PERANCANGAN GEOMETRI BOILER DAN KONFIGURASI PLTU DENGAN DAYA 7,3 MW BERBAHAN BAKAR CANGKANG SAWIT

dokumen-dokumen yang mirip
BAB 4 ANALISA DAN PEMBAHASAN EFESIENSI CFB BOILER TERHADAP KEHILANGAN PANAS PADA PEMBANGKIT LISTRIK TENAGA UAP

BAB III ANALISA DAN PEMBAHASAN DATA

ANALISA EFISIENSI KETEL UAP PIPA AIR KAPASITAS 20 TON/JAM TEKANAN KERJA 20 BAR DI PABRIK KELAPA SAWIT

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

KETEL UAP ANALISA EFISIENSI WATER TUBE BOILER BERBAHAN BAKAR FIBER DAN CANGKANG DI PALM OIL MILL DENGAN KAPASITAS 45 TON TBS/JAM

III. METODOLOGI PENELITIAN

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

BAB 1 PENDAHULUAN. yang diperoleh dari proses ekstraksi minyak sawit pada mesin screw press seluruhnya

ANALISIS THERMOGRAVIMETRY DAN PEMBUATAN BRIKET TANDAN KOSONG DENGAN PROSES PIROLISIS LAMBAT

Aditya Kurniawan ( ) Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta

BAB IV PERHITUNGAN DATA

ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW

PERHITUNGAN EFISIENSI BOILER

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara.

OLEH : SHOLEHUL HADI ( ) DOSEN PEMBIMBING : Ir. SUDJUD DARSOPUSPITO, MT.

BAB II TINJAUAN PUSTAKA. dengan memakai bahan bakar antara lain bahan bakar padat dan bahan bakar cair,

Lampiran 1. Perhitungan kebutuhan panas

MENAIKKAN EFISIENSI BOILER DENGAN MEMANFAATKAN GAS BUANG UNTUK PEMANAS EKONOMISER

BAB II. KAJIAN PUSTAKA. Biomassa adalah bahan organik yang dihasilkan melalui proses fotosintetis,

ANALISA KETEL UAP PIPA AIR BERBAHAN BAKAR CANGKANG DAN FIBER PADA PABRIK KELAPA SAWIT DENGAN KAPASITAS 30 TON TBS/JAM

OPTIMALISASI EFISIENSI TERMIS BOILER MENGGUNAKAN SERABUT DAN CANGKANG SAWIT SEBAGAI BAHAN BAKAR

ANALISIS PENGARUH KANDUNGAN KARBON TETAP PADA BATUBARA TERHADAP EFISIENSI KETEL UAP PLTU TANJUNG JATI B UNIT 2

Simposium Nasional Teknologi Terapan (SNTT) ISSN: X

ANALISIS VARIASI NILAI KALOR BATUBARA DI PLTU TANJUNG JATI B TERHADAP ENERGI INPUT SYSTEM

Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik

PERBANDINGAN UNJUK KERJA KOMPOR METHANOL DENGAN VARIASI DIAMETER BURNER

ANALISIS PENGARUH PEMBAKARAN BRIKET CAMPURAN AMPAS TEBU DAN SEKAM PADI DENGAN MEMBANDINGKAN PEMBAKARAN BRIKET MASING-MASING BIOMASS

PENGARUH UNJUK KERJA AIR HEATER TYPE LJUNGSTORM TERHADAP PERUBAHAN BEBAN DI PLTU TANJUNG JATI B UNIT I BERDASARKAN PERHITUNGAN ASME PTC 4.

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C

UJI ULTIMAT DAN PROKSIMAT SAMPAH KOTA UNTUK SUMBER ENERGI ALTERNATIF PEMBANGKIT TENAGA

BAB IV PEMBAHASAN KINERJA BOILER

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi

Oleh : Dimas Setiawan ( ) Pembimbing : Dr. Bambang Sudarmanta, ST. MT.

