2. TINJAUAN PUSTAKA 2.1 Musim Hujan dan Monsun

dokumen-dokumen yang mirip
EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA

Prakiraan Musim Kemarau 2018 Zona Musim di NTT KATA PENGANTAR

KATA PENGANTAR KUPANG, MARET 2016 PH. KEPALA STASIUN KLIMATOLOGI LASIANA KUPANG CAROLINA D. ROMMER, S.IP NIP

MODEL PREDIKSI AWAL MUSIM HUJAN DI PULAU JAWA DENGAN MENGGUNAKAN INFORMASI SUHU MUKA LAUT DI KAWASAN PASIFIK DAN INDIA M A R J U K I

KATA PENGANTAR TANGERANG SELATAN, MARET 2016 KEPALA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG. Ir. BUDI ROESPANDI NIP

KATA PENGANTAR. merupakan hasil pemutakhiran rata-rata sebelumnya (periode ).

KATA PENGANTAR. Negara, September 2015 KEPALA STASIUN KLIMATOLOGI NEGARA BALI. NUGA PUTRANTIJO, SP, M.Si. NIP

I. PENDAHULUAN TINJAUAN PUSTAKA

BAB I PENDAHULUAN. perencanaan dan pengelolaan sumber daya air (Haile et al., 2009).

Prakiraan Musim Hujan 2015/2016 Zona Musim di Nusa Tenggara Timur

KATA PENGANTAR. Banjarbaru, Oktober 2012 Kepala Stasiun Klimatologi Banjarbaru. Ir. PURWANTO NIP Buletin Edisi Oktober 2012

KATA PENGANTAR. Semarang, 22 maret 2018 KEPALA STASIUN. Ir. TUBAN WIYOSO, MSi NIP STASIUN KLIMATOLOGI SEMARANG

KATA PENGANTAR PANGKALPINANG, APRIL 2016 KEPALA STASIUN METEOROLOGI KLAS I PANGKALPINANG MOHAMMAD NURHUDA, S.T. NIP

BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG

Propinsi Banten dan DKI Jakarta

BAB I PENDAHULUAN 1.1. Latar Belakang

PRAKIRAAN MUSIM HUJAN 2011/2012 PADA ZONA MUSIM (ZOM) (DKI JAKARTA)

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG

I. INFORMASI METEOROLOGI

KATA PENGANTAR. Pontianak, 1 April 2016 KEPALA STASIUN KLIMATOLOGI SIANTAN PONTIANAK. WANDAYANTOLIS, S.Si, M.Si NIP

I. INFORMASI METEOROLOGI

ANALISIS MUSIM KEMARAU 2015 DAN PRAKIRAAN MUSIM HUJAN 2015/2016

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG ANALISIS MUSIM KEMARAU 2013 DAN PRAKIRAAN MUSIM HUJAN 2013/2014

I. INFORMASI METEOROLOGI

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG

KATA PENGANTAR REDAKSI. Pengarah : Wandayantolis, S. SI, M. Si. Penanggung Jawab : Subandriyo, SP. Pemimpin Redaksi : Ismaharto Adi, S.

Tinjauan Pustaka. II.1 Variabilitas ARLINDO di Selat Makassar

I. INFORMASI METEOROLOGI

KATA PENGANTAR. Prakiraan Musim Kemarau 2016

PRAKIRAAN MUSIM 2017/2018

ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA

Variasi Iklim Musiman dan Non Musiman di Indonesia *)

KATA PENGANTAR. Prakiraan Musim Kemarau 2018

BAB II TINJAUAN PUSTAKA

IV. HASIL DAN PEMBAHASAN

PRAKIRAAN MUSIM KEMARAU 2017 REDAKSI

PENGANTAR. Bogor, Maret 2016 KEPALA STASIUN KLIMATOLOGI DARMAGA BOGOR

I. PENDAHULUAN. interaksi proses-proses fisik dan kimia yang terjadi di udara (atmosfer) dengan permukaan

MEKANISME INTERAKSI MONSUN ASIA DAN ENSO

ANALISIS CUACA PADA SAAT PELAKSANAAN TMC PENANGGULANGAN BANJIR JAKARTA JANUARI FEBRUARI Abstract

Anomali Curah Hujan 2010 di Benua Maritim Indonesia Berdasarkan Satelit TRMM Terkait ITCZ

