PENELITIAN MENGENAI SNI 1726:2012 PASAL TENTANG DISTRIBUSI GAYA LATERAL TERHADAP KEKAKUAN, KEKUATAN, DAN PENGECEKAN TERHADAP SISTEM TUNGGAL

dokumen-dokumen yang mirip
EVALUASI SNI 1726:2012 PASAL MENGENAI DISTRIBUSI GAYA LATERAL TERHADAP KEKAKUAN DAN KEKUATAN PADA SISTEM GANDA SRPMK DAN SRBKK

EVALUASI SNI 1726:2012 PASAL MENGENAI DISTRIBUSI GAYA LATERAL PADA PENGGUNAAN SISTEM GANDA

PERENCANAAN STRUKTUR BAJA BERDASARKAN KEKAKUAN DAN KEKUATAN SISTEM GANDA SRPMK DAN SRBE BENTUK DIAGONAL MENURUT SNI 1726:2012 PASAL

KATA KUNCI: gempa, sistem ganda, SRPMK, SRBKK, 25%, gaya lateral, kekakuan

KATA KUNCI: sistem rangka baja dan beton komposit, struktur komposit.

Konferensi Nasional Teknik Sipil 4 (KoNTekS 4) Sanur-Bali, 2-3 Juni 2010

EVALUASI KINERJA SISTEM RANGKA PEMIKUL MOMEN KHUSUS SNI PADA STRUKTUR DENGAN GEMPA DOMINAN

KAJIAN KINERJA STRUKTUR RANGKA BRESING V-TERBALIK EKSENTRIK DAN KONSENTRIK (215S)

adalah momen pada muka joint, yang berhubungan dengan kuat lentur nominal balok pada hubungan balok. Kolom tersebut.

KATA KUNCI : direct displacement based design, time history analysis, kinerja struktur.

BAB V ANALISIS DAN PEMBAHASAN

BAB I PENDAHULUAN Latar Belakang

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK

LAPORAN PENELITIAN FUNDAMENTAL No: 14/PEN/SIPIL/2010

KRITISI DESAIN PSEUDO ELASTIS PADA BANGUNAN BERATURAN 6- DAN 10- LANTAI DENGAN DENAH PERSEGI DI WILAYAH 6 PETA GEMPA INDONESIA

Prosiding Seminar Nasional Teknik Sipil 1 (SeNaTS 1) Tahun 2015 Sanur - Bali, 25 April 2015

BAB 1 PENDAHULUAN. yaitu di kepulauan Alor (11 Nov, skala 7.5), gempa Papua (26 Nov, skala 7.1),

Pengaruh Core terhadap Kinerja Seismik Gedung Bertingkat

BAB VI KESIMPULAN DAN SARAN. Perencanaan letak sendi plastis dengan menggunakan reduced beam

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1

EVALUASI METODE FBD DAN DDBD PADA SRPM DI WILAYAH 2 DAN 6 PETA GEMPA INDONESIA

LAPORAN PENELITIAN PELAKSANAAN PENELITIAN PF/PAK/PPM

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB II TINJAUAN PUSTAKA

KATA KUNCI: direct displacement-based design, performance based design, sistem rangka pemikul momen, analisis dinamis riwayat waktu nonlinier.

KRITISI DESAIN PSEUDO ELASTIS PADA BANGUNAN BERATURAN 6- DAN 10- LANTAI DENGAN DENAH PERSEGI PANJANG DI WILAYAH 2 PETA GEMPA INDONESIA

balok yang merangkainya atau yang biasa dikenal dengan istilah strong column weak beam. Gambar 1.1. Side Sway Mechanism

EVALUASI KEMAMPUAN STRUKTUR RUMAH TINGGAL SEDERHANA AKIBAT GEMPA

Pengaruh Bentuk Bracing terhadap Kinerja Seismik Struktur Beton Bertulang

BAB II STUDI PUSTAKA

DIRECT DISPLACEMENT BASED DESIGN PADA SISTEM RANGKA DENGAN KETIDAKBERATURAN PERGESERAN MELINTANG TERHADAP BIDANG

balok yang merangkainya atau yang biasa dikenal dengan istilah strong column weak beam. Gambar 1.1. Side Sway Mechanism