BAB VI PEMBAHASAN. 6.1 Pembahasan pada sisi gasifikasi (pada kompor) dan energi kalor input dari gasifikasi biomassa tersebut.

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

BAB I PENDAHULUAN BAB I PENDAHULUAN

TUGAS I MENGHITUNG KAPASITAS BOILER

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo

BAB III METODOLOGI PENELITIAN

PENGEMBANGAN TEKNOLOGI TUNGKU PEMBAKARAN MENGGUNAKAN AIR HEATER YANG DIPASANG DIDINDING BELAKANG TUNGKU

Perhitungan Daya Turbin Uap Dan Generator

BAB I PENDAHULUAN. Universitas Sumatera Utara

SEMINAR TUGAS AKHIR. Oleh : Wahyu Kusuma A Pembimbing : Ir. Sarwono, MM Ir. Ronny Dwi Noriyati, M.Kes

ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9)

BAB I PENDAHULUAN. 1.1 Latar Belakang

Efisiensi PLTU batubara

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

Analisis Pemenuhan Kebutuhan Uap PMS Parindu PTP Nusantara XIII (PERSERO)

Uji kesetimbangan kalor proses sterilisasi kumbung jamur merang kapasitas 1.2 ton media tanam menggunakan tungku gasifikasi

BAB III DASAR TEORI SISTEM PLTU

ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU

TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100.

III. METODOLOGI PENELITIAN

PENGARUH VARIASI RASIO UDARA-BAHAN BAKAR (AIR FUEL RATIO) TERHADAP GASIFIKASI BIOMASSA BRIKET SEKAM PADI PADA REAKTOR DOWNDRAFT SISTEM BATCH

I. PENDAHULUAN. kebutuhannya demikian juga perkembangannya, bukan hanya untuk kebutuhan

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU

Farel H. Napitupulu Staf Pengajar Departemen Teknik Mesin FT USU. m& = konsumsi bahan bakar (kg/s) LHV = low heating value (nilai kalor bawah) (kj/kg)

BAB 3 METODE PENELITIAN

PERFORMANSI KETEL UAP PIPA AIR KAPASITAS 18 TON/JAM DI PKS MERBAUJAYA INDAHRAYA

BAB III TEKNOLOGI PEMANFAATAN SAMPAH KOTA BANDUNG SEBAGAI ENERGI

BAB IV DESAIN DASAR PEMBANGKIT LISTRIK TENAGA SAMPAH DI KOTA BANDUNG

BAB II TEKNOLOGI PENINGKATAN KUALITAS BATUBARA

PENGARUH VARIASI KOMPOSISI BIOBRIKET CAMPURAN ARANG KAYU DAN SEKAM PADI TERHADAP LAJU PEMBAKARAN, TEMPERATUR PEMBAKARAN DAN LAJU PENGURANGAN MASA

BAB VI ANALISA PENGHEMATAN BIAYA BAHAN BAKAR MINYAK DENGAN BAHAN BAKAR GAS

ANALISA EFISIENSI WATER TUBE BOILER BERBAHAN BAKAR COAL DENGAN KAPASITAS 110 TON/JAM PADA PLTU PANGKALAN SUSU

I. PENDAHULUAN. perkebunan kelapa sawit Indonesia hingga tahun 2012 mencapai 9,074,621 Ha.

PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

KARAKTERISTIK CAMPURAN CANGKANG DAN SERABUT BUAH KELAPA SAWIT TERHADAP NILAI KALOR DI PROPINSI BANGKA BELITUNG

BAB III PROSES PEMBAKARAN

Analisis Tekno-Ekonomi Operasi Co-combustion Boiler Biomassa Kapasitas 10 kg/jam

PENGEMBANGAN TEKNOLOGI TUNGKU PEMBAKARAN MENGGUNAKAN AIR HEATER BERSIRIP

Momentum, Vol. 12, No. 2, Oktober 2016, Hal. 1-7 ISSN

ANALISIS ALAT PENUKAR KALOR PADA KETEL UAP

V. HASIL UJI UNJUK KERJA

ANALISA PEMAKAIAN BAHAN BAKAR DENGAN MELAKUKAN PENGUJIAN NILAI KALOR TERHADAP PERFOMANSI KETEL UAP TIPE PIPA AIR DENGAN KAPASITAS UAP 60 TON/JAM

Cara Kerja Pompa Sentrifugal Komponen Komponen Pompa Sentrifugal Klasifikasi Pompa Sentrifugal Boiler...

