Perkuatan Lentur Pelat Lantai Tampang Persegi dengan Penambahan Tulangan Tarik dan Komposit Mortar

dokumen-dokumen yang mirip
PERKUATAN LENTUR PELAT BENTANG 5 METER DENGAN PENAMBAHAN PLAT BAJA MENGGUNAKAN PEREKAT EPOXY

ek SIPIL MESIN ARSITEKTUR ELEKTRO

BAB II TINJAUAN PUSTAKA

ANALISIS TEORITIS LAYER METHOD DAN EKSPERIMENTAL PERKUATAN BALOK BETON BERTULANG MENGGUNAKAN TULANGAN LONGITUDINAL DENGAN SELIMUT MORTAR

Received Date: 26 Mei 2017 Approved Date: 20 Juli 2017

LENDUTAN DAN POLA RETAK PELAT JEMBATAN BENTANG 5 METER DITINJAU DARI PERBANDINGAN HASIL PENELITIAN DAN PENDEKATAN NUMERIK. Oleh: Hafiz Abdillah 4

BAB 4 PENGOLAHAN DATA DAN ANALISA

INFO TEKNIK Volume 10 No. 1, Juli 2009 (34-42)

KAJIAN DAKTILITAS DAN KEKAKUAN PERKUATAN BALOK T DENGAN KABEL BAJA PADA MOMEN NEGATIF

PENGGUNAAN CARBON FIBER REINFORCED PLATE SEBAGAI BAHAN KOMPOSIT EKSTERNAL PADA STRUKTUR BALOK BETON BERTULANG

KERUNTUHAN LENTUR BALOK PADA STRUKTUR JOINT BALOK-KOLOM BETON BERTULANG EKSTERIOR AKIBAT BEBAN SIKLIK

STUDI EKSPERIMENTAL KUAT LENTUR PADA BALOK BETON BERTULANG DENGAN PERKUATAN BAJA RINGAN PROFIL U


PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S)

Pengaruh Variasi Tebal Terhadap Kekuatan Lentur Pada Balok Komposit Menggunakan Response 2000

PENGUJIAN LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN MODIFIKASI ALAT UJI TEKAN

Perilaku Lentur pada Keadaan Layan dan Batas Balok Beton Bertulang Berlubang Memanjang

STUDI EKSPERIMENTAL BALOK BETON BERTULANG BERSENGKANG TERTUTUP TEGAK DENGAN PENYAMBUNG KAIT DAN LAS

ANALISIS PERBANDINGAN PENGUJIAN LENTUR BALOK TAMPANG PERSEGI SECARA EKSPERIMENTAL DI LABORATORIUM DENGAN PROGRAM RESPONSE 2000

PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK

Sistem Lantai Komposit dari Bahan Pracetak Support Beam, Curve Tile dan Beton Cor di Tempat

Analisis Perilaku Lentur Balok Beton Bertulang Tampang T Menggunakan. Response-2000

MEKANISME KERUNTUHAN BALOK BETON YANG DIPASANG CARBON FIBER REINFORCED PLATE

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

DAFTAR ISI JUDUL PENGESAHAN PERNYATAAN BEBAS PLAGIASI ABSTRAK ABSTRACT KATA PENGANTAR

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

KAPASITAS LENTUR DAN DAKTILITAS BALOK BETON BERTULANG YANG DIPASANG CARBON WRAPPING

SEMINAR NASIONAL TEKNIK FST-UNDANA TAHUN 2017 Hotel On The Rock, Kupang, November 2017

KAJIAN PERILAKU LENTUR PELAT KERAMIK BETON (KERATON) (064M)

INFRASTRUKTUR KAPASITAS LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN AGREGAT KASAR TEMPURUNG KELAPA

PERILAKU LENTUR BALOK BETON DENGAN PERKUATAN BAMBU PETUNG DAN PEREKAT BERBAHAN DASAR SEMEN (160S)

UJI EKSPERIMENTAL KEKUATAN DRAINASE TIPE U-DITCH PRACETAK

PENGUJIAN KAPASITAS LENTUR DAN KAPASITAS TUMPU KONSTRUKSI DINDING ALTERNATIF BERBAHAN DASAR EPOXY POLYSTYRENE (EPS)

PENGARUH PENAMBAHAN KAIT PADA TULANGAN BAMBU TERHADAP RESPON LENTUR BALOK BETON BERTULANGAN BAMBU

EVALUASI KUAT GESER BALOK BETON BERTULANG SECARA EKSPERIMEN DAN ANALISIS NUMERIK

III. METODE PENELITIAN

PENGARUH TULANGAN CRT DAN TULANGAN BJTD PADA KOMPONEN LENTUR DENGAN MUTU BETON F C 24,52 MPA (182S)

