ON-BOARD FUNDAMENTAL FREQUENCY ESTIMATION OF ROCKET FLIGHT EXPERIMENTS USING DSP MICROCONTROLLER AND ACCELEROMETER

dokumen-dokumen yang mirip
RANCANG-BANGUN SISTEM FLIGHT-RECORDER SEDERHANA UNTUK PELUNCURAN ROKET

METODE TRACKING KECEPATAN ROKET MENGGUNAKAN TRANSPONDER DOPPLER DUA-FREKUENSI (ROCKET SPEED TRACKING METHOD USING TWO-FREQUENCY DOPPLER TRANSPONDER)

Kurdianto Peneliti Bidang Teknologi Kendali dan Telemetri, Pusat Teknologi Roket, LAPAN ABSTRACT

PENGEMBANGAN MODEM AFSK UNTUK TELEMETRI MUATAN ROKET UHF

ALGORITMA TDOA UNTUK PENGUKUR JARAK ROKET MENGGUNAKAN TEKNOLOGI UHF

OPTIMASI RERATA DALAM PROSES KORELASI SILANG UNTUK MENENTUKAN LOKASI RADIO TRANSMITTER

PENGEMBANG AN DETEKTOR SIGNAL RADIO MULT I CHANNEL UNTUK RADIO TRACKING ROKET MENGGUNAKAN LOGARITMIK AMPLIFIER

ANALISA AKUSTIK UJI STATIS MOTOR ROKET MENGGUNAKAN ALGORITMA FFT

APLIKASI MICROKONTROLLER UNTUK DETEKSI FREKUENSI DOPPLER RADIO TRACKING

Sinkronisasi Sinyal RADAR Sekunder Untuk Multi Stasiun Penerima Pada Sistem Tracking 3 Dimensi Roket

RANCANGAN DAN ANALISA ANTENA Dl PERMUKAAN BADAN ROKET

METODE KALIBRASI TIME DIFFERENT OF ARRIVAL TDOA UNTUK SISTEM PASSIVE RADAR TRAYEKTORI ROKET

Diterima 29 Oktober 2015; Direvisi 19 November 2015; Disetujui 27 November 2015 ABSTRACT

METODE KALIBRASI RADAR TRANSPONDER ROKET MENGGUNAKAN DATA GPS (CALIBRATION METHOD OF RADAR TRANSPONDER FOR ROCKET USING GPS DATA)

III. METODE PENELITIAN. Elektronika Dasar Jurusan Fisika Fakultas MIPA Universitas Lampung.

REALISASI ACTIVE NOISE REDUCTION MENGGUNAKAN ADAPTIVE FILTER DENGAN ALGORITMA LEAST MEAN SQUARE (LMS) BERBASIS MIKROKONTROLER LM3S6965 ABSTRAK

BAB I PENDAHULUAN. resistor, kapasitor ataupun op-amp untuk menghasilkan rangkaian filter. Filter analog

SPECTRUM ANALYZER BERBASIS MIKROKONTROLER DENGAN PENCUPLIKAN SECARA PARALEL

PENGENALAN UCAPAN DENGAN METODE FFT PADA MIKROKONTROLER ATMEGA32. Disusun Oleh : Nama : Rizki Septamara Nrp :

Hasil Oversampling 13 Bit Hasil Oversampling 14 Bit Hasil Oversampling 15 Bit Hasil Oversampling 16

BAB IV PERANCANGAN DAN IMPLEMENTASI SISTEM

III. METODE PENELITIAN

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti

BABI PENDAHULUAN. Pada dunia elektronika dibutuhkan berbagai macam alat ukur dan analisa.

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

ANALISA SISTEM PENERIMA DATA MUATAN ROKET LAPAN BERBASIS MAXSTREAM 900 MHZ

METODE DOPPLER RADIO UNTUK MENGUKUR KECEPATAN ROKET RX200 [RADIO DOPPLER METHOD FOR MEASURING VELOCITY OF ROCKET RX200]

BAB III METODE PENELITIAN. Adapun metode penelitian tersebut meliputi akuisisi data, memproses. data, dan interpretasi data seismik.

BAB III METODOLOGI DAN HASIL PENELITIAN

udara maupun benda padat. Manusia dapat berkomunikasi dengan manusia dari gagasan yang ingin disampaikan pada pendengar.