Musim Hujan. Musim Kemarau

ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA. Oleh Febryanto Simanjuntak S.Tr

PENGANTAR. Bogor, Maret 2017 KEPALA STASIUN KLIMATOLOGI BOGOR

ANALISIS HUJAN BULAN JANUARI 2011 DAN PRAKIRAAN HUJAN BULAN MARET, APRIL, DAN MEI 2011 PROVINSI DKI JAKARTA

PENGANTAR. Bogor, September 2016 KEPALA STASIUN KLIMATOLOGI DARMAGA BOGOR. DEDI SUCAHYONO S, S.Si, M.Si NIP

EKSPLANASI ILMIAH DAMPAK EL NINO LA. Rosmiati STKIP Bima

ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA

ANALISIS RAGAM OSILASI CURAH HUJAN DI PROBOLINGGO DAN MALANG

ANALISIS HUJAN BULAN PEBRUARI 2011 DAN PRAKIRAAN HUJAN BULAN APRIL, MEI DAN JUNI 2011 PROVINSI DKI JAKARTA

KARAKTER CURAH HUJAN DI INDONESIA. Tukidi Jurusan Geografi FIS UNNES. Abstrak PENDAHULUAN

Fase Panas El berlangsung antara bulan dengan periode antara 2-7 tahun yang diselingi fase dingin yang disebut dengan La Nina

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

Analisis Variasi Cuaca di Daerah Jawa Barat dan Banten

Oleh Tim Agroklimatologi PPKS

2. TINJAUAN PUSTAKA. Suhu menyatakan banyaknya bahang (heat) yang terkandung dalam suatu

EVALUASI MUSIM HUJAN 2007/2008 DAN PRAKIRAAN MUSIM KEMARAU 2008 PROVINSI BANTEN DAN DKI JAKARTA

persamaan regresi. Adapun rumus yang digunakan untuk menentukan curah hujan kritis adalah sebagai berikut: CH kritis = ( 0.

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Juni 2017

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

DAMPAK EL NINO DAN LA NINA TERHADAP PELAYARAN DI INDONESIA M. CHAERAN. Staf Pengajar Stimart AMNI Semarang. Abstrak

ANALISIS DINAMIKA ATMOSFER LAUT & PROSPEK CUACA WILAYAH NUSA TENGGARA TIMUR DESEMBER 2016 JANUARI 2017 FORECASTER BMKG EL TARI KUPANG

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017

BAB I PENDAHULUAN 1.1. Latar Belakang

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI

Fakultas Ilmu dan Teknologi Kebumian

IV. HASIL DAN PEMBAHASAN

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Januari 2017

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Juli 2017

ANALISIS UNSUR CUACA BULAN JANUARI 2018 DI STASIUN METEOROLOGI KLAS I SULTAN AJI MUHAMMAD SULAIMAN SEPINGGAN BALIKPAPAN

LAPORAN POTENSI HUJAN AKHIR JANUARI HINGGA AWAL FEBRUARI 2016 DI PROVINSI NUSA TENGGARA BARAT

IV. HASIL DAN PEMBAHASAN

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Desember 2016

Bagian II Dinamika Iklim di Indonesia Ringkasan

ANALISIS HUJAN BULAN OKTOBER 2011 DAN PRAKIRAAN HUJAN BULAN DESEMBER 2011, JANUARI DAN FEBRUARI 2012 PROVINSI DKI JAKARTA 1.

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Maret 2017

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Februari 2017

Fakultas Ilmu dan Teknologi Kebumian

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi April 2017

Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat

BIDANG ANALISIS VARIABILITAS IKLIM

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Agustus 2016

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Nopember 2016

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGARUH FENOMENA GLOBAL DIPOLE MODE POSITIF DAN EL NINO TERHADAP KEKERINGAN DI PROVINSI BALI

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

MONITORING DINAMIKA ATMOSFER DAN PRAKIRAAN CURAH HUJAN SEPTEMBER 2016 FEBRUARI 2017

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Mei 2017

ANALISIS PENGARUH MADDEN JULIAN OSCILLATION (MJO) TERHADAP CURAH HUJAN DI KOTA MAKASSAR

ANALISIS DINAMIKA ATMOSFER LAUT; ANALISIS & PREDIKSI CURAH HUJAN DASARIAN I FEBRUARI 2018

Buletin Informasi Cuaca Iklim dan Gempabumi Edisi Januari 2018

ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN II FEBRUARI 2017

BULETIN METEOROLOGI BMKG STASIUN METEOROLOGI SYAMSUDIN NOOR BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA. Agustus Volume V - No.