ANALISIS EKSPERIMEN LENTUR KOLOM BATATON PRACETAK AKIBAT BEBAN AKSIAL EKSENTRIS

ANALISIS KUAT LENTUR BALOK BETON BERTULANG DENGAN CARBON FIBER WRAP

POLA RETAK DAN LEBAR RETAK DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK

BAB 3 METODE PENELITIAN

PENGARUH TEBAL SELIMUT BETON TERHADAP KUAT LENTUR BALOK BETON BERTULANG

PERBAIKAN DAN PERKUATAN BALOK BETON BERTULANG DENGAN CARA PENAMBAHAN PROFIL BAJA KANAL

BAB I PENDAHULUAN. digunakan di Indonesia dalam pembangunan fisik. Karena sifat nya yang unik. pembuatan, cara evaluasi dan variasi penambahan bahan.

PENELITIAN BALOK BETON BERTULANG DENGAN DAN TANPA PEMAKAIAN SIKAFIBRE

PENGARUH VARIASI JARAK SENGKANG TERHADAP KAPASITAS LENTUR BALOK BETON BERTULANG BAMBU YANG TERKANG PADA JALUR TEKANNYA

BAB III UJI LABORATORIUM. Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3

Indonesia, Indonesia

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

ANALISIS DAN EKSPERIMEN PELAT BETON BERTULANG BAMBU LAPIS STYROFOAM

KAJIAN EKSPERIMENTAL PENGARUH BENTUK PENAMPANG BALOK TERHADAP BEBAN MAKSIMUM DAN KEKAKUAN BALOK BETON BERTULANG

INFO TEKNIK Volume 14 No. 1 Juli 2013 (65-73)

KUAT LENTUR BALOK BETON TULANGAN BAMBU PETUNG VERTIKAL

BAB II STUDI PUSTAKA

BAB I PENDAHULUAN. 1 Universitas Kristen Maranatha

TINJAUAN KUAT GESER DAN KUAT LENTUR BALOK BETON ABU KETEL MUTU TINGGI DENGAN TAMBAHAN ACCELERATOR

STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG ABSTRAK

Kapasitas Penggunaan Carbon Fiber Reinforced Polymer (Cfrp) Berlapis Banyak Terhadap Perkuatan Lentur Struktur Balok Beton Bertulang

PEMANFAATAN BAMBU UNTUK TULANGAN JALAN BETON

Seminar Nasional VII 2011 Teknik Sipil ITS Surabaya Penanganan Kegagalan Pembangunan dan Pemeliharaan Infrastruktur

BAB 3 METODE PENELITIAN

PERILAKU STATIS DAN DINAMIS STRUKTUR BETON PRACETAK DENGAN SISTEM SAMBUNGAN

Gambar 5.29 Perbandingan nilai beban 1P cr tiap balok

Studi Eksperimental Kuat Geser Pelat Beton Bertulang Bambu Lapis Styrofoam

EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN

PERBANDINGAN KUAT LENTUR SATU ARAH PELAT BETON TULANGAN BAMBU DENGAN PELAT BETON TULANGAN BAMBU ISI STYROFOAM PUBLIKASI ILMIAH TEKNIK SIPIL

STUDI EKSPERIMENTAL KOMPARASI KAPASITAS BALOK DENGAN PLATFORM GALVALUM DENGAN BALOK KONVENSIONAL

PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER

PEMANFAATAN BETON SERAT ANYAMAN KAWAT SEBAGAI PERKUATAN METODE PREPACKED CONCRETE PADA BALOK BETON BERTULANG (161S)

PENGUJIAN KUAT LENTUR PANEL PELAT BETON RINGAN PRACETAK BERONGGA DENGAN PENAMBAHAN SILICA FUME

STUDI KUAT LENTUR BALOK DENGAN PENAMBAHAN GLENIUM ACE 8590

STUDI EKSPERIMENTAL PENGARUH KONFIGURASI SENGKANG PADA DAERAH TEKAN BALOK BETON SERAT BERTULANG

STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK

3.4.2 Pemeriksaan Berat Jenis dan Penyerapan Air Agregat Halus Error! Bookmark not defined Kadar Lumpur dalam Agregat... Error!