RANCANG BANGUN PROTOTIPE SISTEM HEADING AUTOPILOT BERBASIS RA TE-GYROSCOPE DAN MICROCONTROLLER

Pembuatan Pola Data Bahan Bakar Solar Yang Dicampur Minyak Tanah Menggunakan Sensor Gas Dengan Metode Fast Fourier Transform

PERANCANGAN DAN REALISASI PERANGKAT PENDETEKSI WARNA CAT NIRKABEL

Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi Kerusakan Akibat Kondisi Unbalance Sistem Poros Rotor

BAB II DASAR TEORI. sebagian besar masalahnya timbul dikarenakan interface sub-part yang berbeda.

BAB III ANALISIS DAN DESAIN SISTEM

Rancang Bangun Data Akuisisi Multi Kanal...(Wahyu Widada)

POLITEKNIK NEGERI JAKARTA

APLIKASI PERINTAH SUARA UNTUK MENGGERAKKAN ROBOT. Disusun Oleh : Nama : Astron Adrian Nrp :

BAB I PENDAHULUAN. 1.1 Latar Belakang

1. Pendahuluan Latar Belakang

PENGUKURAN CEPAT KERATAAN JALAN RAYA DENGAN MENGGUNAKAN MEMS ACCELEROMETER SENSOR SKRIPSI NOVIANTI LASMARIA

LOGO IMPLEMENTASI MODULASI DAN DEMODULASI M-ARY QAM PADA DSK TMS320C6416T

OPTIMASI RANCANGAN FILTER BANDPASS AKTIF UNTUK SINYAL LEMAH MENGGUNAKAN ALGORITMA GENETIK Studi Kasus: Sinyal EEG

PEMANFAATAN SENSOR PERCEPATAN DAN GYROSCOPE UNTUK MENENTUKAN TRAJECTORY ROKET MENGGUNAKAN INERTIAL NAVIGATION SYSTEM(INS)

Hubungan 1/1 filter oktaf. =Frekuesi aliran rendah (s/d -3dB), Hz =Frekuesi aliran tinggi (s/d -3dB), Hz

BAB IV METODE-METODE UNTUK MENURUNKAN NILAI PAPR

Kinerja Spectrum Sensing Dengan Metode Cyclostationary Feature Detector Pada Radio Kognitif

Sistem Pendeteksi Kepatahan Mata Bor Pada Mesin Cetak PCB Berdasarkan Analisa Getaran Spindle Menggunakan Teensy Board

ESTIMASI JARAK DAN KECEPATAN PADA ALAT UJI STATIS ROKET LATIH EXPERIMENT DENGAN PEDEKATAN GAYA DORONG OPTIMAL

RANCANG BANGUN SISTEM PENDETEKSI LEVEL GETARAN MENGGUNAKAN SENSOR GEOFON DENGAN PENAMPIL BORLAND DELPHI 7.0 PADA MONITOR KOMPUTER

BAB III DESKRIPSI DAN PERANCANGAN SISTEM

PERANCANGAN MODULATOR QPSK DENGAN METODA DDS (DIRECT DIGITAL SYNTHESIS) BERBASIS MIKROKONTROLLER ATMEGA8535 ABSTRAK

Dalam sistem komunikasi saat ini bila ditinjau dari jenis sinyal pemodulasinya. Modulasi terdiri dari 2 jenis, yaitu:

INSTITUT TEKNOLOGI BANDUNG

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T

Bab II Teori Dasar. Gambar 2.1 Diagram blok sistem akuisisi data berbasis komputer [2]

BAB III METODE PENELITIAN

PENGENALAN SUARA BURUNG MENGGUNAKAN MEL FREQUENCY CEPSTRUM COEFFICIENT DAN JARINGAN SYARAF TIRUAN PADA SISTEM PENGUSIR HAMA BURUNG

SISTEM PENDETEKSI KETINGGIAN MUATAN ROKET BERBASIS MIKROKONTROLER. Gelar Kharisma Rhamdani /

ANALISIS PENGARUH MISALIGNMENT TERHADAP VIBRASI DAN KINERJA MOTOR INDUKSI

BAB I PENDAHULUAN 1.1 Latar Belakang

IMPLEMENTASI MODULASI DAN DEMODULASI GMSK PADA DSK TMS320C6416T

ABSTRAK. PDF created with FinePrint pdffactory Pro trial version

BAB III METODE PENELITIAN

PEMANTAUAN KONDISI MESIN BERDASARKAN SINYAL GETARAN

BAB II DASAR TEORI Suara. Suara adalah sinyal atau gelombang yang merambat dengan frekuensi dan