ANALISA PERFORMANSI BOILER DENGAN TYPE DG693/ PADA PLTU PANGKALAN SUSU LAPORAN TUGAS AKHIR PROGRAM STUDI TEKNIK KONVERSI ENERGI MEKANIK

UNJUK KERJA KOMPOR BERBAHAN BAKAR BIOGAS EFISIENSI TINGGI DENGAN PENAMBAHAN REFLEKTOR

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3

ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 ABSTRAK

PERENCANAAN KETEL UAP TEKANAN 6 ATM DENGAN BAHAN BAKAR KAYU UNTUK INDUSTRI SEDERHANA RUSNOTO

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM:

OLEH :: INDRA PERMATA KUSUMA

PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW

BAB V KESIMPULAN DAN SARAN

BAB III SPESIFIKASI PERALATAN PROSES

ANALISA BESAR PERPINDAHAN KALOR PADA SISTEM PEMBANGKIT LISTRIK TENAGA UAP INDUSTRI BIODIESEL PT. CILIANDRA PERKASA, DUMAI

Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap

BAB IV PELAKSANAAN PENELITIAN

BAB I PENDAHULUAN. penjemuran. Tujuan dari penjemuran adalah untuk mengurangi kadar air.

Bab V Analisis Hasil Komisioning CUT Pilot Plant

BAB I PENDAHULUAN. Demikian juga halnya dengan PT. Semen Padang. PT. Semen Padang memerlukan

Karakterisasi Gasifikasi Biomassa Sampah pada Reaktor Downdraft Sistem Batch dengan Variasi Air Fuel Ratio

PENGARUH PENURUNAN VACUUM PADA SAAT BACKWASH CONDENSER TERHADAP HEAT RATE TURBIN DI PLTU

Transkripsi:

