DESAIN PENGENDALIAN BISING PADA JALUR PEMBUANGAN EXHAUST FAN KAMAR MANDI DALAM

dokumen-dokumen yang mirip
DESAIN PENGENDALIAN BISING PADA JALUR PEMBUANGAN EXHAUST FAN KAMAR MANDI DALAM. Batara Sakti Pembimbing: Andi Rahmadiansah, ST, MT

JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: ( Print) D-156

MODEL ANALITIK MUFFLER ABSORPTIVE PADA VENTILASI UDARA

PEMBUATAN ALAT UKUR DAYA ISOLASI BAHAN

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN :

Kata kunci: Transmission Loss

Perancangan piranti lunak untuk pengukuran TRANSMISSION LOSS dan Koefisien Serap Bahan menggunakan metode fungsi transfer

PERANCANGAN PENGENDALIAN BISING PADA RUANG BACA dan LABORATORIUM REKAYASA INSTRUMENTASI TEKNIK FISIKA ITS

PENGARUH JUMLAH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK

PERANCANGAN BARRIER UNTUK MENURUNKAN TINGKAT KEBISINGAN PADA JALUR REL KERETA API DI JALAN AMBENGAN SURABAYA DENGAN MENGGUNAKAN METODE NOMOGRAPH

PENGENDALIAN TINGKAT KEBISINGAN DI CABIN ABK (ANAK BUAH KAPAL) KN.P 329 AKIBAT MESIN

DINDING PEREDAM SUARA BERBAHAN DAMEN DAN SERABUT KELAPA

Peningkatan Insulasi Akustik Dari Dinding Partisi Antar Kamar Berdasarkan Nilai Rugi Transmisi Bunyi

KEMAMPUAN PEREDAMAN SUARA DALAM RUANG GENSET DINDING BATA DILAPISI DENGAN VARIASI PEREDAM YUMEN

Pengukuran Transmission Loss (TL) dan Sound Transmission Class (STC) pada Suatu Sampel Uji

Pengaruh Penambahan Bahan Redam pada Kebocoran Alat Ukur Daya Isolasi Bahan

MATERIAL PEREDAM SUARA DENGAN MENGGUNAKAN KOMBINASI DAMEN, SERABUT KELAPA, DAN DINDING BATA

PENENTUAN KOEFISIEN ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK RESONATOR PANEL KAYU LAPIS (PLYWOOD) BERLUBANG DENGAN MENGGUNAKAN METODE TABUNG

PENGUKURAN KOEFISIEN ABSORBSI MATERIAL AKUSTIK DARI SERAT ALAM AMPAS TEBU SEBAGAI PENGENDALI KEBISINGAN

Evaluasi kinerja Akustik dari Ruang Kedap Suara pada Laboratorium Rekayasa Akustik dan Fisika Bangunan Teknik Fisika -ITS

Evaluasi Kinerja Akustik Dari Ruang Kedap Suara Pada Laboratorium Rekayasa Akustik Dan Fisika Bangunan Teknik Fisika ITS

JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ( X Print) B-101

Analisis Kebocoran Bunyi pada Ruang Mini Pengukuran Transmission Loss pada Pita 1/3 Oktaf Dengan Menggunakan Sound Mapping

PERANCANGAN ISOLASI ENCLOSURE DAN BARRIER UNTUK SISTEM REFINERY PADA PERUSAHAAN MIGAS

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: ( Print) D-144

Pengendalian Kebisingan Pada Mesin Multifolddi PT Lotus Indah Textile Industries. Agustina Dwi Jayanti K3-VIII B

Optimasi Kualitas Akustik Room to Room Berdasarkan Nilai Transmission Loss

PENGARUH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK SKRIPSI

Pengertian Kebisingan. Alat Ukur Kebisingan. Sumber Kebisingan

AKUSTIKA RUANG KULIAH RUANG SEMINAR 5 LANTAI 4 TEKNIK FISIKA. Dani Ridwanulloh

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT. Krisman, Defrianto, Debora M Sinaga ABSTRACT

Halaman Judul Lembar Pengesahan Abstrak Kata Pengantar Daftar Isi Daftar Gambar Daftar Tabel

