya tanah lunak, maka pemilihan jenis pondasi akan lebih sulit. Permasalahan utama bila suatu bangunan di atas tanah lunak adalah daya dukung dan penurunan, (Bowles, 979). Berdasarkan kedalaman tertanam di dalam tanah, maka pondasi dibedakan menjadi pondasi dangkal (shallow foundation) dan pondasi dalam (deep foundation ), (Das, 995). Dikatakan pondasi dalam apabila perbandingan antara kedalaman pondasi (D) dengan diameternya (B) adalah lebih besar sama dengan 0 (D/B 0). Sedangkan pondasi dangkal apabila D/B 4. Pada pondasi dalam dibedakan 2, yaitu pondasi end bearing dan pondasi floating. Pondasi ujung tiang (end bearing) adalah sistem pondasi yang ujung tiang pancangnya menyentuh tanah keras, sehingga beban aksial seluruhnya disalurkan pada tanah keras. Sedangkan pondasi mengambang (floating) adalah sistem pondasi yang tidak menyentuh tanah keras sehingga beban aksial yang diterima disalurkan pada tanah sekitar tiang pancang akibat gesekan (friction) antara tiang pancang dan tanah sekitar tiang pancang. Pada daerah tertentu dimana lapisan tanah lunak sangat dominan atau tanah keras berada pada posisi yang sangat dalam diterapkan sistem pondasi mengambang (floating) berupa tiang pancang rakit (raft pile). Pada kondisi seperti ini sistem pondasi ujung tiang (end bearing) sangat tidak ideal karena membutuhkan tiang pancang sangat panjang mengingat harga tiang pancang yang sangat mahal sehingga banyak membutuhkan biaya. Pada perencanaan pondasi tiang kelompok, kemampuan menahan beban lateral dan aksial harus diperhitungkan dengan baik agar dapat menghasilkan suatu struktur pondasi yang kuat dan efisien. Untuk perencanaan beban aksial saja dapat diselesaikan dengan mudah menggunakan statika sederhana, namun bila struktur tanah yang berlapis lapis akan mengakibatkan respon tanah yang tidak linear, sehingga menambah kesulitan dalam merencanakan pembebanan aksial dan lateral pada tiang pancang kelompok. Hubungan yang tidak linear antara tanah dan struktur dalam perencanaan pembebanan aksial dan lateral menyebabkan metode analisa statika biasa sulit digunakan untuk mewakili permasalahan yang sebenarnya. Metode lain harus dapat mewakili permasalahan yang sebenarnya. Metode lain sangat diperlukan untuk dapat memecahkan masalah dalam pembebanan aksial dan lateral tiang pancang kelompok dengan sangat teliti dan memuaskan. Salah satunya apabila analisa dilakukan dengan menggunakan computer.

Perkembangan perangkat keras computer mengalami perkembangan yang sangat berarti beberapa tahun ini. Peningkatan perangkat keras ini tentu saja menimbulkan pengaruh yang sama terhadap perkembangan perangkat lunak computer. Perangkat lunak ini semakin lama menjadi suatu keharusan akan tuntutan kecepatan dan ketepatan suatu perhitungan. Dalam dunia teknik sipil sendiri, khususnya geoteknik, dikenal program perhitungan Soil and Rock Mechanics yitu Plaxis 2D. PLAXIS adalah program elemen hingga untuk aplikasi geoteknik dimana digunakan model-model tanah untuk melakukan simulasi terhadap perilaku dari tanah. Program ini sangat membantu proses perhitungan pemadatan, lendutan dan lainnya pada proses perhitungan tiang pancang kelompok. Selain itu, dengan program ini kondisi sesungguhnya dapat dimodelkan dalam regangan bidang maupun secara axisymetris. Plaxis ini juga menerapkan metode antarmuka grafis yang mudah digunakan sehingga pengguna dapat dengan cepat membuat model geometri dan jaring elemen berdasarkan penampang melintang dari kondisi yang ingin dianalisis. Pada penelitian M. Wehnert, dan P.A. Vermeer dengan judul artikel, Numerical Analyses of Load Tests on Bored Piles, 2004. melakukan penelitian analisa tiang pancang antara beban dan penurunan dengan effek elemen antarmuka. Dari hasil penelitiannya didapat kesimpulan bahwa model material Mohr Coulumb lebih kaku dari pada model material Hardening, dan model material Soft Soil Soil lebih kaku lagi dari model material Mohr Coulumb. Hal ini karena perbedaan dari pengklasifikasian tanah yang dipakai dari masing masing model tersebut. Gambar. Hasil Perhitungan Antar Interface Dengan Penurunan Gambar.2 Hasil Perhitungan Antara Jarak Dan Penurunan Dengan mengacu pada penelitian tersebut, tugas akhir ini membandingkan beberapa bentuk konfigurasi dari tiang pancang kelompok, yang terdiri dari 2, 3, 4, 6, dan 8 tiang pancang dalam satu konfigurasi dengan jarak antar tiang pancang antara 2D sampai 4D, dalam menahan beban aksial dan lateral. Studi ini menggunakan bantuan program dalam pengerjaannya yaitu Plaxis 2D Versi 8 dengan model material Mohr Coulum, Hardening, Soft Soil. Dari hasil tersebut dapat dibuat suatu grafik, sehingga dapat diketahui pengaruh penambahan jarak antar tiang pancang terhadap penurunan dan defleksi.. Dengan bentuan program ini dapat menghitung kemampuan daya dukung tanah akibat pembebanan gaya aksial dan lateral diatas tanah sangat lunak (very soft soil soft soil) dengan menggunakan pondasi rakit (raft pile) dengan merubah desain dari konfigurasi tiang pancang dengan kedalaman tiang pancang tetap..2 PERUMUSAN MASALAH Dari uraian diatas maka permasalahan yang timbul pada pembebanan gaya aksial dan lateral di atas tanah lunak dengan menggunakan pondasi raft pile adalah :. Pengaruh jarak antar tiang pancang terhadap daya dukung aksial? 