PENGARUH LEBAR PONDASI DAN JUMLAH LAPISAN GEOGRID TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN FISIK LERENG TANAH PASIR PADA SUDUT KEMIRINGAN LERENG 56

dokumen-dokumen yang mirip
PENGARUH SUDUT KEMIRINGAN DAN JUMLAH LAPISAN PERKUATAN GEOGRID TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN FISIK LERENG TANAH PASIR

PENGARUH SUDUT KEMIRINGAN DAN JARAK PONDASI MENERUS DARI TEPI LERENG PADA PEMODELAN FISIK LERENG PASIR DENGAN PERKUATAN GEOGRID MAKALAH JURNAL

Keywords: bearing capacity, sand slope, geogridreinforcement, slope angles, footing width.

Ditha Permata, As ad Munawir, Yulvi Zaika. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Jalan MT. Haryono 167, Jawa Timur, Indonesia

PENGARUH LEBAR PONDASI DAN SUDUT KEMIRINGAN LERENG TERHADAP DAYA DUKUNG TANAH PADA PEMODELAN FISIK LERENG PASIR RC 85% DENGAN PERKUATAN GEOGRID

PENGARUH LEBAR PONDASI DAN PERKUATAN GEOGRID TERHADAP DAYA DUKUNG LERENG TANAH PASIR KEMIRINGAN 51 0 MAKALAH JURNAL

PENGARUH LEBAR PONDASI DAN JUMLAH LAPIS PERKUATAN GEOGRID TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN LERENG PASIR DENGAN KEMIRINGAN 46 O

PENGARUH LEBAR DAN JARAK PONDASI KE TEPI LERENG TERHADAP PEMODELAN FISIK LERENG TANAH PASIR DENGAN PERKUATAN GEOGRID PADA SUDUT KEMIRINGAN 46

NASKAH TERPUBLIKASI TEKNIK SIPIL

PENGARUH VARIASI JUMLAH LAPIS DAN JARAK ANTARLAPIS VERTIKAL GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN LERENG PASIR KEPADATAN 74%

PENGARUH LEBAR PONDASI DAN JUMLAH LAPIS GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN FISIK LERENG PASIR DENGAN SUDUT 56 O

PENGARUH LEBAR PONDASI DAN JUMLAH LAPIS GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN FISIK LERENG PASIR DENGAN SUDUT 46

NASKAH TERPUBLIKASI TEKNIK SIPIL

PENGARUH SUDUT KEMIRINGAN DAN JUMLAH LAPISAN PERKUATAN GEOGRID PADA LERENG PASIR RC 85% TERHADAP DAYA DUKUNG TANAH DENGAN PONDASI MENERUS

PENGARUH LEBAR PONDASI DAN KEMIRINGAN LERENG TERHADAP DAYA DUKUNG TANAH PASIR PADA PEMODELAN FISIK

PENGARUH LEBAR PONDASI DAN JUMLAH LAPISAN GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN FISIK LERENG PASIR DENGAN KEMIRINGAN 51

AULIYAH RIZKY SUHASMORO

MAKALAH JURNAL Diajukan untuk Memenuhi Sebagian Persyaratan Memperoleh Gelar Sarjana Teknik. Disusun oleh : ANDRI ARI SETIAWAN

NASKAH TERPUBLIKASI TEKNIK SIPIL. Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik DANU PURWOWASKITO NIM.

PENGARUH JARAK PONDASI DARI TEPI LERENG DAN PANJANG GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN LERENG PASIR

PENGARUH KEMIRINGAN LERENG DAN JUMLAH LAPIS GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN FISIK LERENG PASIR

TINJAUAN PUSTAKA Pola Keruntuhan Akibat Pondasi Dangkal di Tanah Datar

PENGARUH LEBAR DAN JUMLAH LAPISAN GEOTEKSTIL DENGAN JARAK PONDASI DARI TEPI LERENG 6 CM TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN LERENG

PENGARUH LEBAR DAN JARAK PONDASI KE TEPI LERENG TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN FISIK LERENG PASIR DENGAN PERKUATAN GEOTEKSTIL

PENGARUH KEMIRINGAN LERENG DAN LEBAR PONDASI DENGAN RASIO d/b = 1 TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN FISIK LERENG DENGAN PERKUATAN GEOTEKSTIL

Jl. MT. Haryono No. 167 Malang, 65145, Jawa Timur. Universitas Brawijaya Korespondensi : ABSTRAK

PENGARUH LEBAR PONDASI DAN JARAK LAPIS GEOGRID TERATAS DENGAN RASIO d/b = 1 DAN n = 3 TERHADAP DAYA DUKUNG TANAH PASIR PADA PONDASI MENERUS

AMRU KHIKMI IGAM NIM.

NASKAH TERPUBLIKASI TEKNIK SIPIL. Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik RICO ANGGRIAWAN NIM.