PERANCANGAN GEOMETRI BOILER DAN KONFIGURASI PLTU DENGAN DAYA 7,3 MW BERBAHAN BAKAR CANGKANG SAWIT Melvin Emil Simanjuntak Jurusan Teknik Mesin, Politeknik Negeri Medan Jl. Almamater No.1 Kampus USU Medan 20155 Abstrak Dari semua limbah padat yang dihasilkan pada suatu Pabrik Kelapa Sawit, cangkang memiliki nilai kalor yang paling tinggi sekalipun jumlahnya tidak sebanyak TKKS. Dengan nilai kalor yang dimilikinya, sangat potensial untuk digunakan sebagai bahan bakar pada suatu pembangkit listrik. Penelitian ini ditujukan untuk memperoleh rancangan awal boiler dan konfigurasi pembangkit listrik bertenaga uap dengan bahan bakar cangkang kelapa sawit untuk menghasilkan daya sebesar 7,3 MW. Konfigurasi rancangan diperoleh dengan menggunakan perangkat lunak CycleTempo, perancangan geometri boiler dilakukan dengan perangkat lunak Firecad. Desain boiler didasarkan pada komposisi cangkang dengan kadar air 9% dan excess air 30%. Prediksi komposisi bahan bakar adalah 43,05% karbon, 5,60% hidrogen, 39,21% oksigen, 0,63% nitrogen, 0,00% sulfur dan ditetapkan 2,5% abu, kandungan air 9% dan diperoleh LHV Vondracek sebesar 15441,67 kj/kg. Gas buang pada boiler dimanfaatkan dengan penggunaan ekonomiser dan air heater. Dengan dua pemanas air umpan diperoleh listrik sebesar 7290 kw dengan input cangkang sebesar 6392,05 kg/jam. Kata kunci: cangkang, boiler, siklus pembangkit, daya. 1. PENDAHULUAN Cangkang kelapa sawit meliputi jumlah 4 5 % dari buah sawit yang diolah pada suatu PKS (Naibaho 1998). Dari Dodd, 1989, diperoleh komposisi cangkang untuk proximate dan ultimate adalah : kadar air 9,7%; gas volatil 67%; karbon tetap 21,2% dan abu 2,1%; karbon 47,62 % dan hidrogen 6,2%; oksigen 43,38%; nitrogen 0,7% dan sulfur 0,00%. Reaksi pembakaran yang terjadi pada simulasi ini dianggap pembakaran sempurna dimana reaksinya adalah yaitu: C + O 2 CO 2 H 2 + ½O 2 H 2 O S + O 2 SO 2 Jumlah total kebutuhan O 2 stoikiometri adalah sebagai berikut: C H 2 S O2 O (1) 2STOI Ar C Mr H2 Ar S Mr O2 O 2STOI = jumlah kebutuhan O 2 stoikiometri (kgmol/kg bahan bakar) C = persentase karbon H 2 = persentase hidrogen S = persentase sulfur O 2 = persentase oksigen Ar = massa atom relatif (kg/kmol) Mr = massa molekul relatif (kg/kmol) Dengan asumsi pada udara terdapat 20,95% O 2 (satuan volume), maka jumlah total kebutuhan udara stoikiometri adalah: O2STOI U STOI 20,95 (2) Dengan penambahan excess air maka kebutuhan udara sebenarnya menjadi sebesar: U S = m x U STOI + U STOI (3) U STOI = kebutuhan udara stoikiometri (kgmol/kg bahan bakar) U S = kebutuhan udara sebenarnya (kgmol/kg bahan bakar) m = koefisien kelebihan udara Temperatur rata-rata gas panas di dalam tungku adalah: 34

T gav HLHV T (4) C W C (W W ) ph2o H2O pgo dimana : T = temperatur udara sekitar ( 0 C) H LHV = nilai kalor pembakaran terendah bhn bakar (kj/kg) W H2O = jumlah produk air pada pembakaran stoikiometri (kg produk/kg bahan bakar) W PC = jumlah produk gas buang total pada pembakaran stoikiometri (kg produk/kg bhn bakar) C p H2O = nilai kalor jenis uap air (kj/kg.k) c p go = nilai kalor jenis gas buang kering (kj/kg.k) PC H2O 1.1. Total Panas yang Terbentuk dari Proses Pembakaran Panas yang terbentuk pada proses pembakaran terdiri dari: 1. LHV yang terkandung pada cangkang 2. Panas yang dibawa oleh udara (Q ud ) dihitung dengan rumus: t = Waktu tinggal gas di dalam ruang bakar (detik) V g = laju produksi gas hasil pembakaran Gambar 1. Cangkang kelapa sawit Luas penampang ruang bakar kemudian diperoleh dengan persamaan: V A (8) h dimana : A = luas penampang ruang bakar (m 2 ) h = tinggi ruang bakar (m) Lebar dinding ruang bakar (width) Q ud = U v x h udara (5) ditentukan berdasarkan laju bahan bakar tiap satuan lebar yang direncanakan. (5) U v = laju udara yang dibutuhkan (kg/kg bahan bakar) h udara = entalpi udara saat masuk ruang bakar (kj/kg) sehingga total energi yang masuk (Q masuk ) selama proses pembakaran adalah: Q masuk = LHV + Q ud (6) 1.2. Perancangan Ruang Bakar Volume total ruang bakar ditentukan berdasarkan laju volumetrik gas yang dihasilkan dibagi dengan waktu tinggal gas didalam tungku seperti dapat dilihat pada persamaan berikut:. V V x t (7) g V = volume ruang bakar (m 3 ) m x 3600 cangkang w (9) mw w = lebar dinding tungku (m) m w = laju bahan bakar tiap satuan lebar (kg/m) Panjang tungku diperoleh sebagai berikut: d A w (10) d = panjang tungku (m) Laju kehilangan energi di dalam ruang bakar ( q rb ) dihitung dengan persamaan: q rb = (Q 1 + Q 2 + Q 3 ) xm cangkang (11) dimana 35