ANALISIS PENGARUH SISTEM PENAHAN BEBAN LATERAL TERHADAP KINERJA STRUKTUR RANGKA BAJA GEDUNG BERATURAN

LAPORAN PENELITIAN APLIKATIF-KREATIF

KRITISI DESAIN PSEUDO ELASTIS PADA BANGUNAN BERATURAN 6- DAN 10-LANTAI DENGAN DENAH PERSEGI PANJANG DI WILAYAH 6 PETA GEMPA INDONESIA

Evaluasi Kinerja Gedung Beton Bertulang Dengan Pushover Analysis Akibat Beban Gempa Padang

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

PRESENTASI TUGAS AKHIR

PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA

ANALISIS DAN PEMBAHASAN

BAB 5 KESIMPULAN DAN SARAN. Secara keseluruhan, kesimpulan dari studi yang dilakukan adalah :

PRAKATA. Surabaya, 28 Februari Penulis

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

STUDI PERILAKU STRUKTUR BETON BERTULANG TERHADAP KINERJA BATAS AKIBAT PENGARUH TINGGI BANGUNAN DAN DIMENSI KOLOM BERDASARKAN SNI

STUDI PENENTUAN DIMENSI ELEMEN STRUKTUR PADA SISTEM RANGKA PEMIKUL MOMEN BERATURAN YANG DIDESAIN DENGAN METODE DIRECT DISPLACEMENT BASED DESIGN

BAB 1 PENDAHULUAN Umum

BAB II TINJAUAN PUSTAKA

STUDI PERBANDINGAN SPECIAL TRUSS MOMENT FRAME

Kajian Pemakaian Shear Wall dan Bracing pada Gedung Bertingkat

PENDAHULUAN Perencanaan gedung tahan gempa telah menjadi perhatian khusus mengingat telah banyak terjadi gempa cukup besar akhir-akhir ini. Perencanaa

BAB V ANALISA DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

Cipta Adhi Prakasa dan Sjahril A. Rahim. ABSTRAK

Studi Assessment Kerentanan Gedung Beton Bertulang Terhadap Beban Gempa Dengan Menggunakan Metode Pushover Analysis

BAB II TINJAUAN PUSTAKA

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI

ANALISA KINERJA LINK TERHADAP VARIASI TIPE PENGAKU PADA RANGKA BERPENGAKU EKSENTRIS

EVALUASI KINERJA PORTAL BAJA 3 DIMENSI DENGAN PENGAKU LATERAL AKIBAT GEMPA KUAT BERDASARKAN PERFORMANCE BASED DESIGN

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

LAPORAN PENELITIAN FUNDAMENTAL No: 08/PEN/SIPIL/2010

ANALISIS DINAMIK RAGAM SPEKTRUM RESPONS GEDUNG TIDAK BERATURAN DENGAN MENGGUNAKAN SNI DAN ASCE 7-05

EVALUASI KINERJA STRUKTUR BANGUNAN BAJA DENGAN MENGGUNAKAN PENGAKU EKSENTRIS (EBF) Ir. Torang Sitorus, MT.

PERENCANAAN STRUKTUR RANGKA BAJA DENGAN BRESING TAHAN TEKUK

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI

EVALUASI KINERJA BANGUNAN YANG DIDESAIN SECARA DDBD TERHADAP GEMPA RENCANA

MODIFIKASI PERENCANAAN MENGGUNAKAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS PADA GEDUNG APARTEMEN METROPOLIS

STUDI EVALUASI KINERJA STRUKTUR BAJA BERTINGKAT RENDAH DENGAN ANALISIS PUSHOVER ABSTRAK

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA

LAPORAN PENELITIAN PELAKSANAAN PENELITIAN PF/PAK/PPM

DAFTAR ISI. BAB II TINJAUAN PUSTAKA Umum Beban Gempa Menurut SNI 1726: Perkuatan Struktur Bresing...

LAPORAN PENELITIAN PELAKSANAAN PENELITIAN PF/PAK/PPM

Oleh : Irsyad Septian B. ( ) Dosen Pembimbing II : Budi Suswanto ST., MT., Ph.D. Hidayat Soegihardjo., Ir., MS., Dr.