PENGARUH PENAMBAHAN JARAK TERHADAP SUMBER BUNYI BIDANG DATAR BERBENTUK LINGKARAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008

TINGKAT REDAM BUNYI SUATU BAHAN (TRIPLEK, GYPSUM DAN STYROFOAM)

PENGARUH LAY OUT BANGUNAN DAN JENIS MATERIAL SERAP PADA KINERJA AKUSTIK RUANG KELAS SEKOLAH DASAR DI SURABAYA TITI AYU PAWESTRI

Penilaian Karakteristik Akustik Bangunan. Masjid Salman ITB

STUDI TENTANG PENGARUH RONGGA TERHADAP DAYA ABSORPSI BUNYI

PENENTUAN KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI SERAT ALAM ECENG GONDOK (EICHHORNIA CRASSIPES) DENGAN MENGGUNAKAN METODE TABUNG

PENGENDALIAN KEBISING

PENGUKURAN ABSORPSI BAHAN ANYAMAN ENCENG GONDOK DAN TEMPAT TELUR DENGAN METODE RUANG AKUSTIK KECIL

KAJIAN PENERAPAN PRINSIP-PRINSIP AKUSTIK STUDI KASUS: RUANG AUDITORIUM MULTIFUNGSI GEDUNG P1 DAN P2 UNIVERSITAS KRISTEN PETRA

Desain Akustik Ruang Kelas Mengacu Pada Konsep Bangunan Hijau

PENGENDALIAN TINGKAT KEBISINGAN PADA AUTOMATIC CAR WASH DI PT. IN N OUT

DESAIN ENCLOSURE SEBAGAI PERENCANAAN PENGENDALIAN KEBISINGAN PADA GAS ENGINE STUDI KASUS PT BOC GASES INDONESIA SITI KHOLIFAH

ANALISA KEBISINGAN ALAT PRAKTIKUM KOMPRESOR TORAK PADA LABORATORIUM PRESTASI MESIN

DESAIN AKUSTIK RUANG KELAS MENGACU PADA KONSEP BANGUNAN HIJAU

Akustik. By: Dian P.E. Laksmiyanti, ST. MT

Kajian Kelayakan Dry Leaf Board Sebagai Material Akustik Untuk Ruang Hunian

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL. Oleh: Arif Widihantoro NIM: TUGAS AKHIR

BAB I PENDAHULUAN. 1.1 Latar Belakang

ATENUASI BISING LINGKUNGAN DAN BUKAAN PADA RUANG KELAS SEKOLAH DASAR BERVENTILASI ALAMI DI TEPI JALAN RAYA. Oleh :

STUDI TENTANG PENGARUH PROSENTASE LUBANG TERHADAP DAYA ABSORPSI BUNYI

SEMINAR TUGAS AKHIR. Oleh: Candra Budi S : Andi Rahmadiansah, ST. MT Pembimbing II : Dyah Sawitri. ST. MT

DESAIN BARRIER UNTUK MENGURANGI TINGKAT KEBISINGAN DENGAN MENGGUNAKAN METODE MAEKAWA. Jurusan Teknik Fisika Fakultas Teknologi Industri

EVALUASI KONDISI AKUSTIK BANGUNAN KOST STUDI KASUS KOST DI JALAN CISITU LAMA NO. 95/152C

STUDI TENTANG PENGARUH PROSENTASE LUBANG PADA DINDING PENGHALANG TERHADAP PENGURANGAN SPL

STUDI KELAYAKAN AKUSTIK PADA RUANGAN SERBA GUNA YANG TERLETAK DI JALAN ELANG NO 17. Disusun Oleh: Wymmar

PERBAIKAN KUALITAS AKUSTIK RUANG MENGGUNAKAN PLAFON VENTILASI BERDASARKAN WAKTU DENGUNG STUDI KASUS RUANG KELUARGA PADA RUMAH TIPE 70

Oleh : Jenar Seto/ Dosen pembimbing 1 :Ir. Wiratno Argo Asmoro,Msc Dosen pembimbing 2 :Ir. Zulkifli,Msc