Q 1 = Nilai kalor penguapan air yang terkandung pada bahan bakar Q 2 = Nilai kalor penguapan air produk pembakaran yakni reaksi antara H 2 dengan O 2 Q 3 = Nilai kalor penguapan air yang terkandung dalam udara yang digunakan pada proses pembakaran Temperatur gas keluar ruang bakar dihitung dengan rumus: qrb Tg, o Tad (12) m x c ) gas p,gas T g,o = Temperatur gas keluar ruang bakar ( o C) 2. METODOLOGI 2.1. Prediksi Karakteristik Pembakaran Cangkang Oleh karena data yang diperoleh adalah pada kondisi air dry base (adb) sedang pembakaran terjadi pada kondisi as received (ar) maka perlu dilakukan konversi dari kondisi adb ke kondisi ar Menurut Nag (2002) persamaannya adalah: Komposisi pada kondisi maf Z adb Z maf ( A M ) (13) 1 adb adb Z adb = fraksi massa komponen hasil uji proxi mate dan ultimate pada Z maf kondisi adb = fraksi massa komponen hasil uji proximate dan ultimate pada kondisi bebas moisture dan abu ΦA adb = fraksi massa abu pada kondisi adb ΦM adb = fraksi massa moisture pada kondisi adb Komposisi pada kondisi ar Z Z 1 ( A M ) (14) ar maf ( ar ar Z ar = fraksi massa komponen hasil uji proximate dan ultimate pada kondisi as received ΦA ar = fraksi massa abu pada kondisi as received, ditetapkan 2,5% ΦM a = fraksi massa moisture pada kondisi as received, ditetapkan dalam berbagai kondisi. Nilai kalor pada kondisi maf: HHVadb HHVmaf (15) 1 A adb HHV maf = nilai kalor atas bebas abu dan moisture HHV adb = nilai kalor atas kondisi adb ΦA adb = fraksi massa abu Nilai kalor atas ar adalah: HHV ar = HHV maf (ΦFC ar +ΦVM ar ) (16) ΦFC ar = fraksi massa karbon tetap ΦVM ar = fraksi massa zat terbang Nilai kalor bawah ar adalah: LHVar = HHVar Q H2O (17) Q H2O = Nilai kalor penguapan air hasil pembakaran dan kadar air di dalam cangkang. 2.2. Simulasi Pembangkit Siklus pembangkit uap dirancang dengan perangkat lunak CycleTempo versi 5. Masukan untuk perangkat lunak ini berupa data-data spesifikasi dari turbin yang dipilih seperti: daya, tekanan dan temperatur uap masuk dan laju aliran massa uap masuk. Spesifikasi turbin dipilih mendekati yang ada di pasaran (buatan Cina) dan efisiensi isentropik pompa ditetapkan sebesar 85%. Pada simulasi ini untuk meningkatkan efisiensi digunakan air heater dan ekonomiser dengan tetap mempertahankan temperatur gas buang yang sesuai seperti yang terlihat pada tabel di bawah. 36