2. Pengaruh jarak antar tiang pancang terhadap daya dukung lateral? 3. Pengaruh jarak antar tiang pancang terhadap penurunan tiang pancang? 4. Pengaruh jarak antar tiang pancang terhadap defleksi tiang pancang? 5. Hasil perhitungan dengan model material Mohr Coulumb, Hardening, dan Soft Soil Soil?.3 TUJUAN TUGAS AKHIR Tujuan tugas akhir ini adalah : Mengetahui konfigurasi tiang pancang yang paling baik menahan beban aksial dalam satu konfigurasi.. Mengetahui perilaku tiang pancang kelompok akibat perubahan jarak antar tiang pancang terhadap daya dukung aksial? 2

2. Mengetahui perilaku tiang pancang kelompok akibat perubahan jarak antar tiang pancang terhadap daya dukung Lateral? 3. Mengetahui perilaku tiang pancang kelompok akibat perubahan jarak antar tiang pancang terhadap penurunan tiang pancang? 4. Mengetahui perilaku tiang pancang kelompok akibat perubahan jarak antar tiang pancang terhadap defleksi tiang pancang? 5. Mengetahui hasil perhitungan dengan model material Mohr Coulumb, Hardening, dan Soft Soil Soil?.4 BATASAN MASALAH Berdasarkan permasalahan permasalahan yang telah di uraikan di atas agar tidak menyimpang dari tugas akhir ini maka dibuat suatu batasan masalah. Batasan batasan yang perlu dipakai dalam pembahasan tugas akhir ini adalah :. Program yang digunakan adalah Plaxis 2D Versi 8. 2. Variasi pembebanan untuk setiap konfigurasi tiang pancang adalah sama. 3. Variasi Beban Aksial dan Lateral. 4. Penampang tiang pancang yang digunakan adalah lingkaran dengan diameter 45 cm. 5. Jarak antar tiang pancang yang digunakan adalah 2Ø, 3Ø, 4Ø (Ø=diameter). 6. Jumlah tiang pancang dalam satu konfigurasi 2, 4, 6 dan 8 tiang pancang. 7. Konfigurasi susunan tiang pancang yang digunakan adalah segi empat. 8. Tebal pile cap yang digunakan adalah 60 cm. 9. Data tanah yang digunakan untuk menganalisa adalah kohesif yang diperoleh dari laboratorium mekanika tanah Sipi ITS dengan daerah lokasi tanah yaitu HESS- Gresik. 0. Kedalam tiang pancang adalah 5 m.. Model perhitungan yang dipakai dala program Plaxis 2D adalah Mohr Coulumb, Hardening dan Soft Soil. BAB 3 METODOLOGI 3.. BAGAN ALIR PENYELESAIAN TUGAS AKHIR Mulai Studi Literatur : - Pengumpulan Referensi Tinjauan Pustaka Pengumpulan Data : - Data Tanah Yang Diperoleh dari Lab. Mektan T.sipil - ITS Dengan Sampel Tanah berasal Dari HESS - Gresik Perencanaan Pemodelan Pondasi Untuk Beban Aksial Dan Lateral di Tanah Lunak ( Very Soft Soil - Soft Soil) Pemilihan Tipe Pondasi : - Pondasi Floating Input Program : - Memakai Program Aplikasi Plaxis 2D Versi 8 Dengan ModelMaterial Yaitu Mohr Coulumb, Hardening, dan Soft Soil Data Sekunder :. Variasi Beban Aksial dan Lateral 2. Kedalaman Pemancangan 3. Jumlah Tiang Pancang Dalam Pile Cap 4. Jarak Antar Tiang Pancang Pemodelan Dengan Memakai Pondasi Kelompok Menjalankan Program Menganalisa Hasil Program Plaxis 2D Pembuatan Tabel & Grafik - Perbandingan Beban, Konfigurasi Tiang Pancang, Penurunan & Defleksi Analisa Perilaku Tiang Pancang & Kesimpulan Selesai 3

3.2. KONFIGURASI TIANG PANCANG Dalam pengerjaan Tugas Akhir ini, konfigurasi tiang pancang kelompok yang di analisa adalah sebagai berikut : Dua buah tiang pancang, pile cap segi empat: 5. Delapan buah tiang pancang, pile cap segi empat. Dua buah tiang pancang, pile cap segi empat Gambar 3.5 Konfigurasi Tiang Pancang (8 buah tiang pancang) Gambar 3. Konfigurasi Tiang Pancang (2 buah tiang pancang) 2. Tiga buah tiang pancang, pile cap segi empat Gambar 3.2 Konfigurasi Tiang Pancang (3 buah tiang pancang) 3. Empat buah tiang pancang, pile cap segi empat Gambar 3.3 Konfigurasi Tiang Pancang (4 buah tiang pancang) 4. Enam buah tiang pancang, pile cap segi empat BAB 4 ANALISA DATA TANAH DAN PERHITUNGAN DAYA DUKUNG 4.. UMUM Dalam bab ini, akan dijelaskan perhitungan langkah demi langkah untuk mendapatkan besarnya daya dukung tanah, dengan menggunakan2 metode yaitu Meyerhoff dan Luciano DeCourt. Dalam bab ini juga akan dijelaskan perhitungan manual pemadatan dan lendutan tiang pancang tunggal, yang pada akhirnya nanti akan dibandingkan dengan hasil perhitungan program PLAXIS 2D FOUNDATION. 4.2. DATA TIANG PANCANG Tiang pancang yang digunakan dalam tugas akhir ini mempunyai parameter parameter sebagai berikut : f c = 60 MPa Epile = 4700(f c) 0.5 = 3.64 x 0 6 ton/m 2 Diameter Tiang Pancang (Ø) = 45 cm Luas Tiang Pancang (Ap) = 0,59 m 2 I45 = 2.85 x 0-4 m 4 4.3. DATA TANAH LEMPUNG Data tanah lempung yang ditampilkan dibawah ini hanya data yang dibutuhkan dalam perhitungan daya dukung tanah dasar, seperti kedalaman tanah dari permukaan, nilai N (SPT). Untuk data tanah selengkapnya dapat diliatpada lampiran. Table 4. Data Tanah Lempung (N-SPT) No Kedalaman Deskripsi N rata - rata m.5-8.5 Lempung Kelanauan dan Kepasiran 2 3 8.5-8.5 Lempung (clay) 8.5-28.5 8 4 28.5-34.5 Lempung Kelanauan 3 Gambar 3.4 Konfigurasi Tiang Pancang (6 buah tiang pancang) 5 6 34.5-36.5 36.5-40.5 Lempung Kepasiran 5 Lempung 5 4