PENGARUH PANJANG DAN JUMLAH LAPISAN GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN LERENG PASIR KEPADATAN 74%

PENGARUH LEBAR PONDASI DAN JARAK LAPIS GEOGRID KE PONDASI TERHADAP DAYA DUKUNG TANAH PASIR PADA PONDASI MENERUS

PENGARUH PERKUATAN PILE TERHADAP DAYA DUKUNG PADA PEMODELAN FISIK LERENG TANAH PASIR

ABSTRAK. Kata kunci : Daya dukung, pondasi menerus, geotekstil, anyaman bambu, pasir, BCI

PENGARUH VARIASI PANJANG LEMBARAN GEOTEKSTIL DAN TEBAL LIPATAN GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN FISIK LERENG PASIR KEPADATAN 74%

PENGARUH JARAK LAPIS GEOGRID TERATAS DAN RASIO D/B TERHADAP DAYA DUKUNG TANAH PASIR PADA PONDASI MENERUS DENGAN PERKUATAN GEOGRID TIPE BIAKSIAL

UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG

Ach. Lailatul Qomar, As ad Munawir, Yulvi Zaika ABSTRAK Pendahuluan

PENDAHULUAN TUJUAN TINJAUAN PUSTAKA Geogrid sebagai Material Perkuatan pada Tanah Gambar 1. Gambar 1. Gambar

FADEL MUHAMMAD H. NIM.

Galuh Ajeng Listyaningrum, As ad Munawir, Yulvi Zaika

NASKAH PUBLIKASI. Untuk Memenuhi Pesyaratan Memperoleh Gelar Sarjana Teknik. Disusun Oleh: Lestari

PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH

PENGARUH JUMLAH LAPIS GEOGRID DAN KEDALAMAN DENGAN LEBAR B = 10 CM TERHADAP DAYA DUKUNG TANAH PASIR PADA PONDASI MENERUS DENGAN KEPADATAN RC 70%

ALTERNATIF PERKUATAN TANAH PASIR MENGGUNAKAN LAPIS ANYAMAN BAMBU DENGAN VARIASI LUAS DAN JUMLAH LAPIS

STUDI KAPASITAS DUKUNG PONDASI LANGSUNG DENGAN ALAS PASIR PADA TANAH KELEMPUNGAN YANG DIPERKUAT LAPISAN GEOTEKSTIL

terhadap variasi lebar pondasi dan jumlah lapis perkuatan geogrid. PENDAHULUAN

PENGARUH PENGGUNAAN CERUCUK DAN ANYAMAN BAMBU PADA DAYA DUKUNG TANAH LEMPUNG LUNAK

PENINGKATAN DAYA DUKUNG PONDASI TIANG DENGAN PENAMBAHAN SIRIP ULIR MENGGUNAKAN PENDEKATAN RUMUS EMPIRIS DAN MODEL TEST

PENGARUH JARAK LAPIS TERATAS DAN JUMLAH LAPISAN GEOGRID TERHADAP DAYA DUKUNG TANAH PASIR DENGAN PONDASI MENERUS NASKAH TERPUBLIKASI TEKNIK SIPIL

Analisis Perilaku Timbunan Tanah Pasir Menggunakan Uji Model Fisik

ABSTRAK. Kata Kunci : Pasir, Pondasi menerus, Geogrid, Lebar pondasi, Jumlah lapisan geogrid ABSTRACT

PENGARUH GEOTEKSTIL PADA KUAT DUKUNG PONDASI TELAPAK DI ATAS TANAH GAMBUT

BAB I PENDAHULUAN. A. Latar Belakang

PENGARUH VARIASI PANJANG LAPISAN DAN JARAK VERTIKAL ANTAR GEOTEKSTIL TERHADAP DAYA DUKUNG PONDASI MENERUS PADA PEMODELAN LERENG PASIR KEPADATAN 74%

ALTERNATIF PERKUATAN TANAH LEMPUNG LUNAK (SOFT CLAY), MENGGUNAKAN CERUCUK DENGAN VARIASI PANJANG DAN DIAMETER CERUCUK

PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH

ANALISIS TINGGI MUKA AIR PADA PERKUATAN TANAH DAS NIMANGA

STUDI PENURUNAN PONDASI TELAPAK DIPERKUAT KOLOM KAPUR DI ATAS PASIR

BAB III LANDASAN TEORI

INVESTIGASI SIFAT FISIS, KUAT GESER DAN NILAI CBR TANAH MIRI SEBAGAI PENGGANTI SUBGRADE JALAN ( Studi Kasus Tanah Miri, Sragen )

NASKAH TERPUBLIKASI TEKNIK SIPIL. Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik EKKI DARMAWAN PUJO SUSILO NIM.

PENGARUH PENAMBAHAN LIMBAH GYPSUM TERHADAP NILAI KUAT GESER TANAH LEMPUNG

BAB I PENDAHULUAN 1.1 Latar Belakang

DAFTAR ISI. TUGAS AKHIR... i. LEMBAR PENGESAHAN... ii. LEMBAR PENGESAHAN PENDADARAN... iii. PERNYATAAN... iv. PERSEMBAHAN... v. MOTTO...