BAB III ALAT UJI DAN METODE PENGAMBILAN DATA

PENERAPAN LOW PASS FILTER UNTUK MEMPERBAIKI HASIL ESTIMASI SUDUT PADA SISTEM RADIO TRACKING ROKET

BAB II LANDASAN TEORI

PENGUKURAN ACCELEROMETER ADXL105 UNTUK APLIKASI ALARM PENCURI

BAB II LANDASAN TEORI

DEKOMPOSISI NILAI SINGULAR DAN DISCRETE FOURIER TRANSFORM UNTUK NOISE FILTERING PADA CITRA DIGITAL

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 4 IMPLEMENTASI DAN EVALUASI. Dimensi : 30 x 22 x 9CM, Bobot 2.4 Kg. Display : layar LCD 16 x 2 karakter, 71.2 x 25.2 mm, 6.

BAB I PENDAHULUAN. PSD Bab I Pendahuluan 1

PENGUKURAN FUNGSI RESPON FREKUENSI (FRF) PADA SISTEM POROS-ROTOR

X(t) = A sin (2π f n t )=A sin (ω.t)

Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1

PERANCANGAN DAN REALISASI PENAMPIL SPEKTRUM FREKUENSI PORTABLE BERBASIS MIKROKONTROLER ATMEGA 16

BAB III METODE PENELITIAN

MODUL PRAKTIKUM SISTEM KOMUNIKASI DIGITAL

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat

Jurnal Teknologi Elektro, Universitas Mercu Buana ISSN: Sistem Logger Suhu dengan Menggunakan Komunikasi Gelombang Radio

BAB III PERANCANGAN ALAT

ALGORITMA DETEKSI SUDUT AZIMUT DAN ELEVASI ROKET MENGGUNAKAN SEMBILAN ANTENA ARRAY YAGI-UDA

Rancang Bangun Demodulator FSK pada Frekuensi 145,9 MHz untuk Perangkat Receiver Satelit ITS-SAT

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

PERANCANGAN DAN PEMBUATAN PROTOTIPE BAND PASS FILTER UNTUK OPTIMASI TRANSFER DAYA PADA SINYAL FREKUENSI RENDAH; STUDI KASUS : SINYAL EEG

BAB II LANDASAN TEORI

BAB III ANALISIS DAN DESAIN SISTEM

BAB 3 PERANCANGAN SISTEM

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012)

Aplikasi Sensor Accelerometer Pada Deteksi Posisi

III. METODE PENELITIAN. Penelitian tugas akhir ini akan dilakukan di Laboratorium Terpadu Teknik Elektro

Seminar Nasional APTIKOM (SEMNASTIKOM), Hotel Lombok Raya Mataram, Oktober 2016

Jaringan Syaraf Tiruan pada Robot

BAB III PERENCANAAN SISTEM

PERANCANGAN DAN REALISASI PENGUAT KELAS D BERBASIS MIKROKONTROLER AVR ATMEGA 16. Disusun Oleh: Nama : Petrus Nrp :

TESIS ANALISIS DAN OPTIMALISASI PROTEKSI VIBRASI PADA POMPA INJEKSI SENTRIFUGAL EMPAT STAGE PADA WATERFLOOD LAPANGAN MINYAK RINGAN

Transkripsi:

Jurnal Teknologi Dirgantara Vol. 7 No. 1 Juni 29:46-5 ON-BOARD FUNDAMENTAL FREQUENCY ESTIMATION OF ROCKET FLIGHT EXPERIMENTS USING DSP MICROCONTROLLER AND ACCELEROMETER Agus Harno Nurdin Syah, Sri Kliwati, dan Wahyu Widada Peneliti Bidang Telemetri dan Muatan Roket, LAPAN ahnurdinsy@yahoo.co.id, w_widada@yahoo.com ABSTRACT A fundamental frequency of a rocket vibration during flght is an important parameter in order to develope an electronic system and mechanical structur of a payload. This paper describes the measurement method of fundamental frequency using a 32 bit DSP microcontroller and an accelerometer. This CPU is applied for data acquisituion and calculation of fundamental frequency base on Discrete Fourier Transform. A fundamental frequency is estimated using the maximum value of envelope spectrum. This prototipe is combined with a radio modem for telemetry data. The maximum frequency of rocket vibration which can be detected is about 2 khz. Keywords: Fundamental frequency, Rocket vibration, On-board estimation, Radio telemetry ABSTRAK Fundamental frequency vibrasi roket pada saat terbang sangat penting diukur untuk pengembangan sistem elektronik maupun mekanik muatan roket. Tulisan ini membahas metode pengukuran fundamental frekuensi tersebut dengan menggunakan sensor accelerometer dan 32 bit DSP (Digital Signal Processor) microcontroller. CPU ini digunakan untuk akuisisi data dan perhitungan algoritma DFT (Discrete Fourier Transform) serta algoritma penentuan frekuensi fundamentalnya. Deteksi fundamental frekuensi berbasis envelope (lowpass filter) spektrum frekuensi. Sistem yang telah dibuat dapat dikombinasikan dengan radio modem untuk pengiriman data dengan kecepatan serta sampling rate yang cukup tinggi. Maksimum frekuensi yang dapat diestimasi hingga 2 khz, cukup untuk parameter roket. Kata kunci: Fundamental frekuensi, Vibrasi roket, Radio Telemetri 1 PENDAHULUAN Frekuensi dan amplitudo vibrasi merupakan parameter yang penting pada saat peluncuran roket. Parameter tersebut dapat diukur dengan menggunakan sensor accelerometer pada sumbu tegak lurus terhadap arah roket. Pada setiap peluncuran, parameter ini belum pernah dilakukan percobaan secara khusus baik melalui raw data telemetri atau secara on board. CPU yang digunakan dalam sistem ini harus mampu menghitung spekrum frekuensi. Tipe 8 bit microcontroller sangat lambat jika digunakan untuk pemrosesan FFT karena memerlukan 46 loop yang banyak pada algoritma tersebut, sehingga memerlukan microcontroller yang lebih cepat akan tetapi mempunyai dimensi yang tetap kecil. Algoritma tambahan diperlukan untuk menghitung fundamental frekuensi atau frekuensi yang mempunyai power yang paling dominan. Data yang dikirim melalui radio telemetri hanya frekuensi fundamental tersebut, sehingga menjadi lebih cepat dan lebih akurat dibandingkan dengan pengiriman raw data vibrasi secara sampling waktu. CPU tipe ini nantinya juga akan digunakan lebih banyak untuk aplikasi-aplikasi yang

On-Board Fundamental Frequency... (Agus Harno Nurdin Syah et al.) memerlukan pemrosesan data yang lebih cepat dan memerlukan memori yang lebih banyak. Tulisan ini membahas muatan elektronik roket yang terdiri dari accelerometer dan DSP microcontroller 32 bit untuk menghitung fundamental frekuensi vibrasi pada saat terbang. Data hasil estimasi dikirim melalui module radio modem dengan frekuensi 9 MHz serta dengan kecepatan transfer maksimum 115.2 kbps. Hasil pengembangan algoritma serta eksperimen akan dijelaskan lebih detail pada bagianbagian berikut ini. Uji peluncuran roket diperlukan untuk mendapatkan datadata vibrasi. 2 METODE ESTIMASI Jika signal vibrasi dari accelerometer adalah f(t), maka fourier transform signal tersebut adalah sebagai berikut. F 1 2 i t ( ) f ( t ) e dt (2-1) Disini F( ) adalah spektrum frekuensi, dan dt adalah waktu. Dari persamaan di atas maka spektrum frekuensi signal vibrasi dapat dianalisa. Untuk perhitungan di micro processor, maka secara diskrit persamaan di atas (Discrete Fourier Transform) dapat ditulis sebagai berikut. F n N 1 fk k e in2 k N (2-2) Kemudian dari persamaan (2-2) akan terdapat banyak komponen frekuensi yang timbul akibat dari vibrasi roket. Algoritma DFT di atas telah dikembangkan menjadi algoritma FFT (Fast Fourier Transform), sehingga lebih mempercepat proses perhitungannya. Komponen frekuensi yang paling dominan merupakan frekuensi fundamental yang merupakan parameter penting dalam analisa vibrasi. Untuk menentukan frekuensi tersebut, maka digunakan algoritma filtering spektrum tersebut dan kemudian dengan algoritma peak detector F dapat diestimasi. Algoritma smoothing spektrum yang digunakan adalah seperti persamaan berikut. i m i m ( F ) F /(2n 1) (2-3) n S n i Algoritma ini adalah mengambil nilai rata-rata sehingga mudah diimplementasikan pada CPU untuk mendapatkan nilai frekuensi fundamentalnya. Bahasa pemrograman yang kita gunakan adalah C dengan kompiler avr-gcc yang didistribusikan secara bebas oleh ATMEL. Frekuensi fundamental dapat dihitung sampai dengan beberapa, tetapi dalam algoritma ini kita tentukan 3 buah, yang cukup untuk menentukan karakteristik vibrasi roket. in DFT out Envelope Spectrum Peak Detection Gambar 2-1: Block diagram algoritma untuk estimasi fundamental frekuensi Secara umum penjelasan algoritma di atas dapat kita gambar blok diagramnya secara mudah pada Gambar 2-1. Input signal analog dari accelerometer dan output berupa data digital fundamental frekuensi. 3 ESTIMASI SECARA ON-BOARD Sistem blok diagram adalah seperti pada gambar di bawah, terdiri dari sensor (accelerometer), processor (32 bit AVR microcontroller), dan sebuah radio modem (Aerocomm 115.2 kbps). Daftar komponen tersebut seperti pada Tabel 3-1. Secara umum CPU ini mempunyai peran yang sangat penting untuk memroses semua signal, dari mengambil, menghitung frekuensi, dan pengiriman data via radio. 47