4.4. PERHITUNGAN DAYA DUKUNG TANAH Data SPT (Standard Penetration Test) dari lapangan tidak langsung dapat digunakan untuk perencanaan tiang pancang. Harus dilakukan koreksi dahulu terhadap data SPT asli, sebagai berikut : 4.4.. Koreksi Terhadap Muka Air Tanah Harga N>5 dibawah muka air tanah harus dikoreksi menjadi N berdasarkan perumusan sebagai berikut : N ' 5 N 5 2 Terzaghi & Peck, 960 Untuk jenis tanah lempung lanau, dan pasir kasar dan harga N<5 tidak ada koreksi. Jadi N =N. Seed, dkk dilain hal menyajikan factor koreksi CN untuk mengkoreksi harga N lapangan hasil test, dimana N = CN.N. Besarnya koefisien koreksi CN ini tergantung dari harga tegangan vertikal efektif tanah (σ v), yang dapat dilihat pada tabel dibawah ini. Table 4.2 Nilai Koefisien Koreksi CN σ'v(kpa) 30 50 00 50 200 250 300 350 400 450 500 C N.6.22 0.95 0.78 0.65 0.57 0.5 0.45 0.42 0.4 0.39 Koreksi dari Seed ini tidak dapat digabung dengan koreksi dari Terzaghi & Peck, oleh karena itu hanya dipakai salah satu nilai yang dianggap paling menentukan atau kritis (NKOREKSI), dalam hal ini diambil nilai N terkecil dari ketiga koreksi di atas. 4.4.2. Koreksi Terhadap Overburden Preesure Dari Tanah Hasil dari NKOREKSI dikoreksi lagi untuk pengaruh tekanan vertikal efektif pada lapisan tanah dimana harga N tersebut didapatkan (tekanan vertical efektif = overburden pressure). 4 N N 2 0.4 o ; bila ρo 7,5 ton/m 2 atau 4 N N 2 3.25 0. o ; bila ρo >7,5 ton/m 2 ρ o = tekanan tanah vertical efektif pada lapisan/kedalaman yang ditinjau. Harga N 2 harus 2N, bila koreksi didapat N 2 > 2N dibuat N 2 = 2N. 4.4.3. Hasil Perhitungan Nilai N-Koreksi Dari perhitungan di atas, maka nilai N baru (N KOREKSI ) yang kemudian nilai N KOREKSI inilah yang akan digunakan untuk perhitungan dalam menentukan besarnya daya dukung tanah. 4.4.4. Perhitungan Daya Dukung Metode Meyerhof Dengan menggunakan rumus Meyerhof, maka didapatkan besarnya daya dukung tanah sebagai berikut : Kedalaman Q P Q S Q L m ton ton ton 2 2.72.4 4.4 3 2.72 2.83 5.55 4 2.60 4.24 6.84 5 2.33 5.65 7.98 6 2.00 7.00 9.00 7.50 8.22 9.72 8 0.90 9.33 20.23 9 0.22 0.36 20.58 0 9.47.3 20.77 8.73 2.9 20.92 2 8. 3.02 2.2 3 7.58 3.79 2.37 4 7.6 4.53 2.68 5 6.82 5.23 22.05 6 6.55 5.92 22.47 7 6.34 6.6 22.95 8 8.5 7.28 25.80 9 5.28 7.95 33.23 20 23.4 20.4 43.82 2 29.8 26.4 56.22 22 35.2 33.44 68.56 23 39.97 39. 79.08 24 44.56 43.92 88.48 25 46.76 48.37 95.3 26 44.7 52.6 96.78 27 39.8 56.79 96.60 28 38.6 60.77 99.37 29 4.67 64.40 06.08 30 46.52 69.3 5.65 3 5.3 76.34 27.46 32 55.67 84.55 40.22 33 60.67 92.37 53.04 34 66.4 00.08 66.22 35 70.05 07.96 78.00 36 70.47 5.84 86.32 37 69.4 23.62 92.75 38 68.50 3.5 99.65 39 68.35 38.32 206.67 40 67.84 45.65 23.49 5

4.4.5. Perhitungan Daya Dukung Metode Luciano DeCourt `Dengan menggunakan rumus Luciano DeCourt, maka didapatkan besarnya daya dukung tanah sebagai berikut : Kedalaman Q P Q S Q L m ton ton ton 2 3.82 5.65 9.47 3 3.82 8.48 2.30 4 3.78.3 5.09 5 3.68 4.4 7.8 6 3.5 6.96 20.48 7 3.30 9.79 23.09 8 3.05 22.62 25.67 9 2.80 25.45 28.25 0 2.59 28.27 30.86 2.4 3.0 33.5 2 2.25 33.93 36.8 3 2.2 36.76 38.88 4 2.02 39.58 4.60 5.94 42.4 44.35 6.88 45.24 47.2 7.85 48.07 49.92 8 2.80 50.89 53.69 9 5.66 53.72 59.38 20 9.09 56.55 65.64 2.79 59.38 7.6 22 4.03 62.20 76.23 23 5.0 65.03 80.3 24 4.5 67.86 82.0 25 2.6 70.69 83.29 26.70 73.5 85.2 27.06 77.48 88.54 28.2 8.60 92.8 29 2.8 85.47 98.28 30 4.99 90.09 05.08 3 7.07 96.4 3.48 32 9.27 03.42 22.69 33 20.96 0.6 3.2 34 2.33 6.8 38.4 35 2.0 23.57 44.66 36 20.94 30.33 5.27 37 20.65 37.0 57.66 38 20.35 43.52 63.87 39 20.2 49.78 69.90 40 5.35 56.4 7.49 4.4.6. Perbandingan Hasil Perhitungan Daya Dukung Dengan membandingkan hasil perhitungan daya dukung yang dihasilkan dari dua metode berbeda, yaitu Meyerhoff dan Luciano DeCourt, maka dapat diketahui secara umum pembagian lapisan tanah, yang dapat dilihat dari gambar dibawah ini : Gambar 4. Grafik Perbandingan Metode Meyerhoff Dan Metode Luciano Keterangan : Dari grafik di atas terlihat perbedaan hasil perhitungan antara metode Meyerhoff dengan Luciano. Untuk kedalaman :. -20m ini disebabkan pada rumus Luciano DeCourt ada koreksi harga N yaitu 3 N 50 sehingga menyebabkan besar gaya tahan selimut untuk metode Luciano lebih besar dibandingkan cara Meyerhoff 2. 23-28m ini disebabkan akibat dari rumus untuk tahanan ujung yang dipakai dalam metode Meyerhoff untuk harga K=40 t/m 2 adalah harga koefisien untuk jenis tanah Pasir, sedangkan untuk Luciano DeCourt sendiri dipakai K=2 t/m 2 untuk jenis tanah lempung. 3. 36-40m ini disebabkan akibat dari rumus untuk tahanan ujung yang dipakai dalam metode Meyerhoff untuk harga K=40 t/m 2 adalah harga koefisien untuk jenis tanah Pasir, sedangkan untuk Luciano DeCourt sendiri dipakai K=2 t/m 2 untuk jenis tanah lempung. 4.4.7. Perhitungan Daya Dukung Kelompok Dengan memakai rumus efisiensi conversi-labarre besarnya efisiensi tiang pancang kelompok didapat sebagai berikut : 6