BIDANG ANALISIS VARIABILITAS IKLIM

Transkripsi:

5 2. TINJAUAN PUSTAKA 2.1 Musim Hujan dan Monsun Di tinjau dari aspek geografis, Indonesia diapit oleh dua benua dan dua samudera sehingga memungkinkan adanya tiga sirkulasi atmosfer yang aktif sepanjang tahun. Sirkulasi Hadley yang berubah menjadi monsun, sirkulasi Walker yang mengindikasikan fenomena ENSO (El Nino Southern Oscillation) serta sirkulasi laut-atmosfer menyebabkan konveksi kuat yang membentuk awan potensial hujan. Selain itu sebagai negara kepulauan yang terbesar di dunia dengan luas perairan sekitar 70% dan daratan 30% serta di lewati garis khatulistiwa menyebakan Indonesia menerima INSOLASI (Incoming Solar Radiation) dalam jumlah besar mengakibatkan potensi penguapan uap air cukup kuat terjadi. Wilayah lautan dengan temperatur 28 C merupakan lokasi potensial terjadi konveksi tropis (Vinaya et al. 2007). Monsun adalah angin yang arahnya berbalik secara musiman, pembalikan tersebut membutuhkan gaya gradien tekanan yang disebakan oleh beda tekanan atmosfer. Angin monsun disebabkan oleh perbedaan sifat fisis antara lautan (ocean) dan daratan (continen) karena kapasitas panas lautan lebih besar dari pada daratan. Permukaan lautan memantulkan radiasi matahari lebih banyak dari pada daratan dan radiasi matahari dapat memasuki kedalaman laut juga dengan bantuan arus laut, sedangkan didarat radiasi matahari hanya mencapai beberapa centimeter saja dari permukaan. Hasil dari beda sifat fisis ini adalah lautan lebih lambat panas bila ada radiasi matahari dan lebih lambat dingin bila tidak ada radiasi matahari dibandingkan daratan. Pergerakan semu matahari dapat membalikkan arah gaya gradient tekanan dari daratan ke lautan menghasilkan perubahan arah angin musiman atau monsun sehingga beda panas Utara-Selatan yang sangat penting diperkirakan antara benua Asia dan samudera Hindia. Jika angin berhembus dari arah Barat Laut (Northwest) atau menuju pantai (daratan) maka Indonesia terjadi periode musim hujan, sebaliknya jika angin berhembus dari arah Tenggara (Southeast) atau menuju lepas pantai

6 (lautan) maka Indonesia terjadi periode musim kemarau. (Gambar 1) menunjukkan daerah monsun yang dibatasi oleh garis bujur 30 Barat dan 170 Timur dan oleh garis lintang 35 Utara dan 25 Selatan (Ramage 1971). Namun, belum banyak metode yang digunakan untuk mengidentifikasi datangnya monsun, apalagi biasanya model yang ada tidak melibatkan variabilitas interannual (Falluso & Webster 2002). Gambar 1. Peta daerah monsoon muka bumi berdasarkan definisi dari Ramage 1971. 2.2 Pengaruh Sirkulasi Walker Sirkulasi Walker adalah sirkulasi zonal (Timur-Barat) sepanjang ekuator. Pada tahun normal, sirkulasi ini di tandai dengan kenaikan udara di sekitar pasifik bagian Barat dekat dengan benua maritime Indonesia dan penurunan udara di samudera pasifik bagian Timur lepas pantai Amerika Selatan. Intensitas sirkulasi Walker dikendalikan oleh variasi SML (Suhu Muka Laut) di samudera pasifik bagian Timur dan bagian Barat (Gambar 2).