Pengaruh Ukuran dan Kedalaman Geotekstil Teranyam Tipe HRX 200 terhadap Daya Dukung Ultimit dan Penurunan Tanah Lempung Lunak

ARTIKEL ILMIAH PENGARUH PENURUNAN TANAH PASIR TERHADAP LUASAN PONDASI BERBENTUK PERSEGI PANJANG DAN PERSEGI ENAM

ANALISIS DAYA DUKUNG TANAH FONDASI DANGKAL BERDASARKAN DATA LABORATORIUM

PENGUJIAN PARAMETER KUAT GESER TANAH MELALUI PROSES STABILISASI TANAH PASIR MENGGUNAKAN CLEAN SET CEMENT (CS-10)

IV. HASIL DAN PEMBAHASAN. Pengujian kadar air menggunakan tanah terganggu (disturbed), dilakukan

PERENCANAAN PONDASI TIANG BOR PADA PROYEK CIKINI GOLD CENTER

PENGARUH MUKA AIR TANAH TERHADAP DAYA DUKUNG TANAH YANG DIPERKUAT DENGAN GEOTEXTILE

NASKAH TERPUBLIKASI TEKNIK SIPIL. Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik JEPRIS HARI SAPUTRA NIM.

KONTRIBUSI DAYA DUKUNG FRIKSI DAN DAYA DUKUNG LACI PADA PONDASI TIANG TONGKAT

PENGARUH CAMPURAN KAPUR DAN ABU JERAMI GUNA MENINGKATKAN KUAT GESER TANAH LEMPUNG

Pengaruh Variasi Jarak dan Panjang Kolom Stabilisasi Tanah Ekspansif Di Bojonegoro dengan Metode Deep Soil Mix Tipe Single Square

TAHANAN CABUT TULANGAN BAJAPADA TANAH BERPASIR

Kampus Bina Widya Jl. HR. Soebrantas KM 12,5, Pekanbaru ABSTRACT

STUDI POTENSI TANAH TIMBUNAN SEBAGAI MATERIAL KONSTRUKSI TANGGUL PADA RUAS JALAN NEGARA LIWA - RANAU DI KABUPATEN LAMPUNG BARAT. G.

PENGARUH REMBESAN DAN KEMIRINGAN LERENG TERHADAP KERUNTUHAN LERENG

Pengaruh Kadar Air Tanah Lempung Terhadap Nilai Resistivitas/Tahanan Jenis pada Model Fisik dengan Metode ERT (Electrical Resistivity Tomography)

BAB I PENDAHULUAN. 1.1 Latar Belakang. Dalam dunia konstruksi, tanah menduduki peran yang sangat vital dalam

PENGARUH PERKUATAN ANYAMAN BAMBU TERHADAP PENINGKATAN DAYA DUKUNG TANAH LEMPUNG

KARAKTERISITIK KUAT GESER TANAH MERAH

ANALISIS TIMBUNAN PELEBARAN JALAN SIMPANG SERAPAT KM-17 LINGKAR UTARA ABSTRAK

PENGARUH VARIASI KEPADATAN PADA PERMODELAN FISIK MENGGUNAKAN TANAH PASIR BERLEMPUNG TERHADAP STABILITAS LERENG

LAMPIRAN 1 HASIL PENGUJIAN TRIAKSIAL UNCOSOLIDATED UNDRAINED (UU)

BAB I PENDAHULUAN Latar Belakang

ABSTRAK. JURNAL REKAYASA SIPIL / Volume 4, No ISSN

BAB I PENDAHULUAN 1.1 Latar Belakang

ANALISA PENGGUNAAN TANAH KERIKIL TERHADAP PENINGKATAN DAYA DUKUNG TANAH UNTUK LAPISAN KONSTRUKSI PERKERASAN JALAN RAYA

Analisis Stabilitas Lereng Tanah Berbutir Kasar dengan Uji Model Fisik

TINJAUAN VARIASI DIAMETER BUTIRAN TERHADAP KUAT GESER TANAH LEMPUNG KAPUR (STUDI KASUS TANAH TANON, SRAGEN)

PEMANFAATAN KAPUR SEBAGAI BAHAN STABILISASI TERHADAP PENURUNAN KONSOLIDASI TANAH LEMPUNG TANON DENGAN VARIASI UKURAN BUTIRAN TANAH

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan

PERKUATAN TANAH LUNAK PADA PONDASI DANGKAL DI BANTUL DENGAN BAN BEKAS

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS PASIR PENGARIAN KABUPATEN ROKAN HULU RIAU/2016

I. PENDAHULUAN. Dalam perencanaan dan pekerjaan suatu konstruksi bangunan sipil tanah

BAB II TINJAUAN PUSTAKA. Tanah lempung adalah tanah yang memiliki partikel-partikel mineral tertentu

PENURUNAN PONDASI TELAPAK YANG DIPERKUAT KOLOM KAPUR

Jurusan Teknik Sipil, Universitas Riau, Jl. HR Subrantas Km 12 Pekanbaru Riau 2

Transkripsi:

PENGARUH LEAR PONDASI DAN JUMLAH LAPISAN GEOGRID TERHADAP DAYA DUKUNG PONDASI PADA PEMODELAN FISIK LERENG TANAH PASIR PADA SUDUT KEMIRINGAN LERENG 56 Muhammad Faisal Ghifari, Suroso, As ad Munawir Jurusan Teknik Sipil-Fakultas Teknik Universitas rawijaya Jalan MT. Haryono 67, Malang 655, Indonesia E-mail: mfghifari@yahoo.com ASTRAK Lereng merupakan suatu permukaan tanah yang miring dengan sudut tertentu terhadap bidang horizontal yang memiliki sifat tanah lunak dan sangat riskan akan terjadinya bahaya longsor. Kelongsoran terjadi karena tanah kehilangan kuat geser dan daya dukungnya karena kandungan air yang tinggi di dalam tanah. Daya dukung tanah adalah faktor penting yang berpengaruh terhadap runtuhnya lereng. Peningkatan daya dukung tanah menandakan kemampuan tanah untuk menahan beban diatasnya semakin baik. Pada penelitian ini, dibuat 2 buah benda uji, dengan 3 variasi lebar pondasi dan 3 variasi jumlah lapisan geogrid. Pondasi yang digunakan merupakan pondasi menerus yang diletakkan di permukaan lereng dengan sudut 56 dan dengan RC 7%. Variasi lebar pondasi yang digunakan yaitu cm, 6 cm dan 8 cm, serta variasi jumlah lapisan geogrid yang digunakan yaitu lapis, 2 lapis dan 3 lapis perkuatan. Jarak dari tepi lereng ke pondasi adalah senilai dengan lebar pondasi yang digunakan. Jarak antar geogrid tiap lapisannya adalah 3 cm. erdasarkan penelitian yang telah dilakukan menunjukan terjadinya peningkatan daya dukung pondasi dengan adanya perkuatan menggunakan geogrid. Dengan bertambahnya lebar pondasi yang digunakan, beban runtuh yang dapat ditahan oleh pondasi akan bertambah juga, namun daya dukung pondasi semakin menurun. Semakin bertambahnya jumlah lapisan geogrid yang digunakan, semakin besar pula daya dukung yang dimiliki oleh pondasi. ila ditinjau berdasarkan analisis CIqu dan CIs yang dilakukan, lebar dan jumlah lapis geogrid dengan peningkatan q paling maksimum terjadi saat = cm dan n = 3 lapisan. Sedangkan berdasarkan analisis peningkatan dan kontribusi variabel, variasi jumlah lapisan geogrid lebih dominan daripada variasi lebar pondasi. Kata-kata kunci: lereng pasir, daya dukung, pondasi menerus, perkuatan tanah, geogrid PENDAHULUAN Kepadatan penduduk di Indonesia mengakibatkan adanya pembangunan pada daerah dengan permukaan tanah yang tidak datar (Lereng). Pembangunan pada daerah tersebut sangat riskan khususnya terhadap bahaya longsor. Pengertian lereng itu sendiri ialah suatu permukaan tanah yang miring dengan sudut tertentu terhadap bidang horizontal, akibat tingginya kandungan air dalam tanah lereng pada umumnya sifat tanah lereng lunak dan kekuatan geser serta daya dukungnya rendah. erbagai macam perbaikan tanah dapat dilakukan pada lereng, salah satunya dengan pemasangan material geogrid pada lapisan lereng yang dapat meningkatkan daya dukung yang merupakan faktor penting dalam keruntuhan lereng. TUJUAN Hasil penelitian ini diharapkan menunjukkan mekanisme peningkatan daya dukung pondasi di atas lereng pada tanpa perkuatan dan dengan perkuatan. Serta mengetahui pengaruh dan parameter jumlah lapisan geogrid dan dimensi lebar pondasi. Selain itu juga mendapatkan kondisi dimana terjadi daya dukung terbesar. TINJAUAN PUSTAKA Pasir Tanah pasir merupakan tanah dengan butiran tanah yang terpisah ketika keadaan kering dan akan melekat bila berada dalam keadaan basah akibat gaya tarik permukaan di dalam air. Tanah pasir merupakan tanah non-kohesif yang tidak memiliki garis batas antara keadaan plastis dan tidak plastis, karena jenis tanah ini tidak plastis untuk semua nilai kadar air. erdasarkan sistem klasifikasi tanah Unified (U.S.C.S) pasir adalah partikel-