Tabel 4.6 Efisiensi Tiang Pancang Kelompok Sumbu X Tipe Pondasi d S m n θ 90 Efisiensi 2 Tiang 2 D 45 90 2 26.56 0.295 0.852 sb x 3 D 45 35 2 8.43 0.205 0.898 4 D 45 80 2 4.03 0.56 0.922 3 Tiang 2 D 45 90 3 26.56 0.295 0.803 sb x 3 D 45 35 3 8.43 0.205 0.863 4 D 45 80 3 4.03 0.56 0.896 4 Tiang 2 D 45 90 2 2 26.56 0.295 0.705 sb x 3 D 45 35 2 2 8.43 0.205 0.795 4 D 45 80 2 2 4.03 0.56 0.844 6 Tiang 2 D 45 90 2 3 26.56 0.295 0.656 sb x 3 D 45 35 2 3 8.43 0.205 0.76 4 D 45 80 2 3 4.03 0.56 0.88 8 Tiang 2 D 45 90 2 4 26.56 0.295 0.63 sb x 3 D 45 35 2 4 8.43 0.205 0.744 4 D 45 80 2 4 4.03 0.56 0.805 Tabel 4.7 Efisiensi Tiang Pancang Kelompok Sumbu Y Tipe Pondasi d S m n θ 90 Efisiensi 2 Tiang 2 D 45 90 2 26.56 0.295 0.852 sb y 3 D 45 35 2 8.43 0.205 0.898 4 D 45 80 2 4.03 0.56 0.922 3 Tiang 2 D 45 90 3 26.56 0.295 0.803 sb y 3 D 45 35 3 8.43 0.205 0.863 4 D 45 80 3 4.03 0.56 0.896 4 Tiang 2 D 45 90 2 2 26.56 0.295 0.705 sb y 3 D 45 35 2 2 8.43 0.205 0.795 4 D 45 80 2 2 4.03 0.56 0.844 6 Tiang 2 D 45 90 3 2 26.56 0.295 0.656 sb y 3 D 45 35 3 2 8.43 0.205 0.76 4 D 45 80 3 2 4.03 0.56 0.88 8 Tiang 2 D 45 90 4 2 26.56 0.295 0.63 sb y 3 D 45 35 4 2 8.43 0.205 0.744 4 D 45 80 4 2 4.03 0.56 0.805 Besarnya gaya tiang pancang kelompok setelah pengurangan akibat adanya efisiensi adalah Tabel 4.8 Daya Dukung Aksial Tiang Pancang Kelompok Sb X Tipe P T iang Tiang Daya Dukung Efisiensi n Ton Ton Ton 2 Tiang 2D 0.852 22.05 8.792 2 37.585 sb x 3D 0.898 22.05 9.788 2 39.576 4D 0.922 22.05 20.327 2 40.654 3 Tiang 2D 0.803 22.05 7.708 3 53.24 sb x 3D 0.863 22.05 9.036 3 57.07 4D 0.896 22.05 9.754 3 59.263 4 Tiang 2D 0.705 22.05 5.540 4 62.58 sb x 3D 0.795 22.05 7.53 4 70.24 4D 0.844 22.05 8.609 4 74.435 6 Tiang 2D 0.656 22.05 4.455 6 86.73 sb x 3D 0.76 22.05 6.779 6 00.67 4D 0.88 22.05 8.036 6 08.26 8 Tiang 2D 0.63 22.05 3.93 8.304 sb x 3D 0.744 22.05 6.402 8 3.29 4D 0.805 22.05 7.750 8 4.997 Tabel 4.9 Daya Dukung Aksial Tiang Pancang Kelompok Sb Y Tipe P T iang Tiang Daya Dukung Efisiensi n Ton Ton Ton 2 Tiang 2D 0.852 22.05 8.792 2 37.585 sb y 3D 0.898 22.05 9.788 2 39.576 4D 0.922 22.05 20.327 2 40.654 3 Tiang 2D 0.803 22.05 7.708 3 53.24 sb y 3D 0.863 22.05 9.036 3 57.07 4D 0.896 22.05 9.754 3 59.263 4 Tiang 2D 0.705 22.05 5.540 4 62.58 sb y 3D 0.795 22.05 7.53 4 70.24 4D 0.844 22.05 8.609 4 74.435 6 Tiang 2D 0.656 22.05 4.455 6 86.73 sb y 3D 0.76 22.05 6.779 6 00.67 4D 0.88 22.05 8.036 6 08.26 8 Tiang 2D 0.63 22.05 3.93 8.304 sb y 3D 0.744 22.05 6.402 8 3.29 4D 0.805 22.05 7.750 8 4.997 4.5. PEMBAGIAN LAPISAN TANAH Setelah dilakukan pengelompokan nilai N, maka dilakukan pembagian lapisan tanah dasar berdasarkan nilai N asli. Hal ini dilakukan untuk mempermudah perhitungan menggunakan program, dalam hal ini Plaxis 2D. Tabel 4.4 : Pengelompokan Klasifikasi Tanah 6 36.5-40.5 Lempung 5 7.94 2.567 7.94 5.94.5 2,000 0.2 00 66.67 20 2.7 0.20 0.02 5 34.5-36.5 Lempung Kepasiran 5 7.94 2.567 7.94 5.94.5 2,000 0.2 00 66.67 30 2.7 0.20 0.02 4 28.5-34.5 Lempung Kelanauan 3 7.33.64 7.33 5.33.33 0,000 0.2 86.9 57.94 0 2.7 0.22 0.02 3 8.5-28.5 8 6.8 9.800 6.8 4.8.76 7,500 0.2 50 33.33 5 2.7 0.29 0.03 Lempung (clay) 2 8.5-8.5 5.50 8.74 5.50 3.50 2. 3,500 0.2 6.25 4.7 2.7 0.35 0.03.5-8.5 Lempung Kelanauan dan Kepasiran 5.50 8.74 5.50 3.50 2. 3,500 0.2 6.25 4.7 2.7 0.35 0.03 m kn/m 3 kn/m 3 kn/m 3 kn/m 3 kn/m 2 kn/m 2 kn/m 2 No Kedalaman Deskripsi N rata - rata γ sat γ d γ' γunsat e E υ Cu C' Ø Gs C c C s 7

4.6. PERHITUNGAN MANUAL DEFLEKSI TIANG PANCANG DAN BEBAN LATERAL ULTIMIT (Hu) TIANG PANCANG KELOMPOK 4.6. Perhitungan Daya Dukung Lateral Sebelum menghitung besarnya Hu, terlebih dahulu harus diketahui letak titik jepit dari tiang pancang tersebut. Pada perhitungan manual ini, kedalaman pemancangan dirancang sampai pada kedalaman 5m. untuk menghitung letak / kedalaman titik jepit (Zf) digunakan rumus dibawah ini. T 5 E p nh I p Zf = T.,8 Untuk tanah lempung (kohesif), nilai nh yang digunakan adalah 400kN/m 3. Untuk nilai nh lengkap dapat dilihat dari tabel berikut. T =,834 m Zf Mcr = 3,3 m = 25 knm (tabel WIKA Bwton) Sehingga besarnya gaya lateral untuk satu tiang pancang adalah H 2M Z f H = 75,73 kn Akibat kelipatan lengkung konsentrasi tegangan didepan suatu tiang yang dibebani lateral, rencana kapasitas lateral ultimate tiang direduksi bila jarak antara tiang adalah dekat. Setelah melihat tabel 2. didapat besarnya efisiensi lateral