(Fv). Setelah dilakukan pengujian pendahuluan dilanjutkan dengan pengujian

PERILAKU LENTUR BALOK BETON BERTULANG DENGAN PENAMBAHAN SERAT POLYPROPYLENE (FIBER PLASTIC BENESER) Oleh : RIKAR PALEDUNG NPM :

PERBANDINGAN DAKTILITAS BALOK BETON BERTULANG DENGAN MENGGUNAKAN PERKUATAN CFRP DAN GFRP

BAB I PENDAHULUAN. luar. Hal ini dapat disebabkan oleh beberapa faktor, antara lain : kesalahan pada mix design,

ANALISIS EKSPERIMENTAL PENGARUH PENEMPATAN SAMBUNGAN BASAH (WET-JOINT) TERHADAP BEBAN ULTIMIT BALOK BETON BERTULANG. Abstrak

KUAT LEKAT TULANGAN PADA BERBAGAI VARIASI MUTU BETON NORMAL

Spektrum Sipil, ISSN Vol. 4, No. 2 : 25-34, September 2017

Perilaku Lentur Panel Beton Semi-Precast pada Daerah Lapangan Tanpa Metode Perkuatan Elemen Pracetak: Tinjauan pada 1, 2 dan 3 Panel

BAB I PENDAHULUAN Latar Belakang. Kolom memegang peranan penting dari suatu bangunan karena memikul

DAKTILITAS KOLOM YANG DIPERKUAT DENGAN CFRP. Vera Agustriana Noorhidana. Eddy Purwanto

Pengaruh Fire Proofing pada Balok Beton Pasca Bakar

Hendra Wahyu, Suherman Sulaiman, Mujiman Jurusan Teknik Sipil Politeknik Negeri Bandung

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL

PERILAKU LENTUR BALOK BETON BERTULANG KOMPOSIT BETON NORMAL-BETON NON PASIR TAMPANG T

TINJAUAN KUAT TEKAN DAN KERUNTUHAN BALOK BETON BERTULANG MENGGUNAKAN TRAS JATIYOSO SEBAGAI PENGGANTI PASIR. Naskah Publikasi

PERBANDINGAN KUAT TARIK LENTUR BETON BERTULANG BALOK UTUH DENGAN BALOK YANG DIPERKUAT MENGGUNAKAN CHEMICAL ANCHOR

Kinerja Hubungan Pelat-Kolom Struktur Flat Plate Bertulangan Geser Stud Rail dan Sengkang Dalam Menahan Beban Lateral Siklis

PENGARUH PENGGUNAAN CARBON FIBER REINFORCED PLATE TERHADAP PERILAKU LENTUR STRUKTUR BALOK BETON BERTULANG 1

PENGARUH PROSENTASE TULANGAN TARIK PADA KUAT GESER BALOK BETON BERTULANG MENGGUNAKAN SERAT KALENG BEKAS AKIBAT BEBAN LENTUR

BAB I PENDAHULUAN 1.1. Latar Belakang

PENGARUH TERJADINYA FIRST CRACK TERHADAP LAJU PENINGKATAN MOMEN NEGATIF TUMPUAN PADA BALOK BETON

STUDI EKSPERIMENTAL PENGUJIAN BEBAN SIKLIK KOLOM PERSEGI BETON BERTULANG DENGAN PERKUATAN PEN-BINDER DAN FRP ABSTRAK

BAB 4 ANALISIS DATA DAN PEMBAHASAN

UJI EKSPERIMENTAL PROFIL BAJA HOLLOW YANG DIISI MORTAR FAS 0,4

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal

Transkripsi:

JURNAL ILMIAH SEMESTA TEKNIKA Vol. 13, No.1, 1-11, Mei 21 1 Perkuatan Lentur Pelat Lantai Tampang Persegi dengan Penambahan Tulangan Tarik dan Komposit Mortar (Flexural Strengthening of Rectangular Concrete Slab Using Tension Reinforcement and Composite Mortar) JUANDRA HARTONO, IMAN SATYARNO, ANDREAS TRIWIYONO ABSTRACT Overloading of structures can cause failure. In order to continue using them, strengthening is required. In this research elastic strengthening was carried out on concrete floor plates by means of tensile reinforcement addition, and mortar composite addition to apply epoxy resin. Four reinforced concrete slabs, consisted of one control slab (PK), one monolith slab (PM), one strengthened slab (PPE) and one unstrengthened slab (PPTE). Specimen dimensions were 7 mm x 15 mm x mm for the PK, and 7 mm x 15 mm x 1 mm for the others. Specimens were placed on a simply supported loading frame, and statically loaded at their mid-span. Numerical analysis using Response-2 software package was carried out for comparison with the experiment al result. It was found out that the flexural capacity of the PK, PPE, PPTE and PM specimens are 5,99 knm, 12,52 knm, 13,87 knm and 21,38 knm, respectively. In comparison with that of the PK, flexural capacity of the PPE and PPTE specimens was found to increase by 19,19 % and 131,55 %, respectively. The increase of stiffness was 324,77 % and 43,21 % for the PPE and PPTE specimens, respectively. The ductility factor of the PPE and PPTE increase 29,63 % and 19,3 %, respectively. The PK and PM specimen s experienced flexural failure, while the PPE and PPTE specimens experienced debonding failure. Keywords : plate, strengthening, flexural capacity, static load, Response-2 PENDAHULUAN Inovasi dan perkembangan teknologi bahan bangunan dewasa ini semakin maju, yang ditandai dengan semakin banyaknya variasi bahan-bahan bangunan yang dapat digunakan untuk tujuan tertentu. Seperti telah diketahui bahwa pelat lantai gedung merupakan salah satu komponen penting pada struktur gedung. Seiring berjalannya waktu, banyak bangunan beton bertulang yang mengalami perubahan fungsi bangunan yang menyebabkan tingkat keamanan nya berkurang. Pengurangan tingkat keamanan juga bisa disebabkan oleh pembeban an yang berlebihan, kesalahan dalam desain atau kesalahan dalam pelaksanaan konstruksi. Untuk mengatasi masalah tersebut bisa dilakukan perkuatan. Ada beberapa perkuatan yang dapat diaplikasikan, khususnya pada pelat lantai, misalnya menambah dimensi pelat dengan penambahan tulangan. Metode ini akan menimbulkan masalah berupa penambahan beban pada struktur. Selain itu dapat dilakukan dengan Carbon Fiber-Reinforced Polimer (CFRP), akan tetapi perkuatan dengan CFRP membutuhkan biaya yang tinggi dan ada faktor kesia-siaan dalam penggunaan CFRP tersebut, yaitu terdapat persentase kekuatan dari CRFP yang tidak digunakan. Apabila CFRP dikompositkan dengan beton, maka pada saat beton telah mencapai kekuatan batas (ultimite strength), CFRP hanya bekerja kurang dari 5% batas kekuatannya (Piyong, 24). Melihat beberapa alasan di atas, maka dalam penelitian ini akan dicoba alternatif perkuatan dengan memberikan tulangan tambahan pada daerah tarik dan penambahan komposit mortar pada struktur pelat lantai. Dengan penambahan tulangan dan komposit mortar tersebut diharapkan kapasitas lentur dari beban yang diterima dapat terpenuhi.

2 J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 Penelitian yang dilakukan bertujuan untuk mengetahui: 1. kapasitas lentur pelat sebelum dan sesudah perkuatan serta perbandingannya terhadap analisis teoritis. 2. kekakuan pelat sebelum dan sesudah perkuatan. 3. daktilitas pelat sebelum dan sesudah perkuatan. 4. pola keruntuhan pelat sebelum dan sesudah perkuatan. 5. kemudahan proses pelaksanaan perkuatan di lapangan. Agar penelitian ini dapat terarah sesuai dengan tujuan, maka penelitian ini dibatasi pada beberapa hal, yaitu : 1. Pelat sat u arah dengan tumpuan sederhana di kedua ujungnya. 2. Bonding agent yang digunakan berupa Epoxy adhesive jenis Sikadur 732 RT. 3. Beton normal dengan kuat tekan beton (fc ) sebesar 25 MPa. 4. Perkuatan yang dilakukan dalam kondisi underreinforced. 5. Pembebanan yang dilakukan dengan beban statik di tengah bentang. METODE PENELITIAN Bahan Penelitian Dalam penelitian ini digunakan beton ready mix (fc = 25 MPa), agregat halus (pasir merapi), baja tulangan (P1 dan D13), viscocrete-1 dan epoxy Sikadur-732 (kuat lekat = 3 kg/cm 2 ). Alat Penelitian Alat yang digunakan terdiri dari dua bagian, yaitu: 1. Alat-alat untuk pembuatan benda uji dan pengujian material, antara lain: internal vibrator, slump test apparatus, cutting bar, cetakan benda uji silinder beton, Compression Testing Machine, Universal Testing Machine (UTM), air compressor, dan core drill. 2. Alat-alat untuk pengujian benda uji pelat, antara lain : rangka baja (loading frame), hydraulic jack dan hydraulic pump, load cell dan data logger, Linear Variable Differential Transformer (LVDT), strain gauge, microcrackmeter, dan crane. Benda Uji 1. Benda uji pendahuluan Spesifikasi benda uji dapat dilihat pada Tabel 1. 2. Benda uji pelat Benda uji pelat beton dibuat sebanyak 4 buah. Spesifikasi dan detail penulangan dapat dilihat pada Tabel 2. Pelaksanaan Penelitian 1. Pembuatan mix design beton normal. Pembuatan mix design beton normal dilakukan dengan menggunakan readymix dengan mutu beton rencana (fc ) 25 MP a, dan besarnya nilai slump rencana 1 ± 2cm. TABEL 1. Spesifikasi benda uji pendahuluan Jenis Pengujian Jumlah Benda Uji Ukuran Kuat tekan beton 3 buah Silinder (d = 15 mm; h = 3 mm) Kuat tekan mortar 3 buah Silinder (d = 15 mm; h = 3 mm) Kuat tarik tulangan Pull-out Baja-Beton Pull-out Baja Mortar 3 buah untuk P-1 3 buah untuk D-13 3 buah untuk D-13 3 buah untuk D-13 Panjang 1 mm Silinder (d = 15 mm; h = 3 mm) Panjang tertanam 15 mm Kubus (15 mm x 15 mm x 15mm) Panjang tertanam 75 mm