partikel batuan yang lolos saringan no. (,75 mm) dan tinggal dalam saringan no. 200 (0,075 mm). Keruntuhan Lereng Keruntuhan atau longsoran pada lereng ini ini dapat bersifat progresif dari lambat hingga amat lambat yang berarti bahwa keruntuhan geser tidak terjadi seketika pada seluruh bidang gelincir melainkan merambat dari suatu titik. Sudut lereng yang sangat besar dan tanah yang berada dekat dengan kaki lereng tersebut berkekuatan tinggi mengakibatkan terjadinya keruntuhan pada lereng. Apabila tanah yang berada di atas dan bawah kaki lereng bersifat homogen maka akan terjadi keruntuhan pada kaki lereng. Sedangkan keruntuhan dasar lereng dapat diakibatkan oleh tanah yang berada di bawah kaki lereng lebih halus dan plastis daripada tanah di atasnya serta sudut lereng yang kecil. Geogrid Geogrid adalah pengembangan teknologi geosintetik yang dibuat untuk mengatasi mekanisme perkuatan dan masalah kekakuan bahan. Geogrid memiliki kekakuan bahan yang lebih tinggi daripada geotekstil. Dengan beban di atas tanah, tanah menahan tekan sedangkan geogrid menahan tarik yang diberikan beban. Geogrid iaxial yang mana akan digunakan sebagai bahan perkuatan tanah dan hendak dikaji dalam skripsi ini terbuat dari bahan dasar polypropylene (PP) dan banyak digunakan untuk meningkatkan tanah dasar lunak (CR < %). i-axial Geogrid adalah lembaran dengan bentuk lubang bujursangkar di mana dengan struktur lubang tersebut partikel tanah timbunan akan saling terkunci sehingga kuat geser tanah akan meningkat. Kuat tarik geogrid yang digunakan sebesar 0 kn/m. Geogrid i-axial berfungsi sebagai stabilisasi tanah dasar. Seperti pada tanah dasar lunak (soft clay maupun tanah gambut). Penyaluran Panjang Geogrid Penelitian yang dilakukan oleh S.V. Anil Kumar yang berjudul Response of Footing on Sand Slopes menyatakan bahwa panjang penyaluran perkuatan berpengaruh terhadap peningkatan daya dukung. Pada penelitiannya, ketika kondisi L/=3 panjang penyaluran dibagi menjadi tiga bagian, yaitu sebelum pondasi sepanjang lebar pondasi (), dibawah pondasi sepanjang lebar pondasi (), dan setelah pondasi sepanjang lebar pondasi (). Sehingga dapat disimpulkan panjang penyaluran geogrid setelah bidang runtuh yang dipergunakan adalah sepanjang 5 = 0 cm. Penyaluran Panjang Geogrid erdasarkan hasil penelitian dari Saeed Alamshahi yang berjudul earing Capacity of Strip Footings on Sand Slopes Reinforced with Geogrid and Grid- Anchor yang menyatakan bahwa jarak antar lapisan memberikan pengaruh yang cukup besar terhadap perkuatan tanah dan hasil peningkatan paling maksimum terjadi pada saat jarak antar lapisan sebesar 0,75. Sehingga, pada penelitian ini menggunakan jarak antar lapis 0,75 x cm = 3 cm. Daya Dukung Pondasi Dangkal di Atas Lereng Tanpa Perkuatan Daya dukung (bearing capacity) mengkaji tentang kemampuan tanah dalam mendukung beban pondasi dari struktur yang terletak di atasnya. Daya dukung menyatakan tahanan geser tanah untuk melawan penurunan akibat pembebanan dari struktur diatasnya yang dapat diberikan oleh tanah di sepanjang bidangbidang gesernya. Solusi Meyerhof Daya dukung batas pondasi menurut Meyerhof untuk tanah pasir dinyatakan dengan persamaan berikut: dengan; qu = Daya Dukung (kg/cm 2 ) = Lebar Pondasi (cm)

Nᵧq = Faktor Daya Dukung ᵞ = erat Isi Tanah (gr/cm 3 ) Solusi Hansen Untuk kondisi pondisi berada di tepi lereng, Hansen menyatakan daya dukung batas dari podasi menerus dengan persamaan; f β, b/, /L = + 0,33 (D/) tan β {2/[2 + (b/) 2 tan β ]} Selanjutnya dari nilai Nᵧq yang didapatkan dari solusi gemperline, dilanjutkan dengan solusi Meyerhof untuk mencari nilai daya dukung. earing Capacity Improvement (CI) CI merupakan perbandingan rasio yang membandingkan antara daya dukung tanah pada lereng dengan perkuatan dengan lereng tanpa perkuatan. CI = dengan; Nc,Nq,Nᵧ λ cβ, λ qβ, λᵧβ Solusi Gemperline = Faktor Daya Dukung = Faktor-faktor Lereng Dari hasil penelitiannya, Shields menyatakan prosentase daya dukung tanah datar untuk menghitung nilai Nᵧq dengan memggunakan persamaan Gemperline. Dengan : = sudut geser dalam tanah ( o ) β = sudut kemiringan lereng ( o ) D = lebar pondasi (inchi) = kedalaman pondasi (inchi) Lp = panjang pondasi (inchi) b = jarak pondasi kepuncak lereng (inchi) (0,59-2,386) f Φ = f = (0,3 0,2 log ) f D/ = + 0,65 (D/) f /L Nγq = f Φ x f x f D/ x f /Lp x f D/, /Lp x f α, b/ x f α, b/d, D/ x f α, b/, /Lp = - 0,27 (/L) f D/, /Lp = + 0,39 (D/L) f β, b/ = 0,8 [ ( tan β ) 2 ] {2/[2 + (b/) 2 tan β ]} f β, b/d, D/ = + 0,6 (/L) [ ( tan β ) 2 ] {2/[2 + (b/) 2 tan β ]} dimana; CI q q o = Improvement earingcapacity = daya dukung dengan perkuatan = daya dukung tanpa perkuatan Pada penelitian ini, CI ditentukan berdasarkan daya dukung pada saat ultimit (CIqu) dan daya dukung saat penurunan yang sama (CIs). METODE PENELITIAN Pengujian Dasar Sebelum melakukan pengujian pada model, dilakukan terlebih dahulu pemeriksaan dasar tanah dengan memeriksa sifat fisik dan mekanik tanah dengan kepadatan relatif 7%, antara lain: a. Pemeriksaan analisis saringan (Mechanical Grain Size) menurut ASTM C-36-6 b. Pemeriksaan berat jenis butiran tanah (Specific Gravity) mengikuti ASTM D-85-58 c. Kepadatan standart (Compaction) berdasarkan ASTM D-698-70 d. Pemeriksaan kekuatan geser langsung (Direct Shear) menurut ASTM D-3080-72 Jumlah dan Perlakuan enda Uji Dalam penelitian ini dibuat 2 benda uji yang terdiri dari 3 buah lereng tanpa perkuatan dan 9 buah lereng dengan perkuatan. Pada lereng tanpa perkuatan digunakan 3 macam variasi lebar pondasi,