Tabel 1. Spesifikasi turbin No Parameter Besaran 1 Laju massa uap masuk 31,1 ton/jam 2 Temperatur uap masuk 435 0 C 3 Tekanan masuk uap 3,43 MPa 4 Tekanan uap keluar 0,01MPa Tekanan ektraksi untuk pemanas air umpan dibuat pada optimal. Simulasi dibuat sedemikian rupa sehingga sesuai dengan kondisi uap pada spesifikasi turbin. 2.3. Simulasi Dimensi Boiler Ukuran boiler diperoleh dengan menggunakan software Firecad GFB 2.0. Ukuran boiler dirancang untuk dapat dioperasikan pada suatu kisaran excess air dan sesuai dengan hasil simulasi pembangkit. Beberapa asumsi penting yang digunakan dalam simulasi Firecad ini dapat dilihat pada tabel di bawah. Tabel 2. Parameter masukan pada simulasi dimensi boiler No Parameter Nilai 1 Kapasitas uap (kg/jam) 31100 2 Tekanan uap (bar) 34,3 3 Temperatur uap ( 0 C) 345 4 Temperatur lingkungan ( 0 C) 30 5 Kehilangan energi akibat radiasi default 6 Kehilangan energi akibat cangkang tidak terbakar default 7 Kehilangan energi yang tdk ikut default terhitung 8 Blowdown default 9 Excess air 30% 10 Heat recovery Airheater Economise r 11 Jenis grate Travelling 12 Jenis tungku pembakaran Nose 13 Jenis dinding tungku No tube 14 Jensi superheater Single stage, counter flow 15 Jenis boiler Water tube 16 Jenis aliran pada boiler Cross flow 17 Susunan pipa Staggered 3. HASIL DAN PEMBAHASAN 3.1. Karekteristik Cangkang Fraksi massa abu pada kondisi as received ditentukan sebesar 2,5%, harga ini diambil mendekati fraksi massa abu yang umumnya dijumpai dari pembakaran cangkang. Kandungan air pada kondisi as received kemudian diasumsikan sebesar 9%. Komposisi cangkang untuk analisa proximate dan ultimate sebagai hasil prediksi adalah seperti pada tabel berikut: Tabel 3. Prediksi komposisi proximate dan ultimate as received (%) M V M 9 67,2 3 F C 21,2 7 A A C H O N S 2, 5 2, 5 43,0 5 3.2. Simulasi Pembangkit 5, 6 39,2 1 Dengan menempatkan dua buah pemanas air umpan pada tekanan optimal dan laju aliran uap 31100 kg/jam diperoleh siklus seperti pada gambar di bawah. 0, 6 3 0, 0 0 Gambar 2. Diagram siklus pembangkit dengan dua pemanas air umpan Sedangkan diagram T-S siklus untuk validasi hasil adalah seperti gambar di bawah: 37

Gambar 3. Diagram T-S siklus dengan satu pemanas air umpan Selain konfigurasi di atas juga dilakukan simulasi dengan menggunakan satu pemanas air umpan sebagai pembanding. Data-data sistim dapat dilihat pada tabel di bawah. Tabel 4. Efisiensi sistem pembangkit Apparatus Dua pemanas air umpan Satu pemanas air umpan Energi (kw) Total (kw) Energi (kw) Total (kw) Diserap Boiler 25967,2 29606,1 Power 29657,2 29606,8 Delivered Generator 7290 6606 Gross power 7290 6606 Aux Power Pompa 4 1,26 4,49 Konsumsi Pompa 6 34,26 40,68 Pompa 9 8,17 - Pompa 12 76,47 86,24 120,15 131,41 Delivered Net Power 7169,85 6474,59 Delivered Heat Sink 14674,1 16703,3 heat 23884,9 16703,3 Total Dlivered 34790,9 23177,9 Efisiensi Gross (%) 28,074 22,312 Net (%) 27,611 21,869 Kebutuhan uap (kg/jam) 31100 31100 Kebutuhan cangkang (kg/jam) 6392,05 6392,05 Diagram siklus dan T-S untuk satu pemanas air umpan dapat dilihat dibawah: 38

Gambar 4. Diagram siklus pembangkit dengan dengan dua pemanas air umpan Gambar 5. Diagram T-S siklus dengan dengan dua pemanas air umpan Dari kedua simulasi dengan laju aliran uap dan konsumsi cangkang yang sama maka untuk dua fwh dihasilkan daya sebesar 7,290 MW dan efisiensi net siklus sebesar 27,611%. Sedangkan untuk satu fwh hanya dihasilkan daya hanya sebesar 6,606 MW. Dengan efisiensi net hanya sebesar 21,869%. Dari hal di atas penambahan fwh menjadi dua dapt memperbaiki efisiensi cukup signifikan. Atau di lain pihak dapat juga menghemat penggunaan bahan bakar bila harus dihasilkan daya yang sama. 39