J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 3 TABEL 2. Spesifikasi benda uji Dimensi pelat Jumlah tulangan (buah) No Jenis pelat Panjang Lebar Tebal Utama P1 Susut P1 Perkuatan D13 1 PK 15 7 5 7-2 PPE 15 7 1 5 7 3 3 PPTE 15 7 1 5 7 3 4 PM 15 7 1 5 7 3 Keterangan : PK : Pelat kontrol PPTE : Pelat perkuatan tanpa epoxy PPE : Pelat perkuatan dengan epoxy PM : Pelat monolit 2. Pembuatan benda uji pendahuluan. Pembuatan benda uji pendahuluan terdiri dari benda uji untuk kuat tarik tulangan, kuat tekan beton, kuat tekan mortar, dan pull-out baja tulangan dengan beton serta pull-out baja tulangan dengan mortar. 3. Pembuatan benda uji pelat Pembuatan benda uji dimulai dengan perakitan tulangan, pembuatan bekisting, pemasangan strain gauge, dan dilanjutkan dengan pengecoran serta perawatan benda uji. Strain gauge dipasang di tengah bentang dari benda uji, PK dipasang 1 buah (pada tulangan tarik), PM, PPE dan PPTE dipasang 2 buah masing-masing pada tulangan tarik dan perkuatan. 4. Pembuatan mix design mortar Pembuatan mix design mortar dilakukan di laboratorium dengan kuat tekan rencana minimal sama dengan kuat tekan beton normal yaitu 28,51 MPa, dengan komposisi 1 kg semen : 1,5 kg pasir, cc air : 15 cc viscocrete (Hendra, 25). 5. Perkuatan benda uji Perkuatan lentur benda uji dilakukan dengan meletakkan tulangan perkuatan pada sisi bawah pelat utama dengan cara diganjal menggunakan tahu beton, kemudian dilakukan pengecoran mortar untuk pelat perkuatan tanpa epoxy (PPTE), sedangkan untuk pelat perkuatan dengan epoxy (PPE) sebelum pengecoran mortar terlebih dahulu dilakukan pengolesan bonding agent. 6. Pengujian benda uji pelat. Pengujian benda uji pelat dilakukan setelah pelat berumur 28 hari. Benda uji ditempatkan pada loading frame dengan tumpuan sendi pada salah satu ujung dan rol pada ujung yang lainnya. Pembebanan dilakukan dengan sistem pembebanan satu titik di tengah bentang. Hal ini dilakukan untuk memperoleh kapasitas lentur murni. Pemberian beban dilakukan dengan memompakan hydraulic pump yang diteruskan ke hydraulic jack dan dibaca oleh load cell serta seterusnya terekam oleh data logger. Pemberian beban dilakukan bertahap dengan interval kenaikan sebesar,5 kn sampai balok mengalami retak pertama, dan kemudian per kenaikan 1 kn sampai balok mengalami keruntuhan. Set up alat dan pembebanan dapat dillihat pada Gambar 1. Analisis Analisis teoritis kapasitas lentur benda uji dilakukan dengan dua metode yaitu analisis dengan program Response-2 dan metode SNI. 1. Analisis kapasitas lentur benda uji pelat dengan Response-2 Nilai kuat lentur benda uji pelat yang dihitung dengan program Response-2 dapat dilihat pada Tabel 3 dan Gambar 2. 2. Analisis kapasitas lentur benda uji pelat dengan metode SNI Nilai kuat lentur benda uji pelat teoritis yang dihitung dengan menggunakan metode SNI 3-2847-22 dapat dilihat pada Tabel 4.