yaitu cm, 6 cm, dan 8 cm. Sedangkan untuk lereng dengan perkuatan variasi ditambah dengan menggunakan variasi jumlah lapisan geogrid, yaitu lapis, 2 lapis dan 3 lapis. Rasio Jarak dari pondasi ke tepi lereng (d/) adalah. Sudut yang digunakan ialah sebesar 56. Panjang penyaluran (L) dan jarak antar geogrid (sv) yang digunakan adalah 0 cm dan 3 cm. dapat mempertahankan kondisi regangan yang terjadi. Matriks variasi pemodelan lereng ditampilkan pada Tabel. dan Tabel 2. Tabel. Variasi Lereng tanpa Perkuatan 8 8 56 70 Tabel 2. Variasi Lereng dengan Perkuatan 5 Gambar. Contoh Model Lereng tanpa Perkuatan ( = 8 cm) 6 6 56 L 3 3 70 Metode Pengambilan Data erdasarkan hasil pengujian pembebanan, diperoleh data beban dan penurunan untuk lereng tanpa perkuatan serta lereng dengan perkuatan geogrid. Lalu dihitung tiap kenaikan beban sebesar 5kg dan dihitung daya dukung pondasi dengan rumus berikut; 5 Gambar 2. Contoh Model Lereng dengan Perkuatan ( = 6 cm; n = 2 lapis) Model boks uji yang digunakan berukuran panjang,5 m, lebar m dan tinggi m. Namun untuk pemodelan lerengnya sendiri hanya digunakan dengan ukuran panjang,5 m, lebar m dan tinggi 0,7 m. Dasar dan sisi boks terbuat dari pelat baja rigid dengan tebal,2 mm, kecuali sisi depan boks menggunakan bahan fiber glass. oks ini dibuat rigid dan dengan gesekan seminim mungkin untuk Dimana; Pu = beban runtuh mak (kg) A = luas pondasi (xl) (cm 2 ) Selanjutnya, dari daya dukung yang didapatkan dilakukan analisis peningkatan daya dukung dengan CI. HASIL DAN PEMAHASAN Analisis Daya Dukung untuk Lereng Tanpa Perkuatan Analisis ini dilakukan dengan dua jenis metode, yaitu metode eksperimen dan

Penurunan (mm) S/ (%) CI CI metode analitik. Metode analitik diperoleh dengan menggunakan solusi Meyerhoff - Gemperline dan solusi Hansen seperti yang sudah dijelaskan. Hasil dari analisis ini ditampilkan pada Tabel 3. Tabel 3. Nilai Daya Dukung Pondasi pada Lereng tanpa Perkuatan berdasarkan Eksperimen dan Analitik. qu (kn/m 2 ) (cm) Eksperimen Metode Meyerhoff- Gemperline Hansen 27,68 6,79 6,96 6 26,700 23,229,6 8 25,957 29,2 3,928 Analisis Daya Dukung untuk Lereng dengan Perkuatan pada Variasi Lebar Pondasi dan Jumlah Lapisan Geogrid erdasarkan hasil yang didapatkan dari hasil eksperimen di laboratorium. Diketahui bahwa nilai daya dukung dengan perkuatan yang paling maksimum terjadi pada variasi lebar pondasi cm dan jumlah lapisan geogrid 3 lapis. Hasil dari analisis ini disajikan pada Tabel. dan Gambar 3. Tabel. Nilai Daya Dukung Lereng Perkuatan dengan Lebar Pondasi () cm dengan Variasi Jumlah Lapisan Perkuatan Geogrid (n) n Penurunan (mm) S/ (%) qu (kn/m 2 ) 0 2 6 9,03 22,53 7,9 2 8,600 2,500 65,86 3 6,990 7,75 96,29 = cm = 6 cm = 8 cm 0 5 5 8 20 0 20 0 60 80 0 q (kn/m2) Gambar 5. Grafik Hubungan q dan Penurunan Tanah pada Lereng Perkuatan dengan Jumlah Lapisan Geogrid (n) = 3 Analisis earing Capacity Improvement (CIqu) erdasarkan Daya Dukung Ultimate erdasarkan Hasil Analisis ini didapatkan nilai CIqu paling maksimum terjadi saat n = 3 lapis dan = cm yaitu sebesar 3,59. 3 2 3.59 2.39 2.23 2.338 n = 3 2.05.737.605.926.386 3 5 6 7 8 9 Gambar 5. Grafik Hubungan Nilai CI dengan Variasi Lebar Pondasi Analisis earing Capacity Improvement (CIs) erdasarkan Penurunan CIs (2%) Hasil analisis menyatakan nilai (CI s ) terbesar dalam variasi lebar pondasi saat penurunan (s/ = 2%) diperoleh saat n = 3 lapis dan = cm yaitu sebesar 2,7. 3.0 2.5 2.0.5.0 2.7 2.08.935 Gambar 6. Grafik Hubungan Nilai CI dengan Variasi Lebar Pondasi pada s/ = 2% n = n = 2 n = 3 2.350 2.99.9.98.73.58 n = n = 2 3 5 6 7 8 9