akibat model dari tiang pancang, sehingga besarnya gaya lateral pada tiang pancang kelompok didapat sebagai berikut : Tabel 4.6 Daya Dukung Lateral Tiang Pancang Kelompok Sb X P Tiang n P Tipe Efisiensi Ton Ton 2 Tiang 2D 0.20 7.573 2 3.03 sb x 3D 0.25 7.573 2 3.79 4D 0.40 7.573 2 6.06 3 Tiang 2D 0.20 7.573 3 4.54 sb x 3D 0.25 7.573 3 5.68 4D 0.40 7.573 3 9.09 4 Tiang 2D 0.20 7.573 4 6.06 sb x 3D 0.25 7.573 4 7.57 4D 0.40 7.573 4 2.2 6 Tiang 2D 0.20 7.573 6 9.09 sb x 3D 0.25 7.573 6.36 4D 0.40 7.573 6 8.8 8 Tiang 2D 0.20 7.573 8 2.2 sb x 3D 0.25 7.573 8 5.5 4D 0.40 7.573 8 24.23 Tabel 4.7 Daya Dukung Lateral Tiang Pancang Kelompok Sb Y P Tiang n P Tipe Efisiensi Ton Ton 2 Tiang 2D 0.25 7.573 2 3.79 sb x 3D 0.50 7.573 2 7.57 4D.00 7.573 2 5.5 3 Tiang 2D 0.25 7.573 3 5.68 sb x 3D 0.50 7.573 3.36 4D.00 7.573 3 22.72 4 Tiang 2D 0.25 7.573 4 7.57 sb x 3D 0.50 7.573 4 5.5 4D.00 7.573 4 30.29 6 Tiang 2D 0.25 7.573 6.36 sb x 3D 0.50 7.573 6 22.72 4D.00 7.573 6 45.44 8 Tiang 2D 0.25 7.573 8 5.5 sb x 3D 0.50 7.573 8 30.29 4D.00 7.573 8 60.58 4.6.2 Menentukan Defleksi Lateral Untuk kasus tugas akhir ini, perhitungan tiang defleksi tiang pancang sesuai kondisi 2 yaitu tiang tiang dengan kondisi Rigid cap pada permukaan tanah.. Mencari besarnya f ( didapat dari grafik 2. ) Sehingga di dapat nilai f = 600 kn/m3 2. Mencari besarnya nilai T dengan rumus E I T 5 f sehinnga didapat nilai T =.353 m 3. Z didapat dari perhitungan sebelumnya sebesar 3.3 m 4. Panjang tiang pancang L = 5 m 5. L/T =.08 6. Besarnya nilai : F = 0.2 F 2 = 0.02 F = 0.04 F 2 = 0.0 Nilai tersebut di atas di dapat dari grafik 2.2, 2.3 dan 2.4 8

Berikut besarnya defleksi akibat adanya gaya lateral adalah sebagai berikut : Tabel 4.7 Defleksi Akibat Gaya Lateral Tiang Pancang Kelompok Sb X Tipe H Tiang Defleksi m Total m ton 2 3 2 Tiang 2D 3.03 0.00633 0.0030 0.005002 0.0443 sb x 3D 3.79 0.00633 0.00308 0.006253 0.0569 4D 6.06 0.00635 0.00326 0.00005 0.0948 3 Tiang 2D 4.54 0.00634 0.0034 0.007504 0.0695 sb x 3D 5.68 0.00634 0.00323 0.009379 0.0885 4D 9.09 0.00637 0.00352 0.05007 0.02453 4 Tiang 2D 6.06 0.00635 0.00326 0.00005 0.0948 sb x 3D 7.57 0.00636 0.00339 0.02506 0.02200 4D 2.2 0.00639 0.00377 0.020009 0.02957 6 Tiang 2D 9.09 0.00637 0.00352 0.05007 0.02453 sb x 3D.36 0.00638 0.0037 0.08759 0.0283 4D 8.8 0.00643 0.003227 0.03004 0.03967 8 Tiang 2D 2.2 0.00639 0.00377 0.020009 0.02957 sb x 3D 5.5 0.0064 0.003202 0.02502 0.03462 4D 24.23 0.00647 0.003278 0.04009 0.04977 Tabel 4.8 Defleksi Akibat Gaya Lateral Tiang Pancang Kelompok Sb Y Tipe H Tiang Defleksi m Total m ton 2 3 2 Tiang 2D 3.79 0.00633 0.00308 0.006253 0.0569 sb x 3D 7.57 0.00636 0.00339 0.02506 0.02200 4D 5.5 0.0064 0.003202 0.02502 0.03462 3 Tiang 2D 5.68 0.00634 0.00323 0.009379 0.0885 sb x 3D.36 0.00638 0.0037 0.08759 0.0283 4D 22.72 0.00646 0.003265 0.03758 0.04724 4 Tiang 2D 7.57 0.00636 0.00339 0.02506 0.02200 sb x 3D 5.5 0.0064 0.003202 0.02502 0.03462 4D 30.29 0.0065 0.003328 0.050024 0.05986 6 Tiang 2D.36 0.00638 0.0037 0.08759 0.0283 sb x 3D 22.72 0.00646 0.003265 0.03758 0.04724 4D 45.44 0.0066 0.003454 0.075036 0.0850 8 Tiang 2D 5.5 0.0064 0.003202 0.02502 0.03462 sb x 3D 30.29 0.0065 0.003328 0.050024 0.05986 4D 60.58 0.00672 0.003580 0.00047 0.035 BAB 5 PERHITUNGAN MENGGUNAKAN PROGRAM BANTU PLAXIS 2D 5. PERMODELAN PLAXIS 2D 5.5. Pengaturan Material (Materials Setting) Sebelum merencanakan geometri tiang pancang terlebih dahulu merencanakan lapisan tanah. Didalam kasus ini, terdapat 6 jenis material tanah. Setelah itu merencanakan geometri tiang pancang dan plat sekaligus memasukkan data data yang dibutuhkan dalam program Plaxis 2D. Gambar 5.3 Pengaturan Material (Material Settings) 5.5.2 Geometrimodel Konfigurasi Tiang Pancang Kelompok Gambar 5.4 Geometri Model 2 Tiang Sumbu X Data tanah yang diinputkan ke dalam perhitungan dengan menggunakan program bantu PLAXIS 2D adalah sebagai berikut: Tabel 5. Input Data Untuk Lapisan Tanah Lapisan Tanah Parameter Nama Satuan Material Model Model Mohr Columb Hardenning Soft Soil - Material Behaviour Type Undrained Undrained Undrained - Berat jenis tanah γ sat 5.50 - - kn/m 3 γ unsat 3.50 - - kn/m 3 Modulus Young E tanah 3500 - - kn/m 2 Poison Ratio υ 0.2 - - - Kohesi c 4.7 4.7 4.7 kn/m 2 Angka Pori e 2. 2. 2. - Sudut Geser φ - Compression Index C c - 0.35 0.35 - Swelling Index C s - 0.03 0.03-9