3.3. Geometri Boiler Pada simulasi ini, boiler direncanakan menghasilkan uap yang sesuai dengan kebutuhan turbin dan beroperasi dengan excess air 30%. Dimensi boiler untuk tiap tiap bagian diperoleh seperti yang terdapat pada tabel-tabel di bawah ini. Tabel 5. Dimensi tungku pembakaran Parameter Besaran (mm) Gambar Grate top 0 Front wall header 3000 Rear wall Header 500 Nose screen begin 9043 Nose screen tip 9870 Nose screen end 10697 Front wall corner 15854 Lower drum 10873 Top drum 16359 Furnace width 4438 Furnace depth 3865 Furnace Nose depth 1132 Top Drum ID 1340 Lower Drum ID 950 Grate width 4438 Grate depth 3865 Tabel 6. Dimensi superheater Parameter Besaran Gambar Tube outer diameter 50,8 mm Tube thickness 4 mm Tube length 5523 mm Transver pitch 154 mm Longitudinal pitch 154 mm Tubes per row 18 mm No of rows 8 Steam side passes 1 Tabel 7. Dimensi boiler bank Parameter Besaran Gambar Tube outer diameter 50,8 mm Tube thickness 3,66 mm Av Tube height 4608,2 mm Transver pitch 150 mm Longitudinal pitch 110 mm Tubes wide 28 Rows deep 18 Width 4438 mm Depth 2400 mm 40

Tabel 8. Dimensi Ekonomiser Parameter Besaran Gambar Tube Pitch Inline Tube OD 50,8 mm Tube Thickness 3,66 mm Tube Length 1901 mm Transver pitch 85 mm Longitudinal pitch 150 mm Wide 24 Deep 25 Water Pass Counter 1 Duct Width 2080 mm Ducth Length 4201 mm Tabel 9. Dimensi air heater Parameter Besaran Gambar Tube Pitch Inline Tube OD 63,5 mm Tube Thickness 2,03 mm Tube Length 2600 mm Transver pitch 90 mm Longitudinal pitch 80 mm Wide 382 Deep 16 Shell Passes 3 Duct Width 3600 mm Ducth Length 2600 mm 3.4. Analisa Sensitivitas Analisis ini dilakukan untuk mengetahui perubahan kondisi pada boiler, parameter pada kondisi operasi tungku pembakaran pada boiler pada beberapa nilai masukan yang berubah. Pada analisis sensitivitas ini temperatur uap di superheater dibuat tetap. Simulasi dilakukan dengan mem-force temperatur gas buang. Berbagai parameter yang dimasukkan ke dalam simulasi perangkat lunak ini dapat dilihat pada grafik di bawah ini Pengaruh perubahan kadar air terhadap konsumsi bahan bakar Simulasi ini di-set untuk mendapatkan temperatur uap yang sama. Gambar 6. Pengaruh perubahan kadar air terhadap konsumsi bahan bakar 41