Jurnal Teknologi Dirgantara Vol. 7 No. 1 Juni 29:46-5 Accelerometer + Signal Conditioning Accelerometer AVR32 Processor 32 bit 6 MHz 1 bit ADC and FFT Gambar 3-1: Blok diagram on-board system pengukuran fundamental frequency vibrasi roket Tabel 3-1: KOMPONEN VIBRASI ROKET Komponen Accelerometer Radio Modem 115.2 kbps 9 MHz PENGUKUR Spesifikasi LIS3L6AL, ±3g, 1.5 khz ADC dan AVR32 32 bit, 6 MHz Processor Radio Telemetry Aerocomm 115.2 kbps Sensor dan processor sudah menjadi satu modul seperti pada Gambar 3-2. Board PCB ini relatif kecil sehingga dapat digunakan untuk roket tipe RX15 (diameter 15 mm) dan yang lebih besar lagi. Jika didesain sendiri, maka ukuran akan menjadi lebih kecil lagi dan dapat diaplikasikan untuk roket-roket 1m. Kemampuan accelerometer 1.5 g hingga 3 khz sumbu x, y, dan 1.5 khz pada sumbu z. High-pass Filter 1 Hz Instrument Amplifier Low-pass Filter 2 khz Gambar 3-3: Elektronik circuit untuk sensor vibrasi roket On-board sistem ini perlu dilakukan uji validasi algoritma untuk membandingkan data yang dihitung. Di samping dengan data simulasi juga dengan alat referensi vibrasi. 4 HASIL PERCOBAAN Percobaan dilakukan dengan menggunakan data simulasi sebagai referensi signal vibrasi untuk memastikan algoritma yang dikembangkan pada CPU adalah sesuai dengan frekuensi inputnya. Frekuensi signal adalah pada 45 Hz, kemudian hasil perhitungan spektrum data vibrasi adalah seperti Gambar 4-1 berikut. 1.8.6.4 Amplitudo.2 -.2 -.4 -.6 -.8 Gambar 3-2: Foto CPU yang sudah terintegrasi dengan accelerometer LIS3L6AL Untuk eliminasi pengaruh gaya gravitasi bumi, maka ditambahkan high pass filter 1 Hz pada keluaran accelerometer, serta lowpass filter 2 khz untuk mengurangi random noise sebelum diakses oleh ADC pada prosesor. Adapun desain rangkaiannya adalah seperti Gambar 3-3 berikut. -1 1 2 3 4 5 6 7 Samples Gambar 4-1: Signal vibrasi dari accelerometer Pada Gambar 4-2 bagian puncak frekuensi terlihat mirip pada frekuensi 45 Hz sesuai dengan data yang digunakan. Dari simulasi ini maka algoritma FFT dan penentuan peak pada fundamental frekuensi dapat dicek sesuai yang diharapkan. 48