7 DJF Normal Eq 30 o LS 90 o BB 0 o 90 o BT 180 o 90 o BB DJF El Nino Eq 30 o LS 90 o BB 0 o 90 o BT 180 o 90 o BB Gambar 2. Skematik dari sirkulasi Walker di bagian atas dan bawah atmosfer dalam keadaan normal dan ENSO (Nicholls 1987) Perubahan dalam kadar panas SML kemudian di alihkan kedalam atmosfer dalam bentuk perubahan tekanan atmosfer. Berdasarkan pengamatan diketahui bahwa ada kopel (perangkai) yang kuat antara lautan dan atmosfer, demikian disebut El Nino Southern Oscillation (ENSO). Dalam tahun-tahun ENSO terjadi penurunan (subsidensi) massa udara diatas benua maritim Indonesia dan awan konvektif bergerak ke pasifik bagian tengah, sehingga sebagian besar wilayah Indonesia mengalami kekeringan atau musim kemarau panjang. Model dasar interaksi lautan adalah kenaikan temperatur Samudera Pasifik Ekuatorial. Di atas pusat anomali temperatur ini akan terjadi penguapan dan konveksi kuat, akibatnya angin pasat di sebelah barat pusat anomali temperatur akan melemah dan angin pasat di sebelah timur pusat ini akan menguat. ENSO menyebabkan variasi iklim tahunan di Indonesia, keterlambatan musim tanam terjadi pada tahun-tahun ENSO dibandingkan kondisi normal. Tanpa memperhitungkan manajemen air yang baik maka produksi pangan akan turun sehingga mengganggu stabilitas pangan Indonesia. Dari data yang tercatat saat tahun-tahun ENSO mengakibatkan musim kemarau lebih panjang dan musim hujan lebih pendek. Dampak kekeringan Tahun

8 ENSO di Indonesia tercatat hampir dirasakan diseluruh wilayah Indonesia kecuali untuk beberapa tempat yang pengaruh ekuatorialnya lebih kuat Penjelasan diatas menunjukkan, bahwa keragaman hujan di Indonesia sangat dipengaruhi oleh fenomena ENSO. Pada saat fenomena ENSO berlangsung, hujan pada sebagian besar wilayah Indonesia umumnya di bawah normal (Gambar 3). Pengamatan terhadap tahun El-Nino yang terjadi dalam periode 1896 sampai 1987, diperoleh bahwa untuk setiap peningkatan anomali suhu muka laut di daerah Nino 3 rata-rata curah hujan wilayah di Indonesia pada musim kering turun sekitar 60 mm. Penurunan curah hujan wilayah dapat mencapai 80 mm dari normal apabila suhu muka laut di Nino-3 naik sampai 1.8 o C di atas normal (Boer 2003). Wilayah dengan Hujan Bawah Normal (%) 100 90 80 70 60 50 40 30 20 10 0 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 Tahun Gambar 3. Persen daerah yang curah hujan di bawah normal (panah hitam menunjukkan tahun bukan El-Nino) Fenomena ENSO tidak hanya mempengaruhi tinggi hujan tetapi juga mempengaruhi masuknya awal musim hujan atau akhir musim kemarau tergantung pada waktu pembentukan dan lama dan intensitasnya. Pada umumnya pada saat terjadi El-Nino awal musim hujan di wilayah yang bertipe iklim monsun mengalami

9 keterlambatan, sebaliknya pada saat berlangsungnya fenomena La-Nina,akhir musim hujan mengalami keterlambatan atau awal masuknya musim kemarau mundur. Faktor lain yang mempengaruhi keragaman hujan di Indonesia adalah Indian Ocean Dipole Mode (IOD). Fenomena ini pertama kali dikemukakan oleh (Saji et al. 1999). IOD dapat didefinisikan sebagai perbedaan antara suhu muka laut di kawasan barat Samudera India (50-70 BT, 10 LU-10 LS) dengan suhu muka laut di kawasan tenggara Samudera India (90-110 BT, 0-10 LS). Apabila terjadi indeks sangat negatif (dibawah standar deviasi historis) yang berarti suhu di tengah samudera Hindia lebih hangat daripada di pantai barat Sumatera, maka wilayah Indonesia barat bagian selatan mendapat resiko kekeringan akibat terjadi subsidensi dan aliran masa udara menjauh daerah ini. Apabila yang terjadi sebaliknya, maka wilayah yang sama akan mengalami curah hujan tinggi. Dampak IOD penting di perhatikan saat periode Juni-Oktober dimana akan memberikan banyak bulan basah di bagian Tenggara (Southeast) dan Barat Daya (Southwest) lokasi IOD terjadi (Risbey et all. 2009). Selain itu pada akhir Mei potensi terjadi ketidakstabilan musim angin baratan Afrika (Hagos & Kerry 2006). Sehingga wilayah tengah Samudera india sangat penting diperhatikan pada bulan Juni, Juli, Agustus. Dibandingkan dengan ENSO, fluktuasi dari gejala IOD memiliki periode yang sangat pendek tidak lebih dari satu musim sehingga koherensi gejala ini rendah dan sulit diasosiasikan dengan iklim Indonesia. Selain itu sangat sulit untuk menduga besarnya pengaruh ENSO, IOD atau efek kombinasi keduanya terhadap curah hujan (Risbey et all. 2009). Untuk memahami lebih jauh kaitan kejadian ENSO dan IOD terhadap kejadian awal masuk musim hujan di wilayah Jawa, kajian di fokuskan menentukan domain prediktor interaksi lautan-atmosfer yaitu fluktuasi SML di Pasifik ekuator bagian tengah dan timur hinga Samudera India yang merepresentasikan ENSO dan IOD (Gambar 4).