BAB II TINJAUAN PUSTAKA

Peraturan Gempa Indonesia SNI

BAB III METODE PENELITIAN

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

ANALISIS KINERJA STRUKTUR BETON BERTULANG DI WILAYAH GEMPA INDONESIA INTENSITAS TINGGI DENGAN KONDISI TANAH LUNAK

EVALUASI KINERJA STRUKTUR RANGKA PEMIKUL MOMEN KHUSUS BERCOAKAN 40% DI WILAYAH BERESIKO GEMPA TINGGI DI INDONESIA

EVALUASI KINERJA METODEDIRECT DISPLACEMENT BASED DESIGN DAN FORCE BASED DESIGNPADA BANGUNAN VERTICAL SETBACK 6 LANTAI

ANALISIS PERILAKU STRUKTUR RANGKA BAJA DENGAN DAN TANPA BRESING V-TERBALIK EKSENTRIK

HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN KATA PENGANTAR ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR LAMPIRAN

Vol.17 No.2. Agustus 2015 Jurnal Momentum ISSN : X

Studi Perilaku Non Linear Pushover Struktur Jack Up Sistem Eccentrically Braced Frames (EBF)

Keywords: ATC-40, Braced Frames, Level Performance, Pushover analysis, Shear walls

EVALUASI KINERJA STRUKTUR BETON BERTULANG DENGAN PUSHOVER ANALYSIS

EVALUASI KINERJA GEDUNG BETON BERTULANG SISTEM GANDA DENGAN VARIASI GEOMETRI DINDING GESER PADA WILAYAH GEMPA KUAT

STUDI KINERJA SENDI PLASTIS PADA GEDUNG DAKTAIL PARSIAL DENGAN ANALISIS BEBAN DORONG

STUDI KOMPARATIF PERANCANGAN STRUKTUR GEDUNG TAHAN GEMPA DENGAN SISTEM RANGKA GEDUNG BERDASARKAN TATA CARA ASCE 7-05 DAN SNI

BAB 1 PENDAHULUAN. penggunaan bahan konstruksi dan sistem strukturnya. Pada perencanaan tersebut

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI

STUDI KOMPARASI PERILAKU STRUKTUR SISTEM RANGKA BERPENGAKU EKSENTRIK TIPE D TERHADAP SISTEM RANGKA PEMIKUL MOMEN

KINERJA SISTEM RANGKA PEMIKUL MOMEN KHUSUS SESUAI SNI DITINJAU DARI KETENTUAN SENGKANG MINIMUM KOLOM

BAB I PENDAHULUAN. Keandalan Struktur Gedung Tinggi Tidak Beraturan Menggunakan Pushover Analysis

KINERJA SISTEM RANGKA PEMIKUL MOMEN KHUSUS SESUAI SNI DITINJAU DARI KETENTUAN SENGKANG MINIMUM KOLOM

BAB II TINJAUAN PUSTAKA TINJAUAN PUSTAKA

STUDI PERILAKU KNEE BRACED FRAME DENGAN KONFIGURASI X-BRACED

RANY RAKITTA DEWI SEMINAR TUGAS AKHIR

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Kondisi geografis Indonesia terletak di daerah dengan tingkat kejadian gempa

Transkripsi:

PENELITIAN MENGENAI SNI 172:2012 PASAL 7.2.5.1 TENTANG DISTRIBUSI GAYA LATERAL TERHADAP KEKAKUAN, KEKUATAN, DAN PENGECEKAN TERHADAP SISTEM TUNGGAL Bernard Thredy William Wijaya 1, Nico 2, Hasan Santoso 3, dan Pamuda Pudjisuryadi 4 ABSTRAK : Indonesia merupakan salah satu negara rawan gempa, sehingga bangunan-bangunan di Indonesia perlu didesain terhadap gempa. Dalam SNI 172:2012 terdapat berbagai sistem struktur penahan gempa, salah satu dari sistem tersebut yang sering dipakai adalah sistem tunggal dan sistem ganda yang merupakan kombinasi dari sistem rangka pemikul momen dan sistem lainnya. SNI 172:2012 pasal 7.2.5.1 mensyaratkan rangka pemikul momen harus mampu menahan paling sedikit 25% gaya gempa desain pada sistem ganda, baik sistem rangka pemikul momen dengan rangka bresing maupun sistem rangka dengan dinding geser. Sebelumnya telah dilakukan penelitian (Kusuma dan Tjipto, 2015) dengan mengabaikan syarat SNI 172:2012 pasal 7.2.5.1 berdasarkan asumsi bahwa dengan mengabaikan syarat tersebut, bangunan akan menunjukkan performa yang baik. Pada penelitian tersebut pengujian bangunan menunjukkan performa yang kurang baik. Oleh karena itu pada penelitian ini desain bangunan akan dilakukan dengan memenuhi syarat SNI 172:2012 pasal 7.2.5.1. Bangunan yang didesain dibedakan menjadi 3 skenario yang akan dinotasikan sebagai S1, S2 dan S3. S1 merupakan bangunan yang akan didesain sebagai sistem ganda yaitu sistem rangka pemikul momen dan sistem rangka bresing eksentrik dengan syarat 25% base shear terhadap proporsi kekakuan. S2 akan didesain dengan syarat 25% terhadap kekuatan bangunan dan S3 akan didesain sebagai sistem tunggal. Hasil pengujian dari ketiga skenario tersebut menunjukkan bahwa bangunan S1 memberikan performa yang paling baik. Bangunan dengan S2 memberikan performa yang sedikit di bawah S1 namun dengan proporsi material yang lebih kecil. Diikuti dengan performa bangunan S3 yang menunjukkan performa yang buruk apabila dibandingkan dengan S1 dan S2. KATA KUNCI: sistem rangka pemikul momen khusus, sistem rangka bresing eksentrik, sistem ganda, kekakuan, kekuatan 1. PENDAHULUAN Pada penelitian ini dilakukan peninjauan terhadap ASCE 2010 pasal 12.2.5.1 yang merupakan referensi dari SNI 172:2012 pasal 7.2.5.1. Pasal tersebut berisi sebagai berikut For a dual system, the moment frames shall be capable of resisting at least 25 percent of the design seismic forces. The total seismic force resistance is to be provided by the combination of the moment frames and the shear walls or braced frames in proportion to their rigidities (ASCE 2010 12.2.5.1). Pada peraturan tersebut dikatakan bahwa sistem rangka pemikul momen harus mampu menahan paling sedikit 25 persen dari gaya gempa desain. Dikatakan juga bahwa gaya penahan gempa berasal dari kombinasi antara sistem rangka dan dinding geser atau bresing terhadap proporsi kekakuan. Kemudian dilakukan pengecekan terhadap dokumen FEMA 451 dan FEMA 35. Pada FEMA 451 chapter 5 alternatif C diberikan langkah- langkah mendesain bangunan baja dengan dual system (FEMA 451, 200). Pada alternatif tersebut dikatakan bahwa syarat 25% gaya lateral dilakukan terhadap strength dari sistem 1 Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, bernardthredy@gmail.com 2 Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, nicoyu94@gmail.com 3 Dosen Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, hasan@peter.petra.ac.id 4 Dosen Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, pamuda@peter.petra.ac.id 1