CI CI CIs (%) Hasil analisis menyatakan nilai (CI s ) terbesar dalam variasi lebar pondasi saat penurunan (s/ = %) diperoleh saat n = 3 lapis dan = cm yaitu sebesar,7..5.0 3.5 3.0 2.5 2.0.5.0 Gambar 7. Grafik Hubungan Nilai CI dengan Variasi Lebar Pondasi pada s/ = % CIs (6%) Hasil analisis menyatakan nilai (CI s ) terbesar dalam variasi lebar pondasi saat penurunan (s/ = 6%) diperoleh saat n = 3 lapis dan = cm yaitu sebesar,50. 5.0.5.0 3.5 3.0 2.5 2.0.5.0 n = n = 2 n = 3.7 3.20 2.896 2.787 2.282 2.20.395 3 5 6 7 8 9 Gambar 7. Grafik Hubungan Nilai CI dengan Variasi Lebar Pondasi pada s/ = 6% Pengaruh Lebar Pondasi dan Jumlah Lapisan Geogrid terhadap Nilai Daya Dukung Dari keseluruhan eksperimen yang telah dilakukan diketahui bahwa variasi lebar pondasi dan jumlah lapisan berpengaruh pada peningkatan daya dukung lereng. Ditinjau dari hasil CIqu dan CIs diketahui bila semakin lebar pondasi yang 2.083.99 n = n = 2 n = 3.50 2.968 2.983 2.732 2..958.926 3 5 6 7.386 8 9 2.05 digunakan maka peningkatan daya dukung yang terjadi semakin kecil. Nilai CI maksimum terjadi pada lebar pondasi cm. Sedangkan jika dilihat dari variasi jumlah lapisan geogrid, peningkatan daya dukung meningkat seiring dengan bertambahnya jumlah lapisan. Nilai CI maksimum terjadi pada jumlah lapisan sebanyak 3 lapis. Analisis Persentase Kontribusi Variabel Pada pembahasan ini akan membahas persentase peningkatan yang terjadi terhadap daya dukung ultimit, yaitu persentase peningkatan dari lereng dengan perkuatan terhadap lereng tanpa perkuatan. Tabel 5. Hasil Peningkatan Daya Dukung Lereng pada Variasi n (%) 6 8 n qo (kn/m 2 ) qu (kn/m 2 ) Peningkatan (%) 7.9 73.7% 2 27.68 65.86 2.25% 3 96.29 25.93% 2.857 57.75% 2 26.70 62.5 29.73% 3 65.36 39.75% 35.969 32.39% 2 25.957 50.000 8.0% 3 53.36 96.2% Rata-rata Total Rata-rata peningkata n(%) 56.96% 3.7% 90.% 27.28% Tabel 6. Hasil Peningkatan Daya Dukung Lereng pada Variasi (%) n qo (kn/m 2 ) 2 qu (kn/m 2 ) Peningkatan (%) 27.68 7.9 73.7% 6 26.70 2.857 60.5% 8 25.957 35.969 38.57% 27.68 65.86 2.25% 6 26.70 62.5 33.76% 8 25.957 50.000 92.63% Rata-rata peningkata n(%) 57.60% 3.9% 3 27.68 96.29 25.93% 2.68%