10 Gambar 4. Skematik wilayah ENSO dan IOD 2.3 Definisi Awal Musim Hujan Kombinasi revolusi dan kemiringan bumi akan mempengaruhi sudut jatuh sinar matahari dan intensitas insolasi (incoming solar radiation), akibatnya di muka bumi terjadi pembagian wilayah musim (musim dingin, semi, panas dan gugur). Musim diwilayah Indonesia tidak mengikuti pembagian wilayah musim dibumi karena unsur temperatur hampir konstan sepanjang tahun namun sebaliknya variasi unsur curah hujan sangat besar. Curah hujan yang terjadi di suatu wilayah memberikan gambaran musim pada wilayah tersebut. Awal musim hujan (AMH) dapat di jelaskan oleh curah hujan yang terjadi pada suatu tempat. Ketentuan definisi AMH di satu tempat dapat berbeda di tempat lainnya, hal itu dapat bergantung pada kondisi klimatologis. Kondisi klimatologi akan memberikan ciri atau indikator tertetentu ketika AMH terjadi, sehingga dapat ditetapkan definisi yang tepat. Sebagai ilustrasi, Departemen Meteorologi India menetapkan wilayah Kerala sebagai salah satu indikator awal datangnya AMH di seluruh India (Wang et al. 2009). Apabila setelah 10 Mei tercatat curah hujan sebanyak 10 mm per 24 jam dalam 2 hari di lima stasiun pengamatan dari tujuh stasiun yang ada di Kerala maka dinyatakan sebagai AMH (Pai & Rajeevan 2009). Sedangkan definisi AMH di wilayah Indonesia

11 didasarkan pada ketentuan yang dibuat oleh BMKG yaitu awal musim hujan ditandai dengan jumlah curah hujan dasarian telah lebih dari 50 mm dan diikuti minimal dua dasarian berikutnya, sebaliknya awal musim kemarau ditandai dengan jumlah curah hujan dasarian kurang dari 50 mm dan diikuti minimal dua dasarian berikutnya. Saat perhitungan awal musim hujan yang dilakukan BMKG biasanya setelah 1 September. Definifisi AMH dapat juga bergantung pada kondisi wilayah lokal untuk bidang pertanian. Untuk kepentingan sektor pertanian, AMH adalah informasi yang penting dalam penentuan waktu dan pola tanam. Definisi AMH yang digunakan pada bidang pertanian di Indonesia, apabila curah hujan setelah 1 Agustus tercatat > 40 mm dalam 5 hari berturut-turut tanpa diikuti 10 hari dry spell atau curah hujan < 5 mm dalam periode 10 hari (Moron et al. 2008). Sedangkang wilayah Sahel Afrika mendefinisikan AMH dalam bidang pertanian yaitu apabila curah hujan setelah 15 Mei tercatat > 20 mm dalam 2 hari berturut-turut tanpa diikuti 7 hari dry spell atau curah hujan < 5 mm dalam periode 20 hari (Marteu et al. 2007). Perbedaan definisi AMH di tiap tempat disebabkan karena perbedaan posisi geografis yang berimplikasi pada pola umum atmosfer suatu wilayah. Sebagai contoh untuk wilayah tropis pola atmosfer dominan adalah Intertropical Convergence Zone (ITCZ) atau pias pumpun antar tropis akibat dari gerak periodik Matahari 23.5 o arah Utara dan Selatan. Wilayah yang di lewati ITCZ biasanya pada periode musim hujan dan sebaliknya. Kondisi tropis berbeda dengan yang terjadi di wilayah sub tropis hingga kutub (lintang tinggi), pada wilayah tersebut pola atmosfer yang berperan dan penting di perhatikan yaitu gelombang rossby (Graham et al. 2010). Gelombang Rossby adalah angin yang mengelilingi bumi, bergerak dari Barat ke Timur dan biasanya mendorong kelembaban dari Samudra Atlantik. Dalam penjalaranya, gelombang ini berosilasi diantara lintang 30 o dan 60 o sehingga memiliki pengaruh dominan terhadap wilayah lintang tinggi. Selain itu, faktor yang membedakan definisi AMH adalah posisi lautan dan daratan yang berimplikasi pada pola umum atmosfer. Contoh dalam hal ini adalah perilaku monsun yang hanya terjadi disekitar perairan India dan pasifik serta benua Asia dan Australia.