rangka. Namun pada FEMA 35 syarat 25% gaya lateral pada sistem didesain untuk menerima gaya gempa terhadap proporsi kekakuan (FEMA 35, 2000). Dikarenakan terdapat perbedaan mengenai isi dari beberapa peraturan, maka dalam penelitian ini akan dibagi menjadi 3 skenario desain untuk mewakili isi dari setiap peraturan. Skenario 1 adalah skenario desain bangunan dengan distribusi base shear harus mencapai 25% dari keseluruhan total base shear. Pada Skenario 2 bangunan akan didesain dengan mengalikan gaya gempa yang terjadi dengan nilai faktor perbandingan antara base shear SRPMK dengan base shear SRPMK ditambah dengan base shear SRBE yang kemudian dibagi dengan 25%. Untuk scale factor diusahakan dicari scale factor yang paling minimum. Skenario 3 adalah desain bangunan dengan menetapkan arah x dan y sebagai sistem tunggal yaitu SRBE. 2. LANDASAN TEORI 2.1. Respon Spektrum Respon spektrum menggunakan sebuah kurva respon dengan periode getar struktur T (sumbu x) dan respon-respon maksimum berdasarkan rasio redaman dan gempa tertentu (sumbu y). Respon spektrum desain ditentukan dengan parameter respon ragam yang disesuaikan dengan klasifikasi situs dimana bangunan tersebut akan dibangun kemudian dibagi dengan kuantitas R/I. (Departemen Pekerjaan Umum, 2012). Untuk desain dengan S1, S2 dan S3 akan digunakan nilai R=8(Tabel 17 SNI 172-2012). 2.2. Sistem Rangka Bresing Eksentris (SRBE) Berdasarkan pasal 15.13.1 SNI 03-1729-2002, pada SRBE terdapat suatu bagian dari balok yang disebut link dan direncanakan secara khusus. SRBE diharapkan dapat mengalami deformasi inelastis yang cukup besar pada link saat memikul gaya-gaya akibat beban gempa rencana. Kolom-kolom, batang bresing, dan bagian dari balok di luar link harus direncanakan untuk tetap dalam keadaan elastis akibat gaya-gaya yang dihasilkan oleh link pada saat mengalami pelelehan penuh. 2.3. Sistem Rangka Pemikul Momen Khusus (SRPMK) Sesuai pasal 17.7- SNI 03-1729-2002 dalam mendesain SRPMK, persyaratan yang harus dipenuhi selain kapasitas profil, yaitu ketentuan strong column weak beam. Persyaratan ini bertujuan agar tidak terjadi kegagalan pada kolom. 2.4. Sistem Ganda Pasal 7.2.5.1. SNI 172:2012 mensyaratkan pada penggunaan sistem ganda, SRPM harus mampu menahan minimal 25% dari gaya gempa desain. 3. METODOLOGI PENELITIAN Permodelan bangunan dan informasi perencanaan struktur dapat dilihat pada Tabel 1 dan Tabel 2 Kode Bangunan 31J0-S1 31J0-S2 31J0-S3 -S1 Tabel 1. Kode Penamaan Bangunan Makna Kode Bangunan lantai 3 Bentang 1 SRBE, gempa Jayapura skenario 1. Bangunan lantai 3 Bentang 1 SRBE, gempa Jayapura skenario 2. Bangunan lantai 3 Bentang 1 SRBE, gempa Jayapura skenario 3. Bangunan 3 Bentang 1 SRBE, pada wilayah gempa Surabaya, 12 lantai. Alasan Pemilihan Denah dengan perbandingan jumlah SRPMK dan SRBE yang proporsional untuk memenuhi syarat 25%. Denah dengan perbandingan SRBE dan SRPMK yang sesuai untuk mendapatkan SF. Denah digunakan untuk skenario 1 dan skenario 2 kemudian didesain sebagai sistem tunggal. Denah dengan perbandingan jumlah SRPMK dan SRBE yang proporsional untuk memenuhi syarat 25%. 2

Kode Bangunan -S2 -S3 -S2 -S3 -S1 -S2 -S3 Makna Kode Tabel 1. (Lanjutan) Bangunan 3 Bentang 1 SRBE, pada wilayah Bangunan 3 Bentang 1 SRBE, pada wilayah Bangunan 3 Bentang 2 SRBE, pada wilayah Bangunan 3 Bentang 2 SRBE, pada wilayah Bangunan 5 Bentang 2 SRBE, pada wilayah Bangunan 5 Bentang 2 SRBE, pada wilayah Bangunan 5 Bentang 2 SRBE, pada wilayah Alasan Pemilihan Denah dengan perbandingan SRBE dan SRPMK yang sesuai untuk mendapatkan SF. Denah digunakan untuk skenario 1 dan skenario 2 kemudian didesain sebagai sistem tunggal. Denah dengan perbandingan SRBE dan SRPMK yang sesuai untuk mendapatkan SF. Denah digunakan untuk skenario 1 dan skenario 2 yang didesain sebagai sistem tunggal. Denah dengan perbandingan jumlah SRPMK dan SRBE yang proporsional untuk memenuhi syarat 25%. Denah dengan perbandingan SRBE dan SRPMK yang sesuai untuk mendapatkan SF. Denah digunakan untuk skenario 1 dan skenario 2 kemudian didesain sebagai sistem tunggal. Tabel 2. Data Struktur Bangunan Data Skenario S2 S3 Luas Bangunan 18 18m 2 30 30m 2 Tinggi per lantai 4m fy 240 MPa fu 370MPa Langkah-langkah yang dilakukan dalam mendesain komponen struktur bangunan dibagi menjadi 3 skenario sebagai berikut: 1. Skenario 1 dimulai dengan pemodelan struktur menggunakan Etabs v15.1, kemudian dilakukan preliminary design. Lalu dilanjutkan dengan menentukan beban beban yang terjadi, seperti beban hidup, beban mati serta respon spectrum dengan R=8. Kemudian dilakukan pengecekan base shear pada joint reaction. Apabila persentase base shear yang terjadi pada SRPMK kurang dari 25% maka akan dilakukan preliminary design dari awal. 2. Skenario 2 dimulai dengan pemodelan struktur menggunakan Etabs v15.1, kemudian melakukan preliminary design. Lalu dilanjutkan dengan menentukan beban beban yang terjadi, seperti beban hidup, beban mati serta respon spectrum dengan R=8. Kemudian dilakukan pengecekan base shear pada joint reaction. Apabila persentase base shear yang terjadi pada SRPMK kurang dari 25% maka gaya gempa akan dikalikan dengan faktor. 3. Skenario 3 dimulai dengan pemodelan struktur menggunakan Etabs v15.1, kemudian melakukan preliminary design. Lalu dilanjutkan dengan menentukan beban beban yang terjadi, seperti beban hidup, beban mati serta respon spectrum dengan R=5. Untuk skenario 3 bangunan didesain sebagai sistem tunggal sehingga tidak perlu dicek terhadap syarat 25% gaya lateral. 4. Jika syarat untuk skenario 1, 2, dan 3 telah terpenuhi maka akan dilakukan capacity design sesuai dengan ketentuan SRPMK dan SRBE. Setelah proses capacity design selesai, dilakukan pemeriksaan drift bangunan, jika syarat yang ditentukan terpenuhi, maka dilanjutkan dengan nonlinear time history analysis (Wijaya dan Santoso, 2011). 3