4 J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 1 2 4 3 5 6 9 1 11 4 7 8 GAMBAR 1. Set up alat dan pembebanan Keterangan : 1 = Loading Frame 7 = Benda uji pelat tampang persegi 2 = Load Cell 8 = Tumpuan Roll 3 = Data Logger 9 = Tumpuan Sendi 4 = Hydraulic Jack 1 = LVDT 5 = Pembebanan titik 11 = Strain Gauge 6 = Perata beban GAMBAR 1. Set up alat dan pembebanan TABEL 3. Perhitungan teoritis kapasitas beban dan lendutan benda uji berdasarkan program Response-2 No Benda uji Kapasitas beban (kn) Lendutan yang terjadi Lebar retak Retak I Leleh Maks Retak I Leleh Maks Retak I Maks Peningkatan Pmaks 1 PK 2,46 12,32 13,15,35 7,58 7,94,1,9 2 PM 7.94 37,8 45,47,54 11,24 22,63,2,96 245,779 3 PP 9,31 38,8 45,2,58 1,41 17,96,3,97 243,726

J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 5 8 Beban (kn) PK 2 PM PP 5 1 15 2 25 3 Lendutan GAMBAR 2. Hubungan antara beban dan lendutan pelat dari hasil program Response-2 TABEL 4. Perhitungan teoritis kapasitas beban dan lendutan benda uji No Benda Uji Kapasitas beban (kn) Lendutan yang terjadi Persentase peningkatan Retak I Leleh Maks Retak I Leleh Maks Pmaks 1 BK 3,36 13,9 15,89,69 2,68 3,25 2 BM 9,28 5,21 56,81,41 1,26 2,51 257,52 3 BP 13,5 43,32 52,2, 8,85 2,31 228,5 HASIL DAN PEMBAHASAN Pengujian Kuat Lentur Pelat Lantai 1. Pengujian pendahuluan Hasil pengujian material berupa kuat tarik baja tulangan, tegangan leleh rata-rata (fy) baja tulangan polos diameter 1 mm sebesar 378,5 MPa dan tulangan ulir diameter 13 mm sebesar 49,2 MPa. Hasil pengujian kuat tekan beton rerata pada usia 28 hari sebesar 28,51 MPa, sedangkan hasil kuat tekan mortar pada umur 28 hari sebesar 56,13 MPa. Hasil pengujian pull-out baja D13 dengan beton sebesar 11,47 MPa, sedangkan hasil uji pull-out baja tulangan D13 dengan mortar adalah sebesar 11,2 MPa. 2. Pengujian Lentur a. Pengujian lentur hasil eksperimen Hasil pengujian lentur pelat dapat dilihat pada Tabel 5 dan Tabel 6. Kapasitas lentur untuk pelat perkuatan dengan epoxy (PPE) meningkat sebesar 19,2% terhadap pelat kontrol (PK), tetapi mengalami penurunan sebesar 41,45% terhadap pelat monolit (PM). Untuk pelat perkuatan tanpa epoxy (PPTE) kapas itas lenturnya meningkat 131,55% terhadap pelat kontrol (PK), tetapi mengalami penurunan sebesar 35,14% terhadap pelat monolit (PM). Penurunan kapasitas lentur pelat perkuatan terhadap pelat monolit disebabkan karena pelat perkuatan mengalami kerusakan delaminasi sebelum mencapai beban maksimum. Dengan melihat hasil kenaikan kapasitas lentur antara pelat perkuatan tanpa epoxy dan dengan epoxy yang relatif sama, menunjukkan bahwa penggunaan epoxy Sikadur 732 dapat dikatakan tidak akan memberikan kenaikan beban yang maksimal oleh perkuatan pelat di daerah tarik pada pembebanan statik. Hubungan antara beban dan lendutan hasil eksperimen dapat dilihat pada Gambar 3.

6 J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 No Benda uji TABEL 5. Hasil pengujian lentur pelat hasil eksperimen Beban (P) pada saat Lendutan ( δ ) pada saat Crack Leleh Ultimit Crack Leleh Ultimit (kn) (kn) (kn) 1 PK 3,11 12,21 16,41 1.38 8,41 27,6 2 PPE 8,91 21,21 34,31,93 6,79 28,32 3 PPTE 6,71 28,11 38,1,56 2,41 9,23 4 PM 9,2 45,95 58, 1,43 9,4 23,34 TABEL 6 Peningkatan kuat lentur pelat lantai hasil eksperimen Benda uji P maks (kn) M maks (kn-m) Persentase peningkatan PK 16,41 5,99 PPE 34,31* 12,52 19,2 PPTE 38,1* 13,87 131,55 PM 58, 21,38 256,93 Ket : * = Maksimum saat terjadi kerusakan delaminasi Beban (kn) 5 3 2 PM PPE PPTE PK 1 2 8 Lendutan GAMBAR 3. Hubungan beban dan lendutan (eksperimen) GAMBAR 3. Hubungan antara beban dan lendutan pelat dari hasil eksperimen b. Perbandingan beban hasil teoritis, pengujian dan Response-2 Secara keseluruhan beban hasil eksperimen yang diperoleh berbeda dengan beban hasil analisis secara teoritis dengan metode SNI maupun dengan analisis program Response- 2. Besarnya perbedaan tersebut secara lengkap dapat dilihat pada Tabel 7. Dari Tabel 7 dapat dilihat bahwa hasil eksperimen dari pelat kontrol (PK) dan pelat monolit (PM) kekuatannya lebih besar jika dibandingkan dengan hasil teoritis metode SNI maupun dengan metode analisis plastis menggunakan Response-2, Untuk pelat perkuatan dengan epoxy (PPE) maupun tanpa epoxy (PPTE) hasil pengujiannya lebih kecil dari hasil teoritis metode SNI dan Response- 2. Hal ini disebabkan pada saat pengujian, pelat mengalami kerusakan delaminasi dan runtuh sebelum mencapai beban maksimum.