PENGENDALIAN BISING PADA BANGUNAN APARTEMEN

STUDI AWAL PENGUKURAN KOEFISIEN HAMBURAN DIFUSER MLS (MAXIMUM LENGTH SEQUENCES) Oleh : M Farid Ardhiansyah

PERANCANGAN ENCLOSURE PADA POMPA BOILER FEED WATER UNIT UTILITAS BATU BARA SEBAGAI UPAYA PENGENDALIAN KEBISINGAN

Pengujian Sifat Anechoic untuk Kelayakan Pengukuran Perambatan Bunyi Bawah Air pada Akuarium

PENENTUAN PENGURANGAN KEBISINGAN OLEH KARPET PADA RUANG TERTUTUP

PERANCANGAN KNALPOT BERBAHAN ALUMINIUM UNTUK MENGURANGI KEBISINGAN PADA SEPADA MOTOR

Studi Analisis Pengaruh Kebisingan dan Karakteristik Pekerja Terhadap Gangguan Pendengaran Pekerja di Bagian Produksi

KARAKTERISTIK ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK SERAT ALAM AMPAS TAHU (GLYCINE MAX) MENGGUNAKAN METODE TABUNG

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

PERANCANGAN SOFTSENSOR STEAM QUALITY PADA STEAM GENERATOR DENGAN OPTIMASI NILAI SPESIFIK VOLUM DENGAN METODE JARINGAN SYARAF TIRUAN (JST)

I. PENDAHULUAN. bunyi dengan melakukan perhitungan koefisien penyerapan bunyi. Doelle pada

Hubungan 1/1 filter oktaf. =Frekuesi aliran rendah (s/d -3dB), Hz =Frekuesi aliran tinggi (s/d -3dB), Hz

BAB 1 PENDAHULUAN. dengan peningkatan permintaan akan kebutuhan transportasi. Hal tersebut

Kajian tentang Kemungkinan Pemanfaatan Bahan Serat Ijuk sebagai Bahan Penyerap Suara Ramah Lingkungan

ANALISIS KEBISINGAN PADA KAWASAN COMPRESSOR HOUSE UREA-1 PT. PUPUK ISKANDAR MUDA, KRUENG GEUKUEH ACEH UTARA

PERANCANGAN AKUSTIK RUANG MULTIFUNGSI PADA TEATER A ITS DENGAN DESAIN MODULAR

KEMAMPUAN REDUKSI BUNYI DAN BIAYA PENGERJAAN PADA DINDING BATA KONVENSIONAL DAN DINDING BATA RINGAN

Perancangan dan Pembuatan Difuser QRD (Quadratic Residue Difuser) Dengan Lebar Sumur 8,5 Cm

ANALISIS TEMPERATUR DAN ALIRAN UDARA PADA SISTEM TATA UDARA DI GERBONG KERETA API PENUMPANG KELAS EKONOMI DENGAN VARIASI BUKAAN JENDELA

Analisa Variable Moment of Inertia (VMI) Flywheel pada Hydro-Shock Absorber Kendaraan

BAB III METODOLOGI PENELITIAN

KARAKTERISTIK AKUSTIK PAPAN KOMPOSIT SERAT SABUT KELAPA BERMATRIK KERAMIK

BAB 1 PENDAHULUAN. manusia semakin meningkat. Baik peralatan tersebut berupa sarana informasi,

MATERIAL AKUSTIK SERAT PELEPAH PISANG (Musa acuminax balbasiana calla) SEBAGAI PENGENDALI POLUSI BUNYI

Pembuatan dan Pengujian Bahan Peredam Suara dari Berbagai Serbuk Kayu

PENENTUAN NILAI RUGI TRANSMISI BAHAN POLIKARBONAT DAN POLIPROPILEN DENGAN METODE PENGUKURAN RUGI SISIPAN DAN WAKTU DENGUNG

PENGUKURAN KEBISINGAN BANGUNAN GEREJA TERBUKA STUDI KASUS: GEREJA PUH SARANG - KEDIRI

KAJIAN EKSPERIMENTAL KARAKTERISTIK MATERIAL AKUSTIK DARI CAMPURAN SERAT BATANG KELAPA SAWIT DAN POLYURETHANE DENGAN METODE IMPEDANCE TUBE

Perancangan dan Pembuatan Difuser QRD (Quadratic Residue Difuser) Dengan Lebar Sumur 8,5 Cm

ANALISIS GELOMBANG AKUSTIK PADA PAPAN SERAT KELAPA SAWIT SEBAGAI PENGENDALI KEBISINGAN

PENGARUH PAGAR TEMBOK TERHADAP TINGKAT KEBISINGAN PADA PERUMAHAN JALAN RATULANGI MAKASSAR ABSTRAK

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. Pemanfaatan potensi lokal sebagai material dinding kedap. bila dibandingkan dengan makhluk lain adalah akal.