Tabel 5.2 Input Data Untuk Lapisan Tanah 2 Lapisan Tanah 2 Parameter Material Model Material Behaviour Berat jenis tanah Modulus Young Poison Ratio Kohesi Nama Satuan Model Mohr Columb Hardenning Soft Soil - Type Undrained Undrained Undrained - γ sat 5.50 - - kn/m 3 γ unsat 3.50 - - kn/m 3 E tanah 3500 - - kn/m 2 υ 0.2 - - - c 4.7 4.7 4.7 kn/m 2 Angka Pori e 2. 2. 2. - Sudut Geser φ - Compression Index C c - 0.35 0.35 - Swelling Index C s - 0.03 0.03 - Tabel 5.3 Input Data Untuk Lapisan Tanah 3 Lapisan Tanah 3 Parameter Material Model Material Behaviour Berat jenis tanah Modulus Young Poison Ratio Kohesi Nama Satuan Model Mohr Columb Hardenning Soft Soil - Type Undrained Undrained Undrained - γ sat 6.8 - - kn/m 3 γ unsat 4.8 - - kn/m 3 E tanah 7500 - - kn/m 2 υ 0.2 - - - c 33.33 33.33 33.33 kn/m 2 Angka Pori e.76.76.76 - Sudut Geser φ 5 5 5 - Compression Index C c - 0.29 0.29 - Swelling Index C s - 0.03 0.03 - Tabel 5.4 Input Data Untuk Lapisan Tanah 4 Lapisan Tanah 4 Parameter Material Model Material Behaviour Berat jenis tanah Modulus Young Poison Ratio Kohesi Nama Satuan Model Mohr Columb Hardenning Soft Soil - Type Undrained Undrained Undrained - γ sat 7.33 - - kn/m 3 γ unsat 5.33 - - kn/m 3 E tanah 0000 - - kn/m 2 υ 0.2 - - - c 57.94 57.94 57.94 kn/m 2 Angka Pori e.33.33.33 - Sudut Geser φ 0 0 0 - Compression Index C c - 0.22 0.22 - Swelling Index C s - 0.02 0.02 - Tabel 5.5 Input Data Untuk Lapisan Tanah 5 Lapisan Tanah 5 Parameter Material Model Material Behaviour Berat jenis tanah Modulus Young Poison Ratio Kohesi Nama Satuan Model Mohr Columb Hardenning Soft Soil - Type Undrained Undrained Undrained - γ sat 7.94 - - kn/m 3 γ unsat 5.94 - - kn/m 3 E tanah 2000 - - kn/m 2 υ 0.2 - - - c 66.67 66.67 66.67 kn/m 2 Angka Pori e.5.5.5 - Sudut Geser φ 30 30 30 - Compression Index C c - 0.20 0.20 - Swelling Index C s - 0.02 0.02 - Tabel 5.6 Input Data Untuk Lapisan Tanah 6 Lapisan Tanah 6 Parameter Material Model Material Behaviour Berat jenis tanah Modulus Young Poison Ratio Kohesi Nama Satuan Model Mohr Columb Hardenning Soft Soil - Type Undrained Undrained Undrained - γ sat 7.94 - - kn/m 3 γ unsat 5.94 - - kn/m 3 E tanah 2000 - - kn/m 2 υ 0.2 - - - c 66.67 66.67 66.67 kn/m 2 Angka Pori e.5.5.5 - Sudut Geser φ 20 20 20 - Compression Index C c - 0.20 0.20 - Swelling Index C s - 0.02 0.02-5.2 PERHITUNGAN PROGRAM PLAXIS 2D Sebelum melakukan perhitungan terlebih dahulu dibuat fase perhitungan (calculation stage) dengan menggunakan fitur Phases. Fase perhitungan yang dipakai adalah Fase Awal (Initial Phase/Phase0), Fase Pembebanan (Phase). Gambar 5.3 Fase Perhitungan (phase) Parameter fase perhitungan yang dipakai adalah default dari program PLAXIS 2D itu sendiri untuk Fase Awal (Initial Phase/Phase0). Sedangkan untuk fase lainnya dilakukan custom setting untuk fitur delete intermediate steps. Jumlah langkah atau iterasi yang dipakai adalah 250 langkah untuk setiap fase dan konfigurasi dengan maximum iteration 00. 5.3 REKAPITULASI HASIL PERHITUNGAN 5.3.. Beban Aksial Dibawah ini akan ditampilkan tabel dan grafik hubunganan antara jarak tiang pancang, besarnya penurunan, variasi beban aksial dengan Perbandingan antara model material Mohr Coulumb, Hardening, dan Soft Soil. 0

Tabel 5.8 Penurunan Tiang Pancang Kelompok Dengan Model Perhitungan Mohr Coulumb, Hardening, Soft Soil Untuk Sumbu X Beban Penurunan (m) 2 Tiang 2D 376 0.06057 0.05988 0.05983 sumbu X 3D 396 0.05924 0.05907 0.05837 4D 406 0.05693 0.05733 0.05603 3 Tiang 2D 53 0.07483 0.07466 0.07368 sumbu X 3D 57 0.06887 0.06992 0.06725 4D 593 0.06486 0.06699 0.06379 4 Tiang 2D 622 0.09378 0.0965 0.08984 sumbu X 3D 70 0.09787 0.09728 0.09347 4D 744 0.09845 0.09808 0.0946 6 Tiang 2D 867 0.2544 0.2278 0.2025 sumbu X 3D 006 0.2538 0.2486 0.976 4D 082 0.2366 0.2432 0.938 8 Tiang 2D 3 0.5322 0.495 0.475 sumbu X 3D 32 0.4997 0.499 0.4404 4D 420 0.473 0.4629 0.4222 akibat bertambahnya jarak antar tiang pancang, bertambah pula kemampuan tiang pancang dalam menahan gaya aksial. Tabel 5.9 Penurunan Tiang pancang kelompok dengan model perhitungan Mohr Coulumb, Hardening, Soft Soil untuk sumbu Y Beban Penurunan (m) 2 Tiang 2D 376 0.06062 0.06079 0.06066 sumbu Y 3D 396 0.0609 0.05965 0.05922 4D 400 0.0602 0.05869 0.05726 3 Tiang 2D 53 0.09056 0.08956 0.08253 sumbu Y 3D 57 0.09896 0.09235 0.09038 4D 593 0.0529 0.09866 0.09665 4 Tiang 2D 622 0.09378 0.0965 0.08984 sumbu Y 3D 70 0.09787 0.09728 0.09347 4D 744 0.09845 0.09808 0.0946 6 Tiang 2D 867 0.5288 0.3938 0.342 sumbu Y 3D 003 0.658 0.4903 0.409 4D 082 0.6505 0.5349 0.4383 8 Tiang 2D 3 0.234 0.9039 0.8544 sumbu Y 3D 32 0.2298 0.20524 0.9699 4D 420 0.2346 0.2268 0.20206 Gambar 5.4 Penurunan Mohr Coulumb Vs Hardening Vs Soft Soil untuk 2 Tiang sumbu X Dari gambar diatas dapat dilihat bahwa hasil dari ketiga model material diatas besarnya hasil penurunan akibat beban aksial memiliki hasil yang sama. Besarnya penurunan untuk model material Hardening lebih besar dari model material Mohr Coulumb, dan besarnya penurunan untuk model material lebih besar Soft Soil dari model material Hardening. 5.3.2. Beban Lateral Dibawah ini akan ditampilkan tabel dan grafik hubunganan antara jarak tiang pancang, besarnya defleksi, variasi beban lateral dengan Perbandingan antara model material Mohr Coulumb, Hardening, dan Soft Soil akibat bertambahnya jarak antar tiang pancang, bertambah pula kemampuan tiang pancang dalam menahan gaya aksial.