J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 7 No Benda Uji TABEL 7. Perbandingan beban hasil eksperimen dan teoritis P Metode SNI (kn) P Response-2 (kn) Pmaks (Pengujian) (kn) Pmaks / P SNI Pmaks / P Response-2 1 BK 15,89 13,15 16,41 13,27 124,79 2 PPE 52,2 45,2 34,31 65,73 75,91 3 PPTE 52,2 45,2 38,1 65,73 84,9 4 PM 56,81 45,47 58, 13,15 128,88 5 Beban (KN) Hasil Pengujian 3 Response-2 2 SNI 1 2 8 Beban (KN) 2 PPTE Response-2 PPE SNI 2 8 Lendutan Lendutan (a). PK (b). PP 5 Beban (KN) 3 2 1 Hasil pengujian Response-2 SNI 2 8 Lendutan (c). PM GAMBAR 4. Perbandingan beban-lendutan benda uji pelat c. Kekakuan Benda Uji Hubungan beban dan lendutan hasil pengujian untuk perhitungan kekakuan di bagi menjadi dua bagian, untuk initial stiffness yaitu kekakuan yang didapat dari awal pembebanan hingga retak pertama (Tabel 8), sedangkan untuk kekakuan tahap kedua yaitu kekakuan yang didapat dari pembebanan mulai retak pertama hingga leleh (Tabel 9). d. Daktilitas Pelat Lantai Perhitungan nilai daktilitas pada penelitian ini mengacu pada teori daktilitas Park dan Paulay (1975) bahwa nilai daktilitas adalah perbandingan antara lendutan pada saat ultimit dan lendutan pada saat leleh. Nilai daktilitas pelat lantai pada pengujian di laboratorium ditunjukkan pada Tabel 1. Dari Tabel 1 dapat dilihat bahwa daktilitas pelat perkuatan baik dengan epoxy (PPE) maupun tanpa epoxy (PPTE) mengalami peningkatan yaitu secara

8 J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 berturut-turut sebesar 29,63 % dan 19,3 % terhadap pelat kontrol. Peningkatan ini terjadi akibat pelat perkuatan mengalami keruntuhan delaminasi sebelum beban ultimit terlampaui, sehingga beban yang bekerja setelah terjadi delaminasi antara pelat utama dan mortar perkuatan diterima oleh pelat utama sampai pelat mengalami kehancuran pada lendutan yang besar. Seharusnya daktilitas pelat perkuatan menurun sekitar 19,758 % terhadap pelat kontrol sebagai mana yang terjadi pada pelat monolit (PM). e. Regangan tulangan Nilai regangan benda uji hasil eksperimen dan regangan hasil analisis Response-2 disajikan pada Gambar 5. f. Pola Retak dan Keruntuhan Pola keruntuhan yang terjadi pada pelat kontrol (PK) dan pelat monolit (PM) adalah keruntuhan lentur sedangkan pelat pada pelat perkuatan dengan epoxy (PPE) dan tanpa epoxy (PPTE) mengalami kerusakan debonding. Pola keruntuhan dari benda uji dapat dilihat pada Gambar 6. Benda uji TABEL 8. Kekakuan benda uji pada saat initial stiffness Pcrack (N) Lendutan Kekakuan (Nmm) Persentase peningkatan* PK 3114 1,38 2256,52 PPE 8914,93 9584,95 324,77 PPTE 67,56 11964,2 7 43,21 PM 92 1,43 6433,57 185,11 Ket : * = persentase peningkatan dihitung terhadap pelat kontrol Benda uji Pcrack (N) TABEL 9. Kekakuan benda uji pada tahap kedua Lendutan Kekakuan (Nmm) Persentase peningkatan) PK 123 8,66 1459,8 PPE 255 9,15 2786,89 91, PPTE 285 2,57 1167,96 658,56 PM 4395 8,64 586,81 248,63 Ket : * = persentase peningkatan dihitung terhadap pelat kontrol Benda uji δ y TABEL 1. Nilai daktilitas pelat δ u U Daktilitas = δ u δ y Penurunan * PK 8,41 27,6 3,22 PPE 6,79 28,32 4,17 29,63 PPTE 2,41 9,23 3,83 19,3 PM 9,4 23,34 2,58-19.76 Keterangan :*= Persentase penurunan daktilitas terhadap pelat kontrol