Pengaruh Variasi Jenis Bahan terhadap Pola Hamburan pada Difuser MLS (Maximum Length Sequence) Dua Dimensi

LIMBAH PELEPAH PISANG RAJA SUSU SEBAGAI ALTERNATIF BAHAN DINDING KEDAP SUARA

BAB I PENDAHULUAN. 1 Leslie L.Doelle dan L. Prasetio, Akustik Lingkungan, 1993, hlm. 91

PEMODELAN KANAL KOMUNIKASI AKUSTIK PADA PERAIRAN DANGKAL

Perbaikan Kualitas Akustik Lapangan Futsal Indoor Pertamina ITS Menggunakan Panel Akustik Gantung

Desain Sumber Bunyi Titik

Transkripsi:

DESAIN PENGENDALIAN BISING PADA JALUR PEMBUANGAN EXHAUST FAN KAMAR MANDI DALAM 1 Batara Sakti, Andi Rahmadiansah, ST, MT Jurusan Teknik Fisika, Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 E-mail: batarasakti.naga@gmail.com Abstrak Tingkat kebisingan pada terminal pesawat udara harus diperhatikan. Terutama pada tempattempat umum yang membutuhkan kenyamanan. Seperti tempat ibadah, perumahan, hotel dan lain-lain. Karena dapat menggangu kenyamanan dan dapat mengganggu kesehatan. Pada penelitian ini tempat yang ditinjau adalah tempat peristirahatan atau hotel yang memiliki lokasi disekitar Bandar udara Juanda. Dan bagian yang diteliti pada penelitian ini jalur pembuangan exhaust fan kamar mandi dalam. Kebocoran suara yang dihasilkan dari jalur pembuangan exhaust fan ini sangat mengganggu kenyamanan pengunjung hotel yang sedang beristirahat. Pada jalur pembuangan exhaust fan ini di desain dengan menggunakan material akustik rockwool. Keunggulan dari material ini memiliki nilai koefisien absorpsi yang tinggi dalam menyerap kebisingan. Nilai rata-rata dari koefisien serap rockwool yang telah diukur adalah sebesar 0.92946. Dari nilai itu dapat dikatakan bahwa rockwool adalah jenis material akustik yang sangat baik untuk meredam kebisingan. Dan nilai rata-rata transmission loss yang dihasilkan adalah sebesar 10,81222. Dari nilai rata-rata transmission loss yang dihasilkan dapat dikatakan bahwa desain dari jalur pembuangan exhaust fan ini mereduksi kebisingan dengan baik. Kata Kunci: Jalur pembuangan, Koefisien absorpsi material, transmission loss I. PENDAHULUAN H otel merupakan tempat dimana para plesir beristirahat ketika sedang bepergian atau dalam perjalanan menuju suatu tujuan. Kenyamanan adalah harga yang harus dibayar oleh para plesir untuk mereka dapat beristirahat dengan tenang. Dan agar suatu hotel diminati para plesir harus memiliki poin utama tersebut, yaitu kenyamanan. Dimana kenyamanan adalah suatu parameter yang harus dimiliki setiap Hotel untuk mendapat predikat tempat singgah atau penginapan yang nyaman. Pada umumnya hotel dapat dikatakan nyaman apabila terhindar dari aspek bising (noise). Bising atau noise adalah suara yang tidak diinginkan yang berasal dari sumber suara, yang merupakan arus energi yang berbentuk gelombang suara dan mempunyai tekanan yang berubah-ubah tergantung pada sumbernya (kebisingan) hingga sampai pada telinga dan merangsang pendengaran Maka bising yang ditimbulkan dari luar atau dari dalam ruangan tidur tersebut harus diminimalisir. Menurut beberapa referensi untuk tempat beristirahat seperti kamar tidur yang diberikan oleh operator hotel internasional terbesar di Indonesia (Accor) menyatakan bahwa ruangan yang mempunyai nilai L A01 = 30dBA dan nilai L A10 = 25dBA dinyatakan ruangan nyaman (Nugraha, 2013). Jika dalam suatu kamar tidur belum memiliki nilai sesuai dengan standar tersebut,maka kamar tersebut belum dapat dikatakan memiliki kenyamanan untuk digunakan tidur dan perlu untuk dilakukan perbaikan didalamnya. Sumber bising tersebut dapat berasal dari luar maupun sekitar bangunan hotel tersebut.bisa juga disebabkan oleh kebocoran suara dari suatu bagian bangunan tersebut. Agar tidak terjadi kebocoran suara pada kamar tidur hotel, diperlukan partisi partisi yang sesuai dengan kebutuhannya. Pada kasus kamar hotel saat ini adalah adanya sumber kebisingan dari dalam ruangan itu sendiri, yang dapat mengganggu ketenangan kamar tersebut. Yaitu adanya kebocoran suara yang berasal dari exhaust fan kamar mandi dalam. Mengingat lokasi bangunan hotel berada di sekitar terminal pesawat udara dan jalan raya, Upaya yang dapat dilakukan untuk dapat mereduksi kebisingan tersebut adalah dengan mendesain jalan pembuangan (acoustic duct) exhaust fan untuk kamar mandi dalam. Jalur pembuangan exhaust fan yang dimaksud disini adalah jalur pembuangan yang di desain sedemikian rupa dengan mengkombinasikannya menggunakan bahan peredam akustik.. II. METODOLOGI PENELITIAN A. Objek Pengukuran Objek yang akan diteliti adalah jalur pembuangan exhaust fan yang sudah dibuat desainnya dan memerlukan kualitas insulasi yang baik. Desain jalur pembuangan exhaust fan yang sudah di rancang pada gambar dibawah ini. Gambar 1. Desain jalur pembuangan 2D Dengan mengacu pada denah ruangan dengan dimensi sebagai berikut : Panjang ruangan : 4,2 meter Lebar ruangan : 2,5 meter Tinggi ruangan : 2.5 meter Volume ruangan : 26,25 meter Disertakan pula denah ruangan kamar hotel dikawasan Bandar udara Juanda Sidoarjo pada gambar dibawah ini :