12 2.4 Faktor Yang Mempengaruhi Awal Musim Monsun adalah salah satu fenomena iklim global menyebabkan pergerakan titik kulminasi matahari terhadap bumi yang bergerak utara selatan dan terciptanya kontras tekanan dan suhu antara benua dan samudera. Selain itu fenomena monsoon juga mengikuti pola garis pantai karena pada daerah tersebut terjadi pusat pusat konveksi dan juga diakibatkan oleh pola kontras antara benua dan samudera. Sehingga pergerakan daerah fenomena monsoon tidak murni bergerak arah utara selatan. Wilayah Jawa termasuk dalam pewilayahan monsun atau wilayah yang dicirikan dengan pola hujan tahunan satu puncak hujan dan satu puncak kemarau (Aldrian & Susanto 2003). Hal ini mengakibatkan nilai kontras akumulasi hujan pada puncak musim hujan dan puncak kemarau. Sesuai dengan kriteria yang dikembangkan oleh BMKG, jika hujan diatas 150 mm, maka dikategorikan musim hujan, sebaliknya apabila curah hujan dibawah 150 mm per bulan akan disebut musim kemarau. Dengan memahami kejadian monsun maka dapat menduga terjadinya awal musim Indonesia Fenomena iklim global lainnya adalah ENSO, dampak dari fenomena ini dapat dirasakan secara global. Fenomena ini berhubungan berturut turut dengan fase hangat dan dingin di wilayah ekuator Pasifik. Secara normal terdapat kolam hangat (warm pool) di sebelah utara pulau Papua yang merupakan tempat berkumpulnya arus permukaan dari aliran sabuk dunia sebelum dihantar melalui arus lintas Indonesia (Arlindo) melalui wilayah benua maritim menuju samudera india. Kolam hangat ini juga tempat sirkulasi Walker dimana terjadi pengangkatan masa udara (convection center). Pada saat El Niño, terjadi perpindahan daerah wam pool menuju ke timur daerah ekuator Pasifik dan meninggalkan daerah di utara Papua. Dinamika fenomena laut tersebut tentunya akan menggangu kondis atmosfer di wilayah lainnya. Sel Walker menyebabkan telekoneksi atmosfer antara wilayah samudera India dan pasifik yang berpusat di wilayah warm pool sekitar Papua (Aldrian & Susanto.2003). Pada kondisi normal, angin 850 mb atau angin lapisan bawah di perairan India-Pasifik pada periode JJA bertiup dari Timur (Gambar 5a). Kejadian ENSO menyebabkan pola angin di lapisan bawah pada periode bulan JJA di perairan India-Pasifik