Tabel 5.0 Defleksi Tiang Pancang Kelompok Dengan Model Perhitungan Mohr Coulumb, Hardening, Soft Soil Untuk Sumbu X Beban Defleksi (m) 2 Tiang 2D 3 0.0929 0.0899 0.02272 sumbu X 3D 39 0.02083 0.096 0.02458 4D 62 0.02947 0.02607 0.03575 Beban Defleksi (m) Defleksi (m) Defleksi (m) 3 Tiang 2D 47 0.02324 0.02365 0.02934 sumbu X 3D 58 0.02437 0.02389 0.035 4D 93 0.03553 0.03287 0.04698 Beban Defleksi (m) Defleksi (m) Defleksi (m) 4 Tiang 2D 78 0.03467 0.03766 0.0403 sumbu X 3D 56 0.0609 0.0574 0.0737 4D 3 0.2663 0.0503 0.463 Beban Defleksi (m) Defleksi (m) Defleksi (m) 6 Tiang 2D 93 0.0458 0.04499 0.047 sumbu X 3D 7 0.04428 0.04408 0.04856 4D 87 0.0632 0.05498 0.0702 Beban Defleksi (m) Defleksi (m) Defleksi (m) 8 Tiang 2D 24 0.05484 0.05436 0.05753 sumbu X 3D 56 0.0547 0.0586 0.05873 4D 249 0.07607 0.0629 0.08629 akibat bertambahnya jarak antar tiang pancang, bertambah pula kemampuan tiang pancang dalam menahan gaya lateral. Tabel 5. Defleksi Tiang Pancang Kelompok Dengan Model Perhitungan Mohr Coulumb, Hardening, Soft Soil Untuk Sumbu Y Beban Defleksi (m) 2 Tiang 2D 39 0.02862 0.02975 0.0352 sumbu Y 3D 50 0.03472 0.034 0.0377 4D 00 0.0788 0.06078 0.0783 Beban Defleksi (m) Defleksi (m) Defleksi (m) 3 Tiang 2D 50 0.0278 0.032 0.03064 sumbu Y 3D 80 0.04754 0.04438 0.0586 4D 30 0.09002 0.07525 0.09578 Beban Defleksi (m) Defleksi (m) Penurunan (m) 4 Tiang 2D 78 0.03467 0.03766 0.0403 sumbu Y 3D 56 0.0609 0.0574 0.0737 4D 3 0.2663 0.0503 0.463 Beban Defleksi (m) Defleksi (m) Defleksi (m) 6 Tiang 2D 7 0.06202 0.05934 0.06633 sumbu Y 3D 30 0.06249 0.059 0.06722 4D 200 0.08439 0.07332 0.09306 Beban Defleksi (m) Defleksi (m) Defleksi (m) 8 Tiang 2D 57 0.08838 0.085 0.0924 sumbu Y 3D 200 0.0006 0.08896 0.0523 4D 300 0.3497 0.024 0.4488 Gambar 5.23 Defleksi Mohr Coulumb Vs Hardening Vs Soft Soil untuk 2 Tiang sumbu X Dari gambar diatas dapat dilihat bahwa hasil dari ketiga model material diatas besarnya hasil penurunan akibat beban aksial memiliki hasil yang sama. Besarnya defleksi untuk model material Mohr Coulumb lebih besar dari model material Soft Soil, dan besarnya defleksi untuk model material Hardening lebih besar dari model material Mohr Coulumb. akibat bertambahnya jarak antar tiang pancang, bertambah pula kemampuan tiang pancang dalam menahan gaya lateral. Namun besar gaya lateral untuk sumbu Y lebih besar dibanding dengan sumbu X, hal ini diakibatkan oleh bedanya harga efisiensi. 2

5.4 INTERPRETASI HASIL PERHITUNGAN Tabel 5.2 Perbandingan Penurunan Antara Analisa Manual Dengan Model Material Mohr Coulumb pada Sumbu X Tabel 5.4 Perbandingan Defleksi Antara Analisa Manual Dengan Model Material Mohr Coulumb pada Sumbu X besarnya penurunan untuk 2 Tiang dan 3 Tiang memiliki hasil yang sama untuk model material Mohr Coulum dengan analisa manual, tetapi untuk 4 Tiang, 6 Tiang, dan 8 Tiang terjadi perbedaan besarnya penurunan yaitu sekitar -5%. Tabel 5.3 Pengaruh Perubahan Jarak Antar Tiang Pancang Terhadap Penurunan Untuk Beban Yang Sama pada Perhitungan Mohr Coulumb Beban Penurunan (m) Perbedaan kn Mohr Coulumb Angka Persen 2 Tiang 2D 376 0.06057 0.00435 0.44% sumbu X 3D 376 0.05622-0.00355-0.36% 4D 376 0.05267 3 Tiang 2D 53 0.07483 0.0055.06% sumbu X 3D 53 0.06428 0.00579 0.58% 4D 53 0.05849 4 Tiang 2D 622 0.09378 0.00589 0.59% sumbu X 3D 622 0.08789 0.0047 0.42% 4D 622 0.08372 6 Tiang 2D 867 0.2544 0.0557.56% sumbu X 3D 867 0.0987 0.0085 0.85% 4D 867 0.037 8 Tiang 2D 3 0.5322 0.02389 2.39% sumbu X 3D 3 0.2933 0.067.7% 4D 3 0.766 dengan penambahan jarak dari 2Ø, 3Ø, 4Ø membuat penurunan tiang pancang berkurang untuk pemberian beban yang sama pada tiang pancang kelompok dengan selisih kurang dari 2%. besarnya defleksi untuk 2 Tiang dan 3 Tiang memiliki hasil yang sama untuk model material Mohr Coulum dengan analisa manual, tetapi untuk 4 Tiang, 6 Tiang, dan 8 Tiang terjadi perbedaan besarnya defleksi yaitu sekitar -6%. Tabel 5.5 Pengaruh Perubahan Jarak Antar Tiang Pancang Terhadap Defleksi Untuk Beban Yang Sama pada Perhitungan Mohr Coulumb Beban Defleksi (m) Perbedaan kn Mohr Coulumb Angka Persen 2 Tiang 2D 3 0.0929 0.0087 0.9% sumbu X 3D 3 0.0742 0.0024 0.2% 4D 3 0.0866 3 Tiang 2D 47 0.02324 0.00257 0.26% sumbu X 3D 47 0.02067 0.0065 0.7% 4D 47 0.0902 4 Tiang 2D 78 0.03467 0.00294 0.29% sumbu X 3D 78 0.0373 0.00203 0.20% 4D 78 0.02970 6 Tiang 2D 93 0.0458 0.00769 0.77% sumbu X 3D 93 0.0382 0.0035 0.35% 4D 93 0.03462 8 Tiang 2D 24 0.05484 0.00788 0.79% sumbu X 3D 24 0.04696 0.0053 0.5% 4D 24 0.0483 dengan penambahan jarak dari 2Ø, 3Ø, 4Ø membuat penurunan tiang pancang berkurang untuk pemberian beban yang sama pada tiang pancang kelompok dengan selisih kurang dari 3