2 Gambar 2 Denah ruangan kamar B. Desain Jalan Pembuangan Dilakukan desain untuk jalur pembuangan dengan menggunakan software CFD (Computational Fluid Dynamics) program Gambit 2.2.30. Berikut tampilan dari desain jalur pembuangan menggunakan program Gambit 2.2.30 : D. Pengambilan data dan pengolahan data Setelah bahan dan material di rancang kemudian dilakukan pengukuran koefisien absorpsi dari material rockwool dan penghitungan Noise Reduction (Nr), Transmission Lost (Tl) pada jalan pembuangan yang sudah dirancang. Pengukuran koefisien absorpsi material rockwool menggunakan metode tabung. Alat yang digunakan adalah tabung impedansi yang tersedia di Laboratorium Akustik Fisika Bangunan Jurusan Teknik Fisika. Pengambilan data pada jalan pembuangan dilakukan dengan cara diberikan sumber bunyi tepat didepan outlet dari jalan pembuangan yang sudah di desain. Kemudian dari bagian inlet diukur dengan jarak 10cm. Pengambilan data menggunakan alat ukur SLM (sound level meter ), dan SLM yang di gunakan adalah merk SOLO 01dB yang merekam selama 6 detik setiap variasi frekuensinya. Gambar 5 Pengukuran nilai koefisien absorpsi material Gambar 3 Desain jalur pembuangan 3D C. Tahapan Perancangan Jalan Pembuangan Sebelum dilakukan perancangan, harus diketahui terlebih dahulu material dari peredam akustik. Material akustik yang dipakai dalam desain jalan pembuangan kamar mandi dalam ini adalah rockwool. Rockwool yang digunakan dengan density 60/50 (0.6 m x 1.20 m). Kemudian setelah ditentukan material yang digunakan, dilakukan peletakan material akustik kedalam pipa. Dilakukan dengan cara membalut pipa dengan ram kawat,kemudian dilapisi dengan rockwool, dan di bungkus kembali dengan ram kawat luar. Setelah itu pipa yang telah terbungkus rockwool dengan kawat ram, dimasukkan kedalam pipa yang ukurannya lebih besar dari pipa pertama. Ditampilkan pada gambar dibawah ini : Gambar 4 Rangkaian rockwool dengan kawat ram Kemudian pipa yang terbungkus rockwool dengan kawat ram dicabut, sehingga rangkaian rocwool dengan kawat ram tertinggal didalamnya. Setelah bahan peredam akustik dimasukkan kedalam pipa,langkah selanjutnya membentuk pipa disesuaikan dengan desain pada software CFD (Computational Fluid Dynamics). III. HASIL DAN PEMBHASAN A. MENGUKUR KOEFISIEN ABSORPSI MATERIAL AKUSTIK Pada desain jalan pembuangan exhaust fan ini material akustik yang digunakan adalah rockwool. Rockwool memiliki bahan dasar dari campuran batuan vulkanik. Untuk itu dibutuhkan koefisien absorpsi dari rockwool untuk mengetahui seberapa besar daya serap bunyi yang dimilikinya. Pengukuran koefisien absorpsi dari material ini menggunakan tabung impedansi. Maka dari itu didapatkan data hasil pengukuran sebagai berikut : Tabel 1 Pengukuran koefisien absorpsi rockwool (Hz) SPLmin SPLmax(dB 125 59.5 62.7 160 60.1 68.6 200 62.2 65.8 250 61.4 69.6 315 67.3 70.7 400 71.2 73.3 500 72.2 76.05 630 74.8 82.6 800 77.4 82.8 1000 79.37 81.26 1250 81.32 85.34 1600 83.67 86.25 2000 86.65 88.71