4. HASIL DAN ANALISIS Dari hasil desain, didapatkan dimensi profil yang digunakan, berat profil bangunan, distribusi gaya, drift ratio, dan damage index. 4.1. Dimensi Profil Dimensi profil yang digunakan memenuhi syarat capacity design baik dalam perencanaan SRMPK dan SRBE. Hasil interaksi juga menunjukan bahwa dimensi profil yang digunakan adalah efisien karena interaksi berkisar pada 0,7-1. Ukuran profil yang digunakan dapat dilihat pada Tabel 3. s.d. Tabel 7. Tabel 3. Dimensi Balok Terpakai pada Model Bangunan LT Balok Anak Balok Induk Balok Anak Balok Induk Balok Anak Balok Induk 1 s/d 250.175.7.11 350.175.7.11 250.175.7.11 350.175.7.11 250.125..9 300.150.,5.9 S2 S3 LT Balok Anak Balok Induk Balok Anak Balok Induk 1 s/d 12 250.175.7.11 350.175.7.11 250.125..9 300.150.,5.9 LT Balok Anak Balok Induk Balok Anak Balok Induk Balok Anak Balok Induk 1 s/d 12 300.150.,5.9 400.200.8.13 300.150.,5.9 400.200.8.13 250.125..9 350.175.7.11 LT Balok Anak Balok Induk Balok Anak Balok Induk Balok Anak Balok Induk 1 s/d 12 300.150.,5.9 400.200.8.13 300.150.,5.9 400.200.8.13 250.125..9 400.200.8.13 Tabel 4. Dimensi Kolom Terpakai pada Model Bangunan 1 s/d 3 4 s/d 45.70 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1 s/d 7 s/d 12 45.70 1.24 1.24 1.24 1.24 1 s/d 7 s/d 12 1.24 1.24 1.24 1 s/d 45.70 1.24 4