BAB 6 KESIMPULAN 6. KESIMPULAN Berdasarkan analisa hasil perhitungan Plaxis 2D, dapat diambil suatu kesimpulan tentang perilaku tiang pancang kelompok dalam hal pengaruh penambahan jarak antar tiang pancang sebesar Ø (0,45m) terhadap penurunan tiang pancang, yaitu :. Terjadi penambahan kemampuan tiang pancang dalam menahan beban aksial dan lateral. 2. Untuk beban yang sama, perubahan jarak antar tiang dapat mengurangi penurunan dan defleksi tiang pancang. 3. Dari ketiga cara diatas yaitu Mohr Coulumb. Hardening, Soft Soil memiliki hasil analisa dengan perbedaan berkisar 0-%. yang terjadi hanya berdasarkan beban tertentu (aksial atau lateral saja), oleh karena itu sangat disarankan untuk melanjutkan studi ini dengan menggunakan beban kombinasi (aksial dan lateral bekerja bersamaan). Kami menyadari bahwa studi ini masih jauh dari sempurna, namun setidaknya akan dapat dijadikan sebagai bahan wacana dan acuan untuk kajian lebih lanjut dan mendalam mengenai perilaku ting pancang kelompok. Terlepas dari program Plaxis 2D yang digunakan, prinsipnya adalah sebuah tool memerlukan "skilled operator". Tanpa "skilled operator" hasil Plaxis 2D bisa sangat menyesatkan jika dibandingkan dengan hitungan manual. Perbedaan hasil perhitungan antara ketiga model tersebut terjadi karena dasar lahirnya masing masing teori didsarkan pada perbedaan asumsi dan pendekatan, analitik dan numerical pendekatannya berbeda. Kesimpulannya semua parameter serta prosedur analisa perhitungan jika sudah benar dan sesuai maka tidak harus sama hasilnya antara ketiga metode tersebut yaitu Mohr Coulumb, Hardening, Soft Soil. Model Soft Soil ini umumnya dipakai untuk analisa penurunan dan konsolidasi, misalnya reklamasi. Untuk analisa pondasi tiang, model yang sering dipakai adalah Mohr-Coulomb dan Hardening soil. Problemnya ahli di Indonesia selalu berpikir bahwa setiap rumus dan teori Menghitung Tiang Pancang harus sama karena sedikit yg berlatar belakang ahli tiang pancang dari laboratorium, umumnya belajar dari buku dan pengalaman dilapangan. (Fabian J.Meloppo, 20). 6.2 SARAN Untuk mencapai suatu hasil yang lebih baik dan ideal dalam Studi Perilaku Tiang Pancang Kelompok Menggunakan Program Bantu Plaxis 2D, perlu dipertimbangkan saran-saran sebagai berikut:. Perlunya adanya bimbingan khusus dalam menggunakan Plaxis 2D untuk mendapatkan nilai yang realistis. 2. Karena pada studi ini tidak menggunakan beban kombinasi (aksial dan lateral bekerja bersamaan), maka penurunan dan defleksi 4

DAFTAR PUSTAKA Bowles, J.E. Analisa dan Desain Pondasi Jilid Edisi Ke-4. Peoria, Illionis. 997 Das, Braja M. Mekanika Tanah Jilid. 985 Plaxis 2D Foundation versi 8. Plaxis.bv. 2007 Wahyudi, Herman. Daya Dukung Pondasi Dangkal. 999 Wahyudi, Herman. Daya Dukung Pondasi Dalam. 999 M. Wehnert, dkk. Numerical Analyses of Load Tests on Bored Piles. Jerman RIWAYAT HIDUP Wildan Firdaus lahir di Sumenep pada tanggal 5 Oktober 987, merupakan anak keempat dari lima bersaudara. Penulis telah menempuh pendidikan formal yaitu TK ISLAM Karangduak, SDN Karngduak Sumenep. SMPN Sumenep, SMAN Sumenep, setelah lulus SMAN pada tahun 2006, penulis sempat mencoba pengalaman dengan mengikuti STPDN, namun gagal pada tes akademik. Pada tahun 2007, penulis mengikuti SMPTN dan Alhamdulillah diterima di Jurusan Teknik Sipil FTSP-ITS dan terdaftar dengan NRP 3070007. Di Jurusan Teknik Sipil ini, penulis mengambil Bidang Studi Geoteknik dan Mengerjakan tugas akhir dengan judul Studi Perilaku Tiang Pancang Kelompok Menggunakan Plaxis 2d Pada Tanah Lunak (Very Soft Soil Soft Soil). Penulis dapat dihubungi melalui email : wildanker07@yahoo.com. 5