3 Tabel 2 Lanjutan (Hz) SPLmin SPLmax(dB 2500 89.21 92.33 3150 87.81 92.87 4000 89.66 94.58 Data yang didapatkan di atas adalah level tertinggi dan terendah dari Sound Pressure Level. Langkah selanjutnya Untuk mendapat nilai koefisien absorpsi rockwool adalah mendapatkan nilai dari SWR (standing wave ratio) atau rasio gelombang berdiri yang dapat di definisikan sebagai, P = 10 SPL/20 s = P max P min s = rasio gelombang berdiri (standing wave ratio) P = tekanan suara (pascal) SPL = nilai sound pressure level tiap frekuensi Maka didapatkan nilai dari SWR (standing wave ratio) dari tiap-tiap frekuensi yang diberikan sebagai berikut : Tabel 3 Nilai SWR (standing wave ratio) Pmin Pmax S 125 944.0609 1364.583 1.44544 160 1011.579 2691.535 2.660725 200 1288.25 1949.845 1.513561 250 1174.898 3019.952 2.570396 315 2317.395 3427.678 1.479108 400 3630.781 4623.81 1.273503 500 4073.803 6345.999 1.557758 630 5495.409 13489.63 2.454709 Tabel 4 Lanjutan Pmin Pmax S 800 7413.102 13803.84 1.862087 1000 9300.365 11561.12 1.243083 1250 11641.26 18492.69 1.588547 1600 15258.08 20535.25 1.34586 2000 21503.05 27258.38 1.267652 2500 28873.54 41352.33 1.432188 3150 24575.37 44004.79 1.790606 4000 30408.85 53579.67 1.761976 Setelah didapatkan nilai SWR (standing wave ratio) langkah selanjutnya adalah mendapatkan nilai factor refleksi (r) dan dapat di definisikan sebagai, r = s 1 s + 1 r = factor refleksi s = rasio gelombang berdiri (standing wave ratio) Maka didapatkan nilai dari faktor refleksi (r ) sebagai berikut: Tabel 5 Nilai factor refleksi (r ) r 125 0.182151 160 0.45366 200 0.204316 250 0.439838 315 0.193258 400 0.1203 500 0.218065 630 0.42108 Setelah didapatkan nilai faktor refleksi didapatkan langkah selanjutnya adalah memasukkan nilai nilai factor refleksi tersebut kedalam persamaan, α = koefisien serap bunyi r = factor refleksi α = 1 r 2 Dan didapatkan nilai koefisien absorpsi dari masing masing frekuensi yang diberikan adalah : Tabel 6 Nilai Koefisien Absorpsi rockwool Alpha 125 0.966821 160 0.794192 200 0.958255 250 0.806543 315 0.962651 400 0.985528 500 0.952448 630 0.822692 alpha 800 0.909273 1000 0.988256 1250 0.948305 1600 0.978263 2000 0.986069 2500 0.968424 3150 0.919736 4000 0.92389 Dan rata rata nilai koefisien absorpsi pada tiap frekuensinya adalah sebesar 0.929459. Dapat dikatakan bahwa bahan rockwool memiliki daya serap yang baik. B. Transmission Loss Setelah nilai koefisien absorpsi material rata-rata telah didapatkan maka untuk mencari nilai Transmission Loss pada rancang jalan pembuangan exhaust fan sudah bisa dilakukan. Nilai TL dapat didefinisikan sebagai: L wio = L wi L TLio + 10 log P l S + D (4.4) L wio = tingkat tekanan bunyi pada ruang input L wi = tingkat tekanan bunyi pada ruang output ΔL TLio = Transmission Loss P = perimeter dari jalur pembuangan (m) l = panjang dari jalur pembuangan (m) S = luas permukaan dalam jalur pembuangan (m 2 )