Tabel 4. (Lanjutan) 7 s/d 12 1.24 1.24 1.24 Tabel 5. Dimensi Balok Link, Balok Luar Link, dan Bresing Terpakai LT Balok Link Balok L.Link Balok Link Balok L.Link Balok Link Balok L.Link 1 s/d 3 400.200.8.13 450.200.9.14 400.200.8.13 450.200.9.14 350.175.7.11 400.200.8.13 4 s/d 350.175.7.11 400.200.8.13 350.175.7.11 400.200.8.13 300.150.,5.9 350.175.7.11 S2 S3 LT Balok Link Balok L.Link Balok Link Balok L.Link 1 s/d 450.200.9.14 450.200.9.14 350.175.7.11 400.200.8.13 7 s/d 9 400.200.8.13 400.200.8.13 300.150.,5.9 350.175.7.11 10 s/d 12 300.150.,5.9 350.175.7.11 300.150.,5.9 350.175.7.11 LT Balok Link Balok L.Link Balok Link Balok L.Link Balok Link Balok L.Link 1 s/d 500.200.9.14 500.200.9.14 500.200.9.14 500.200.9.14 400.200.8.13 400.200.8.13 7 s/d 9 400.200.8.13 400.200.8.13 400.200.8.13 400.200.8.13 300.150.,5.9 300.150.,5.9 10 s/d 12 300.150.,5.9 300.150.,5.9 300.150.,5.9 300.150.,5.9 200.100.5,5.8 200.100.5,5.8 LT Balok Link Balok L.Link Balok Link Balok L.Link Balok Link Balok L.Link 1 s/d 500.200.11.19 500.200.11.19 500.200.11.19 500.200.11.19 450.200.9.14 450.200.9.14 7 s/d 9 450.200.9.14 450.200.9.14 450.200.9.14 450.200.9.14 350.175.7.11 350.175.7.11 10 s/d 12 300.150.,5.9 300.150.,5.9 300.150.,5.9 300.150.,5.9 250.125..9 250.125..9 Tabel. Dimensi Bresing Terpakai pada Model Bangunan LT Brace Brace Brace 1 s/d 3 200.200.12.12 200.200.12.12 150.150.7.10 4 s/d 200.200.8.12 200.200.8.12 150.150.7.10 LT Brace Brace Brace 1 s/d 200.200.12.12 150.150.7.10 7 s/d 12 200.200.8.12 150.150.7.10 LT Brace Brace Brace 1 s/d 200.200.8.12 200.200.8.12 400.200.8.13 7 s/d 9 200.200.8.12 200.200.8.12 350.175.7.11 10 s/d 12 200.200.8.12 200.200.8.12 300.150.,5.9 LT Brace Brace Brace 1 s/d 450.200.9.14 450.200.9.14 450.200.9.14 7 s/d 12 400.200.8.13 400.200.8.13 350.175.7.11 5

4.2. Distribusi Gaya Hasil Distirbusi Gaya dapat dilihat pada Tabel 7. Tabel 7. Persentase Gaya Lateral yang Diterima SRPMK Tabel Persentase Base Shear (sumbu x ) Scale Factor Kode Bangunan Skenario SRPMK SRBE x S1 28% 72% - S2 19% 81% 1.31 S1 25% 75% - S2 22% 78% 1.138 S2 17% 83% 1.489 S1 25% 75% - S2 20% 80% 1.24 4.3. Berat Bangunan Berat total bangunan dapat dilihat pada Tabel 8. Kode Bangunan Tabel 8. Berat Baja Setiap Bangunan Berat Bangunan Luas(m2) Skenario (kg) Berat/Luas(kg/m2) Persentase Berat S1 193232.39 1944.00 99.40 100% S2 15411.72 1944.00 85.09 85.0% S3 140510.2 1944.00 72.28 72.72% S1 39308.21 3888.00 101.10 100% S2 375588.51 3888.00 9.0 95.55% S3 31044.24 3888.00 79.90 79.03% S1 401574.55 3888.00 103.29 100% S2 298744.32 3888.00 7.84 74.39% S1 1149831.47 10800.00 10.47 100% S2 1053008.2 10800.00 97.50 91.58% S3 801219.39 10800.00 74.19 9.8% 4.4. Displacement dan Drift Ratio Hasil drift ratio dapat dilihat pada Tabel 9 dan Tabel 10. Tabel 9. Displacement Maksimum Gempa Periode Ulang 2500 Tahun pada Model Bangunan Periode Ulang 2500 thn Displacement Kode Bangunan Skenario X(mm) S1 20.8 S2 20.1 S3 453.3 S1 82.8 S2 80.8 S3 794. S2 51.9 S3 592.7 S1 73 S2 72.7 S3 720

Tabel 10. Drift Ratio Maksimum Gempa Periode Ulang 2500 Tahun pada Model Bangunan Periode Ulang 2500 thn Drift Ratio(%) Kode Bangunan Skenario X S1 1.013 S2 1.3 S3 2.3 S1 1.745 S2 1.779 S3 2.1814 S2 0.3 S3 1.52 S1 2.0358 S2 2.4213 S3 2.24 4.5. Performance dan Damage Index Performa bangunan berdasarkan drift ratio dapat dilihat pada Tabel 11. Tingkat kinerja berdasarkan damage index dapat dilihat pada Tabel 12. Untuk syarat drift ratio serta damage index didapatkan dari FEMA 35, 2000. Tabel 11. Performance Bangunan Berdasarkan Drift Ratio Maksimum untuk Gempa Periode Ulang 2500 Tahun. Kode Bangunan Skenario Immediate Life Safety Collapse Prevention Unaccaptable Occupancy Limit State Limit State Limit State S1 1.013 S2 1.3 S3 2.3 S1 1.745 S2 1.779 S3 2.1814 S2 0.83 S3 1.52 S1 2.0358 S2 2.4213 S3 2.24 drift ratio max(%) <0.5 0.5-1.5 1.5-2.0 >2.0 Tabel 12. Performance Bangunan Berdasarkan Damage Index Maksimum pada Gempa Periode Ulang 2500 thn. Damage Index Kolom Kode Bangunan Skenario Balok Link Balok Luar Link Bracing Balok Induk Kolom Interior Eksterior S1 CP FY FY - - - S2 CP FY FY - - - S3 CP FY CP FY - - S1 CP FY CP FY CP - S2 CP CP CP FY CP - S3 CP CP CP FY CP - S2 CP FY CP - FY - S3 CP FY CP FY IO FY S1 CP FY CP FY CP - S2 CP CP CP FY CP - S3 CP CP CP FY CP - 7