13 menyimpang dari normalnya. Meningkatnya SML di pasifik tropis membuat arus angin berbalik atau terjadi putaran di Pasifik Tengah (Gambar 5b). Implikasinya untuk wilayah Pasifik Tengah-Timur akan terjadi banyak hujan akibat konvergensi efek dari putaran angin (pembalikan arah). Sedangkan Jawa atau Indonesia pada umumnya akan terjadi pengurangan curah hujan selanjutnya mengakibatkan awal masuk musim hujan akan mundur dari normalnya. Dengan demikian perlu memperhatikan sinyal kejadian ENSO sebagai faktor yang mempengaruhi AMH di Jawa. Sinyal tersebut yaitu fluktuasi SML periode JJA di wilayah pasifik equator sehingga kejadian AMH maju atau mundur dari normal di Jawa dapat di prediksi. a b Gambar 5 Pola angin 850 mb JJA Samudera India-Pasifik Saat (a) Normal dan (b)enso Selain faktor tahunan tersebut, pola iklim Indonesia juga dipengaruhi oleh faktor-faktor non tahunan seperti harian intra seasonal dan faktor inter tahunan. Untuk skala intra seasonal atau antara 30 sampai 90 hari, terdapat dominasi pengaruh pergerakan daerah konveksi dari samudera India ke arah timur. Pergerakan variabilitas intra seasonal ini membawa akibat daerah hujan yang tinggi pada daerah yang dilaluinya. Variabilitas atau osilasi intra seasonal ini dikenal dengan istilah Madden Julian Oscillation (MJO) sesuai nama pencetusnya (Madden & Julian 1994). Untuk daerah benua maritim Indonesia, penjalaran gelombang ke timur gejala ini terjadi di samudera India dan peristiwa yang dimulai di laut akan berakibat pada

14 daerah hujan yang mana daerah hujan ini akan bergerak ke arah timur masuk di kepulauan Indonesia melalui propinsi Sumatera Barat dan terus bergerak ke Timur (Aldrian 2008). Apabila peristiwa tersebut terjadi pada bulan musim hujan maka pergerakan akan lebih ke arah selatan mengikuti jalur Intertropical Convergence Zone (ITCZ) atau daerah konvergensi antar tropis yang sedang berada di bumi belahan selatan. Pola mengikuti jalur ITCZ dikarenakan ITCZ merupakan pusat konveksi yang menarik massa udara sekitar. Peristiwa penjalanan dengan gelombang ini terjadi dengan periode antara 30 sampai 90 hari atau periode seasonal dan intraseasonal sehingga gejala MJO ini dikenal juga dengan istilah gelombang intraseasonal. Pergerakan intraseasonal ini mengakibatkan variabilitas curah hujan sehingga terjadi waktu jeda basah (wet spell) atau waktu jeda kering (dry spell), implikasinya akan terjadi kehilangan hari bulan basah atau hari bulan kering antara 20 sampai 50 hari (Benjamin & Pierre 2006). Kejadian tersebut tentunya akan berpotensi mempengaruhi AMH di wilayah Indonesia khususnya Jawa karena dasar perhitungan AMH adalah akumulasi curah hujan dalam sepuluh harian (dasarian). Dengan memahami kejadian MJO maka dapat dihindari menentukan awal musim palsu akibat dry spell atau wet spell. 2.5 Perkembangan Model Prediksi AMH Hasil dari model iklim global biasanya diberikan sebagai input untuk model iklim regional dimana dinamika proses yang terjadi kembali dihitung dalam skala regional. Untuk model prediksi dibutuhkan model iklim laut dan atmosfir yang dijalankan sekaligus dimana terjadi umpan balik antara keduanya. Masing masing model tersebut tidak dapat jalan sendiri sendiri untuk prediksi karena masing masing saling membutuhkan untuk data di permukaan laut. Untuk model atmosfir global biasanya membutuhkan data SML, sedangkan untuk model iklim regional model atmosfir membutuhkan data di daerah batas domain di laut atau di atmosfir pada masing masing lapisan. Saat ini model AMH sudah banyak dikembangkan baik yang berdasar dinamika atmosfer, pemanfaatan data satelit maupun perhitungan statistik. Kajian data satelit dimanfaatkan untuk menduga anomali curah hujan dalam periode