4 Parameter D, di dapatkan dengan cara : D = 10 log { 1 e (τ+2β)l } (τ + 2β)l β = Lduct ( Nepers / ft or Nepers / m) 8.68 ΔLduct = Koefisien Absorpsi atau α τ = P S 10 0.1 L TLio Untuk mencari nilai Transmission Loss pada jalur pembuangan (pencarian akar-akar persamaan dari fungsi), dilakukan dengan cara metode pendekatan numeric,yaitu dengan metode Newton Raphson. Dengan mendefinisikan fungsi f yaitu : Dengan : f(x) = L wio + L wi x + 10 log x = L TLio P. l S + D(x) Dan dari persamaan diatas nilai dari D(x) adalah : D(x) = 10 log { 1 e (τ+2β)l } (τ + 2β)l Adapun data yang di dapatkan dari hasil pengukuran tingkat tekanan bunyi pada jalur pembuangan yang telah di desain, sebagai berikut : Tabel 7 Tingkat Tekanan bunyi pada jalur pembuangan (Hz) Linput Loutput 125 102.6 102 160 106.5 106.2 200 109.6 106.1 250 112.2 105.2 315 114.1 109.2 400 115.7 107.8 500 115.1 97.7 Tabel 8 Lanjutan (Hz) Linput Loutput 800 114.4 79 1000 113.8 52.5 1250 110.7 44.2 1600 109.5 46.1 2000 111.6 34.9 2500 110.7 35 3150 112.8 33 4000 115.9 35.1 Keliling lingkaran = 2πr Luas permukaan dalam tabung = 2πrt π = 3.14 r = 0.046m t = 4m, 0.5m, 0.2m, 0.15m Sehingga di dapatkan hasil dari P dan S seperti pada tabel dibawah ini : Tabel 9 Parameter S, P panjang (m) diameter (m) luas selimut dlm (m²) Pipa 4meter 4 0.046 1.156106097 Pipa 50cm 0.5 0.046 0.144513262 Pipa 20cm 0.2 0.046 0.057805305 2 elbow (siku) 0.15 0.046 0.043353979 Stotal (m2) 1.445132621 0.289026524 Setelah semua parameter yang di perlukan pada persamaan (4.6) dan persamaan (4.7) didapatkan maka di lakukan perhitungan dengan menggunakan software matlab, dan hasil transmission loss yang di dapatkan dapat dilihat pada tabel dibawah ini: Tabel 10 Hasil Transmission Loss Lwio ΔLTLio (Hz) Lwi 125 102.6 102-4.16758 160 106.5 106.2-4.23717 200 109.6 106.1-0.48817 250 112.2 105.2 4.274361 315 114.1 109.2 1.271782 400 115.7 107.8 5.010312 500 115.1 97.7 17.09188 800 114.4 79 40.01963 1000 113.8 52.5 72.37218 1250 110.7 44.2 79.17636 1600 109.5 46.1 75.08023 2000 111.6 34.9 91.81514 Tabel 11 Lanjutan (Hz) Lwi Lwio P ΔLTLio 2500 110.7 35 90.67162 3150 112.8 33 96.19166 4000 115.9 35.1 97.42812 Dari tabel diatas didapatkan nilai L wi dan L wio untuk dimasukkan kedalam persamaan (4.6) dan persamaan (4.7). Kemudian untuk mendapatkan nilai P pada persamaan (4.6) dapat dilakukan dengan rumus keliling lingkaran dan untuk mendapatkan nilai S dilakukan dengan rumus luas permukaan dalam tabung, yaitu :