4.. Pembahasan Pola Keruntuhan Bangunan Desain awal bresing dilakukan dengan memberikan beban tambahan pada join pertemuan antara balok link, luar link, dan bresing pada portal yang masih utuh. Beban berupa gaya aksial dan momen lentur yang ditimbulkan oleh 1.25 kali kuat geser nominal dari link (1.25R y V n ). Pola keruntuhan bangunan yang menggunakan desain tersebut ternyata tidak sesuai dengan pola keruntuhan SRBE di mana terjadi sendi plastis pada bresing sebelum balok link. Oleh karena itu dilakukan desain dengan cara kedua di mana beban diberikan dengan cara free body pada bresing. Pola keruntuhan bangunan yang menggunakan desain cara free body ternyata menunjukkan hasil pola keruntuhan yang sesuai dengan konsep desain SRBE. Sehingga untuk selanjutnya digunakan cara desain dengan menggunakan free body pada bresing. 5. KESIMPULAN Berdasarkan penelitian yang dilakukan, desain bangunan dibagi menjadi 3 skenario untuk memperjelas interpretasi yang berbeda dari SNI-172 pasal 7.2.5.1. Bangunan yang didesain dengan memenuhi 25% syarat kekakuan menunjukkan performa yang paling baik dari 3 skenario desain, tetapi memiliki perbandingan proporsi material yang lebih besar. Bangunan dengan skenario 2 menunjukkan peforma yang sedikit lebih buruk dibandingkan skenario 1 berdasarkan drift ratio dimana keduanya masih berada dalam batasan life safety. Untuk skenario 3, peforma bangunan mengalami penurunan yang signfikan berdasarkan drift ratio dan berada pada tahap collapse prevention. Oleh karena itu untuk keperluan desain syarat SNI lebih baik dipenuhi terhadap kekuatan dikarenakan performa bangunan yang hampir sama terhadap S1 tetapi dengan persentase berat yang lebih ringan.. DAFTAR REFERENSI American Institute of Steel Construction (2010). Minimum Designs Loads for Buildings and Other Structures, ASCE/SEI 7-10. American Institute of Steel Construction,Inc., Chicago : Author. Badan Standarisasi Nasional. (2002). Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung, SNI 03-1729-2002. BSSC (200). NEHRP Recommended Provisions : Design Examples, FEMA 451. National Institutes of Building Science, Washington, D.C. Departemen Pekerjaan Umum. (2012). SNI 172-2012 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non-gedung, Badan Standarisasi Nasional, Jakarta, Indonesia. Kusuma, C. dan Tjipto, T.P. (2015). Evaluasi SNI 172:2012 pasal 7.2.5.1 Mengenai Distribusi Gaya Lateral pada Penggunaan Sistem Ganda (Tugas Akhir Strata 1 No. 1101200/SIP/2015). Unpublished Undergraduate Thesis, Universitas Kristen Petra, Surabaya. SAC Joint Venture (2000). FEMA-35 Recommended Seismic Design Criteria for New Steel Moment- Frame Buildings. California : Federal Emergency Management Agency. Wijaya, Ronny dan Santoso, A.H.(2011).Evaluasi Kinerja Struktur Baja dengan Sistem Ganda SRPMK dan SRBE yang Menggunakan RBS pada Kedua Arah Orthogonal Bangunan di Wilayah Gempa Indonesia (Tugas Akhir Strata 1 No. 11011781/SIP/2011). Unpublished Undergraduate Thesis, Universitas Kristen Petra, Surabaya. 8