6 26.70 65.36 3.95% 8 25.957 53.36 5.0% Rata-rata Total Peningkatan 98.9% pondasi = cm. Semakin banyak jumlah lapisan yang digunakan maka semakin besar pula nilai Nγq, sedangkan semakin lebar pondasi yang digunakan maka nilai Nγq menurun. Seperti yang dijelaskan pada tabel diatas, dari seluruh variasi yang digunakan, peningkatan terbesar terjadi pada jumlah lapisan (n) = 3 lapis dan lebar pondasi () = cm yaitu sebesar 25,93%. Serta jika diamati berdasarkan total peningkatan masing-masing variabel, variasi jumlah lapisan menunjukan kontribusi yang lebih besar dan lebih dominan daripada variasi lebar pondasi, yaitu sebesar 27,28%. Nilai Faktor Daya Dukung Nγq dengan Perkuatan Geogrid Nilai Nγq merupakan salah satu faktor yang digunakan dalam menghitung daya dukung. esarnya nilai Nγq dapat diketahui dengan menggunakan rumus daya dukung dari Meyerhof yang mana nilai dari daya dukungnya (qu) sudah didapatkan dari hasil eksperimen yang dilakukan. Tabel 7. Nilai Faktor Daya Dukung Nγq pada Lereng dengan Perkuatan dengan Variasi Jumlah Lapisan Geogrid (cm) 6 8 (n) γb (kn/m3) α = 56 qu (kn/m2) Nγq.625 33.029 2.920 2.656 6.29 58.399 3.62 70.53 2.080.709 2.060 95.36 2.599 58.695 3.08 3.568 6.099 6.67.66 35.969 6.523 2.568 50.000 85.805 3.63 53.36 9.083 erdasarkan hasil yang ditampilkan di atas, dapat diketahui bahwa nilai Nγq terbesar terdapat pada lereng dengan jumlah lapisan geogrid (n) = 3, dan lebar KESIMPULAN erdasarkan seluruh hasil penelitian serta analisa yang dilakukan, diperoleh kesimpulan sebagai berikut:. Adanya peningkatan daya dukung pondasi pada lereng dengan perkuatan geogrid jika dibandingkan dengan daya dukung pondasi lereng tanpa perkuatan. 2. Semakin lebar pondasi yang digunakan, maka beban runtuh yang dapat ditahan oleh pondasi juga meningkat, namun daya dukung pondasi semakin menurun. Hal ini tidak sesuai dengan teori daya dukung yang ada. 3. Meningkatnya penggunaan jumlah lapis perkuatan geogrid, menyebabkan semakin besarnya daya dukung yang diberikan oleh pondasi.. Nilai CIqu dan CIs maksimum terjadi pada lereng dengan lebar pondasi () = cm dan jumlah lapisan perkuatan geogrid (n) yaitu 3 lapis. erdasarkan analisis persentase kontribusi variabel, peningkatan terbesar terjadi pada jumlah lapisan geogrid (n) = 3 dan lebar pondasi () = cm yaitu sebesar 25,93%. Sedangkan berdasarkan analisis peningkatan antar variabel, variasi jumlah lapisan geogrid (n) lebih dominan dan menunjukan kontribusi yang lebih besar daripada variasi lebar pondasi. DAFTAR PUSTAKA Alamshahi, Saeed dan Hataf, Nader. earing Capacity of Strip Footings on Sand Slopes Reinforced with

Geogrid and Grid-Anchor. Geotextiles and Geomembranes, 27:27-226. Iran : Shiraz University Arief, Saifudin. 2007. Konsep Dasar Analisis Kstabilan Lereng, www.scribd.com owles, J. E. 993. Sifat-Sifat Fisis dan Geoteknis Tanah. Jakarta : Erlangga Christady H., Hary. 990. Mekanikan Tanah. Yogyakarta: Jurusan Teknik Sipil Fakultas Teknik Universitas Gajah Mada Craig, R.F. 989. Mekanika Tanah Edisi Keempat. Jakarta : Erlangga Das, raja M. 98. Mekanika Tanah (Prinsip-pinsip Rekayasa Geoteknis) Jilid 2. Jakara : Erlangga DPU. 2009. Pedoman Konstruksi angunan: Perencanaan dan Pelaksanaan Perkuatan Tanah dengan Geosintetik No. 003/M/2009 El Sawwaf, Mostafa A dan Nazir, Ashraf K. 20. Cyclic Settlement ehavior of Strip Footings Resting on Reinforced Layered Sand Slope. Journal of Advanced Research, 3: 35-32. Egypt : Cairo University Giani, Gian Paolo. 992. Rock Slope Stability Analysis. Rotterdam : Technical University of Turin Graham, J., Andrews, M., and Shields, D. H. 987. Stress Characteristic For Shallow Footings in Cohessionless Slopes. Geotech, 25:238-29. Canada Mohd Raihan Taha, Enas. Altalhe. 203. Numerical and Experimental Evaluation of earing Capacity Factor Nᵧ of Strip Footing on Sand Slopes. International Journal Of Physical Science, 8(36): 807-823. Malaysia : Universiti Kebangsaan Malaysia Naieni, S.A., Rabe,. Khadem, dan Mahmoodi, E. 20. earing Capacity and Settlement of Strip Footing on Geosynthetic Reinforced Clay Slopes. Journal of Central South University, 9: 6-2. Iran : Imam Khomeni International University Rahardjo, Salim & Widjaja, 2002. Manual Kestabilan Lereng. andung : Geotechnical Engineering Center Universitas Katolik Parahyangan Suroso, As ad Munawir, dan Herlien Indrawahyuni. uku Ajar Teknik Pondasi. Malang : Jurusan Teknik Sipil Fakultas Teknik Universitas rawijaya S.V. Anil Kumar, K. Ilamaparuthi. 2009. Respon of Footing on Sand Slopes. Indian Geotechnical Society Chennai Chapter, Chennai-600025. India : Anna University Chennai.