5 ΔLTLio 150 100 50 0-50 ΔLTLio 0 2000 4000 6000 (Hz) Gambar 6 Grafik transmission loss ΔLT Pada grafik diatas dapat terlihat bahwa terdapat nilai minus pada frekuensi 125Hz 200Hz. Namun pada frekuensi 250Hz 4000Hz memiliki nilai positif. Dapat di katakan bahwa desain jalur pembuangan ini kurang baik meredam kebisingan pada frekuensi rendah,namun pada frekuensi diatas 800Hz desain jalur pembuangan ini mampu meredam kebisingan dengan baik. Batasan dari silencer passive adalah memiliki atenuasi yang kurang baik pada frekuensi rendah (Leventhall, 2006). Pada 1/3 oktaf untuk round duct sangat sulit untuk memprediksi transmission loss yang ada pada round duct (Long, 2006). Leventhall, G. (2006). Noise Control in HVAC Active Passive or None. United Kingdom. Long, M. (2006). Architectural Acoustics. San Diego, California 92101-4495 USA: Elsevier Academic Press. Mediastika, C. E. (2005). Akustika Bangunan. Jakarta: Erlangga. Nugraha, B. A. (2013). Peningkatan Insulasi Akustik Dinding Luar Kamar Hotel Studi Kasus Didalam Bandar Udara. Surabaya: Teknik Fisika FTI-ITS. Saputra, A. J. (2007). Analisis Kebisingan Peralatan Pabrik Dalam Upaya Peningkatan Penataan Peraturan Keselamatan dan Kesehatan Kerja di PT. Pupuk Kaltim. Semarang: Universitas Diponegoro. SMACNA Duct Design Committee. (1990-Third Edition). HVAC System Duct Design. Virginia: LAFAYETTE CENTER DRIVE. Biodata Penulis : IV. KESIMPULAN Dari penelitian yang telah dilakukan, maka dapat disimpulkan bahwa: Untuk mendapatkan hasil redaman yang baik, diperlukan material akustik berbahan yang baik pula untuk mencegah kebocoran suara dari luar masuk ke dalam ruangan. Hasil pengukuran koefisien absorpsi material akustik yang dipakai memiliki nilai sebesar 0.92946 dengan parameter nilai baik sebesar 1 dan parameter nilai buruk dibawah 0.2. Dapat di katakan bahwa rockwool adalah material akustik yang baik dalam meredam kebisingan. Dari hasil analisa nilai transmission loss yang telah dilakukan dapat terlihat bahwa desain jalur pembuangan kamar mandi dalam ini dapat berfungsi dengan baik. Namun terdapat kekurangan pada frekuensi rendah, kurang mampu menyerap suara dengan baik pada frekuensi rendah. Pada pengukuran tingkat tekanan bunyi sebaiknya menggunakan pita 1/1 oktaf sesuai dengan yang direkomendasikan oleh SMACNA HVAC System Duct Design. Nama : Batara Sakti TTL : Jakarta, 01 Oktober 1990 Alamat : Klampis Semolo Tengah I F20 Email : batarasakti.naga@gmail.com Pendidikan : - SD Mardiyuana (1996-2002) - SMP Mardiyuana (2002-2005) - SMA Negeri 1 Serang (2005-2008) - S1-Reguler Teknik Fisika ITS (2008-sekarang) DAFTAR PUSTAKA Fitri, W. G. (2013). Pengaruh Kebisingan Terhadap Kesehatan. Padang: Fakultas Kesehatan Masyarakat Universitas Andalas.