On-Board Fundamental Frequency... (Agus Harno Nurdin Syah et al.) Langkah berikutnya adalah menguji dengan menggunakan alat vibrator. Sistem pengujian adalah seperti pada Gambar 4-3. Accelerometer diletakkan di atas vibrator. Kemudian data spektrum dikirim melalui radio modem. Jumlah sampling DFT adalah 4 data, sehingga jika maksimum frekuensi 2 khz, maka sampling frekuensi menjadi 5 Hz. 1 9 8 7 6 5 4 3 2 1 Amplitudo.25.2.15.1.5 Fundamnetal Frequency 2 4 6 8 1 12 14 16 18 2 Gambar 4-4: Spektrum frekuensi dengan 3 Hz Kemudian contoh lainnya adalah pada Gambar 4-5 adalah pada posisi 6 Hz. 1 9 5 1 15 2 25 3 35 Frequency Gambar 4-2: Spektrum frekuensi dengan 45 Hz sebagai fundamental frequency vibrasi 8 7 6 5 4 3 2 1 2 4 6 8 1 12 14 16 18 2 Gambar 4-5: Spektrum frekuensi dengan 6 Hz Data-data lainnya seperti Gambar 4-6 dan 4-7 adalah frekuensi hingga 1 Hz dan 15 Hz. Dari hasil gambar-gambar tersebut, maka secara sistem yang telah dikembangkan dapat terkalibrasi hasilnya. 1 9 8 Gambar 4-3: Accelerometer dipasang pada vibrator dan dihubungkan dengan menggunakan radio modem Gambar 4-4 adalah data percobaan pada frekuensi 3 Hz dengan grafik tipe bar supaya mudah dilihat. Peak spektrum terlihat pada posisi 3 Hz. 7 6 5 4 3 2 1 2 4 6 8 1 12 14 16 18 2 Gambar 4-6: Spektrum frekuensi dengan 1 Hz 49

Jurnal Teknologi Dirgantara Vol. 7 No. 1 Juni 29:46-5 1 9 8 7 6 5 4 3 2 1 2 4 6 8 1 12 14 16 18 2 Gambar 4-7: Spektrum frekuensi dengan 15 Hz penelitian ini masih perlu diuji sebagai salah satu bagian dari muatan untuk mendukung data dalam analisa performa roket. UCAPAN TERIMAKASIH Kami mengucapkan terimakasih kepada KNRT yang telah membiayai program penelitian ini melalui Insentif RISTEK 27-29 dan LAPAN, sehingga penelitian ini dapat berjalan lancar, serta kepada teman-teman peneliti atas kontribusi yang telah diberikan. Dari hasil simulasi dan percobaan di atas, maka langkah berikutnya adalah pengujian dengan menggunakan roket. Dengan menguji sebuah tipe roket secara berkali-kali atau kontinu akan dapat menentukan ciri khas vibrasi secara akurat. Pengukuran hanya sekali tidak dapat digunakan untuk menentukan parameter vibrasi secara umum. Tabel 4-1: DETEKSI FREKUENSI Fundamental Frequency F F F F 5 KESIMPULAN FUNDAMENTAL Frequency [khz].3.6 1. 1.5 Sistem estimasi fundamental frekuensi berbasis accelerometer, DSP microcontroller, dan radio modem telah dikembangkan sebagai muatan roket, sehingga secara on-board dapat melakukan analisa dan penentuan parameter yang dihitung. Frekuensi yang dihitung adalah sampai dengan tiga buah F, F 1, dan F 3 sehingga dapat mencakup range yang lebih lebar untuk analisa vibrasi roket saat terbang. Hasil DAFTAR RUJUKAN Agus Harno Nurdin Syah, 28. Karakterisasi Sistem Pengirim Data Frekuensi Getaran Roket Pada Saat Uji Terbang. SIPTEKGAN XII 28, diterbitkan oleh LAPAN Deputi Bidang Teknologi Dirgantara, Jakarta Nopember 28. ISBN: 978-979-1458-19-1. Masashi Unoki and Toshihiro Hosorogiya, 27. Estimation of Fundamental Frequency of Reverberant Speech by Utilizing Complex Cepstrum Analysis, JAIST Japan Advanced Institute of Science and Technology 27. Wahyu Widada, dkk, 28. Automatic Fundamental Frequency Estimation of Rocket Vibration By Utilizing LPC, Seminar Sistem Informasi Indonesia SESINDO 28, Surabaya. Wahyu Widada, Sri Kliwati, dan Agus Harno Nurdinsyah, 28. Sistem Pengukuran Vibrasi Roket Saat Terbang Secara Realtime Menggunakan Accelerometer dan Radio-Modem. Seminar Nasional Mesin dan Industri SNMI4 Univ. Tarumanagara Jakarta 28. 5