Dari grafik di atas terlihat konsumsi bahan bakar akan meningkat sehubungan dengan peningkatan excess air. Dengan meningkatnya jumlah udara yang masuk boiler hak ini juga akan meningkatkan jumlah panas yang dibutuhkan untuk memanaskan udara ini sehingga dibutuhkan bahan bakar yang lebih banyak. Pengaruh perubahan kadar air terhadap temperatur tungku Dari grafik di bawah terlihat terjadinya penurunan temperatur tungku dengan meningkatnya penggunaan excess air yang. Hal ini terjadi karena energi panas akan terserap untuk memanaskan udara yang jumlahnya meningkat. Gambar 7. Pengaruh perubahan kadar air terhadap temperatur tungku Pengaruh perubahan kadar air terhadap temperatur gas buang Dari grafik terlihat bahwa temperatur gas buang di cerobong akan meningkat seiring dengan peningkatan excess. Hal ini dimungkinkan karena jumlah gas panas yang semakin banyak sedangkan kebutuhan panas untuk mengkonversi air menjadi uap adalah tetap. Pada pengoperasian boiler perlu dipertimbangkan kondisi operasi sehingga temperatur gas keluar cerobong dapat memenuhi syarat dari aspek teknis dan lingkungan. Gambar 8. Pengaruh perubahan kadar air terhadap temperatur gas buang Pengaruh perubahan kadar air terhadap efisiensi NCV dan GCV GCV atau Gros Calorifiec Value dapat dianggap sebagai HHV dan NCV atau Net Calorifiec Value dapat dianggap sebagai LHV, pada grafik di atas terlihat penurunan efisiensi dengan meningkatnya excess air. Semakin kecil excess air maka akan semakin 42

meningkat efisiensi pembangkit karena semakin sedikit udara yang harus dipanaskan. Tetapi untuk excess air perlu dipertimbangkan juga besaran excess air yang digunakan sehingga dapat membakar semua bahan bakar. Gambar 9. Pengaruh perubahan kadar air terhadap efisiensi boiler 4. KESIMPULAN DAN SARAN 4.1 Kesimpuan Dari hasil dan pembahasan dapat diambil kesimpulan sebagai berikut : 1. Cangkang kelapa sawit sangat potensial digunakan sebagai bahan bakar pada pembangkit listrik skala kecil menengah. 2. Komposisi unsur cangkang sebagai bahan bakar dengan persentasi abu yang ditetapkan sebesar 2,5% dan kadar air 9% diperoleh komposisi unsur unsurnya sebagai hasil prediksi adalah: karbon 43,05%; hidrogen 5,60%; oksigen 39,21%; nitrogen 0,63%; sulfur 0,00%; Volatile 67,23 % dan Fixed Carbon 21,27%. 3. Dengan laju uap sebesar 31100 kg/jam dan bahan bakar 6392,05 kg/jam dan menggunakan 2 buah fwh dapat dihasilkan daya sebesar 7,29 MW, dimana efisiensi net siklus sebesar 27,611%. Sedangkan bila digunakan satu fwh yang ditempatkan secara optimal hanya dapat menghasilkan daya sebesar 6,606 MW dan efisiensi net siklus 21,869 %. 4.2 Saran 1. Cangkang dapat digunakan sebagai sumber energi alternatif untuk menghasilkan listrik. 2. Perlu dilakukan penelitian lebih komprehensif untuk memperluas pengetahuan mengenai pembangkit listrik biomassa. 3. Penelitian dapat dilanjutkan mengenai: Proses pengeringan cangkang Simulasi pembakaran dengan menggunakan program CFD yang sesuai untuk melihat kondisi pembakaran dan gas buang. Aspek ekonomi dan lingkungan. DAFTAR PUSTAKA Borman, G.L., Ragland, K.W., 1998, Combustion Engineering, McGraw-Hill, Singapura. Dodd, A. V., Grace, P. M., 1984, Agricultural Engineering vol. 4, International Commision of Agricultural Engineering, Taylor Francis. El wakil, M.M., 1984, Power Plant Technology, Mc Graw Hill, Singapore. 43

http://ditjenbun.deptan.go.id/web.old/ /index.php?option=com_content&task=vie w&id=310&itemid=62, akses internet 25 gustus 2008 Nag, P.K., 2002, Power Plant Engineering, 2 nd Edition, Mc Graw Hill, Singapura. Halaman 170. Naibaho, P., 1998, Teknologi Pengolahan Kelapa Sawit, PPKS Medan. Halaman 130-131. Simanjuntak, Melvin E., 2010, Perancangan Awal dan Simulasi Pembakaran Tungku Berbahan Bakar Tandan Kosong Kelapa Sawit untuk PLTU Berkapasitas 3 MW, Tesis Magister, Jurusan Teknik Mesin, ITB, Bandung. 44