J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 9 2 Membrane-2 Regangan Tarik..5.1.15.2 Regangan Regangan tarik 2 Regangan perkuatan Membrane-2..5.1.15.2 Regangan (a). PK (b). PPE 5 3 Regangan tarik 2 Regangan perkuatan 1 Respon program..5.1.15.2 Regangan Beban (KN) 2 Regangan tarik Regangan perkuatan Respon program..5.1.15.2 Regangan (c). PPTE (d). PM GAMBAR 5. Hubungan beban dan regangan benda uji (a). PK (b). PPE GAMBAR 6. Bersambung...

1 J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 (c). PPTE GAMBAR 6. Pola retak benda uji (d). PM KESIMPULAN 1. Besarnya kapasitas lentur dari hasil pengujian PK, PPE, PPTE dan PM berturut-turut adalah : 5,99 knm, 12,52 knm, 13,87 knm dan 21,38 knm. Dengan membandingkan terhadap pelat kontrol, perkuatan lentur pelat beton bertulang dengan penambahan tulangan meningkatkan kapas itas lentur untuk PPE, PPTE, PM masing-masing sebesar 19,2%, 131,55% dan 256,93%. Perbandingan kapasitas lentur hasil eksperimen dengan teoritis metode SNI dan program Response-2 didapatkan sebesar 13,27% dan 124,79% untuk PK, 65,72% dan 75,91% untuk PPE, 65,72% dan 84,9% untuk PPTE, 13,15% dan 128,88% untuk PM 2. Kekakuan lentur hasil eksperimen benda uji PK, PPE, PPTE dan PM secara berturut-turut untuk initial stiffness adalah 2256,52 N/mm, 9584,95 N/mm, 11964,29 N/mm, 6433,57 N/mm. Kenaikan kekakuan lentur pelat PPE, PPTE, PM terhadap PK adalah 324,77%, 43,21% dan 185,11%. Kekakuan tahap kedua benda uji secara berturut-turut adalah 1459,8 N/mm, 2786,89 N/mm, 1167,96 N/mm dan 586,81 N/mm dengan kenaikan terhadap PK secara berturut-turut adalah 91,%, 658,56% dan 248,63%. 3. Perkuatan lentur dengan penambahan tulangan pada pelat beton bertulang mengalami kenaikan faktor daktilitas, hal ini disebabkan karena pelat perkuatan mengalami keruntuhan delaminasi sebelum beban ultimit terlampaui. Secara berturut-turut untuk PPE dan PPTE sebesar 29,63% dan 19,3%. 4. Kegagalan benda uji sebelum diperkuat adalah kegagalan lentur dan setelah diperkuat adalah kegagalan debonding/ delaminasi. 5. Perkuatan dengan menggunakan metode ini memberi kemudahan dalam proses pengecoran selimut mortar, dimana mortar dapat dengan sendirinya mengalir melalui celah yang sempit ke dalam setiap sisi bekisting tanpa digetarkan dan hasilnya permukaan mortar tetap halus setelah bekisting dibuka. DAFTAR PUSTAKA Hendra (25). Pengaruh penggunaan serutan besi dengan metode preplaced concrete pada kuat tekan, kuat tarik, dan kuat lentur. Tesis M.Eng., Universitas Gadjah Mada. Park, R. & Paulay, T. (1975). Reinforced concrete structures. New York: John Wiley & Sons, Inc. Piyong (24). Perkuatan pelat beton menggunakan sistem tiga tahap pemasangan Carbon Fiber Reinforced Polymer (CFRP) pratekan pada pelat beton. Tesis M.Eng., Universitas Gadjah Mada.

J. Hartono, et al. / Semesta Teknika, Vol. 13, No. 1, 1-11, Mei 21 11 PENULIS: Juandra Hartono Alumni Program Pascasarjana, Jurusan Teknik Sipil dan Lingkungan, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia. Iman Satyarno, Andreas Triwiyono Jurusan Teknik Sipil dan Lingkungan, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia. Email: Docyy_Juandra@yahoo.com Diskusi untuk makalah ini dibuka hingga tanggal 1 April 211 dan akan diterbitkan dalam jurnal edisi Mei 211