15 masa transisi (Maret-Juni) sehingga akan di ketahui sebaran pola hujan spasial untuk wilayah Indonesia (As-syakur & Prasetia 2010). Kajian tersebut dapat dijadikan indikasi awal pertimbangan perkembangan fenomena iklim global untuk kepentingan menduga AMH. Dalam teknk perhitungan statistik (Hamada et al. 2002) melakukan analisa terjadinya AMH di Indonesia kaitannya dengan kejadian ENSO. Model prediksi AMH dengan teknik statistik namun menggunakan data prediktor SML telah banyak dikembangkan. BoM Australia mengidentifikasi wilayah prediktor SML potensial sebagai prediktor sebelum diaplikasikan dengan teknik statistik (Fiona lo et al. 2008). Demikian juga dengan India Meteorological Departemen (IMD) telah melakukan dengan teknik yang serupa dan bahkan telah dioperasionalkan (Rajeevan 2009). Selain teknik tersebut, (Moron & Robertson. 2009) juga telah mengembangkan suatu metoda menduga awal terjadinya mosun dengan teknik pemanfaatan data satelit untuk wilayah India. Pengembangan model iklim atmosfir dan laut berbasis data satelit untuk Indonesia relatif masih baru. Keterbatasaan sumber daya manusia dan komputer untuk kajian ini merupakan hambatan tersendiri. Untuk kebutuhan data pada wilayah yang luas, Indonesia membutuhkan pengamatan iklim terpadu sehingga mencakup seluruh wilayah teritorialnya. BMKG masih memanfaatkan data hujan yang ada untuk operasional utama prediksi AMH. Model dengan teknik statistik dalam hal ini ARIMA masih menjadi tumpuan produk informasi awal musim. Kompleksitas masalah lingkungan dan iklim di Indonesia akhir akhir ini menambah persoalan tentang akurasinya. Hal itu mendorong institusi ini mencari teknik dan metode yang tepat dalam mengembangkan model prediksi iklim. Saat ini model prediksi iklim berbasis satelit sedang dikembangkan oleh BMKG sehingga diharapkan dapat menghasilkan produk informasi iklim yang lebih handal. 2.6 Potensi Aplikasi Prediksi AMH Iklim merupakan komponen ekosistem sekaligus faktor alam penting yang sangat dinamik dan sulit dikendalikan. Karena sifat iklim yang dinamis dan beragam diperlukan suatu pemahaman yang lebih akurat teradap karakteristik iklim melalui

16 analisis dan interpretasi informasi iklim sehingga lebih berdaya guna dalam bidang pertanian. Pendekatan yang paling efektif untuk memanfaatkan sumber daya iklim adalah menyesuaikan sistem usaha tani termasuk paket teknologinya dengan kondisi iklim setempat. Penyesuaian tersebut harus didasarkan pada pemahaman terhadap karakteristik dan sifat iklim secara baik melalui analisis dan interpretasi informasi iklim. Berbagai proses fisiologi, pertumbuhan dan produksi tanaman sangat dipengaruhi oleh unsur iklim, yaitu keadaan atmosfer dari saat ke saat selama umur tanaman, ketersediaan air sangat ditentukan oleh curah hujan dalam periode waktu tertentu. Demikian juga, pertumbuhan dan produksi tanaman merupakan manivestasi akumulatif dari seluruh proses fisiologi selama fase atau periode pertumbuhan tertentu oleh sebab itu dalam pengertian yang lebih teknis dapat dinyatakan bahwa pertumbuhan dan produksi tanaman dipengaruhi oleh berbagai unsur iklim selama pertumbuhan tanaman. Sehingga kondisi iklim yang tidak menentu dapat menjadi faktor pembatas produksi pertanian. Secara teknis dalam budidaya tanaman, hampir semua unsur iklim berpengaruh terhadap produksi dan pengelolaan tanaman. Namun tiap unsur iklim mempunyai pengaruh dan peran yang berbeda teradap berbagai aspek dalam budidaya tanaman. Dalam perencanaan kegiatan operasional pertanian seperti perencanaan pola tanam, pengairan, pemupukan, pengendalian hama terpadu dan panen membutuhkan informasi prediksi awal musim hujan (AMH). Tingkat keakuratan prediksi AMH sangat membantu petani mengurangi resiko gagal panen, sehingga diperlukan model prediksi yang handal. Ini dapat dilakukan melalui pengembangan sistem analisis dan teknik prediksi AMH yang lebih kuantitatif dengan model statistik dan dinamik. Dengan memanfaatkan informasi iklim merupakan poin penting yang akan memberikan jalan petani dalam mencapai target produksi serta meningkatkan derajat petani (Ikrom & Gary 2008).