PENENTUAN KEHILANGAN AIR DARI HUJAN PADA SUB-DAS NGRANCAH HULU KABUPATEN KULONPROGO YOGYAKARTA MENGGUNAKAN METODE KOEFISIEN ALIRAN SESAAT

dokumen-dokumen yang mirip
BAB I PENDAHULUAN 1.1. Latar Belakang

Perkiraan Koefisien Pengaliran Pada Bagian Hulu DAS Sekayam Berdasarkan Data Debit Aliran

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

Abstrak. Kata Kunci: Debit Maksimum, Aliran Permukaan, Perumahan Banteng Abstract

BAB V HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

BAB III METODE PENELITIAN

ESTIMASI DEBIT PUNCAK BERDASARKAN BEBERAPA METODE PENENTUAN KOEFISIEN LIMPASAN DI SUB DAS KEDUNG GONG, KABUPATEN KULONPROGO, YOGYAKARTA

BAB I PENDAHULUAN. Gabungan antara karakteristik hujan dan karakteristik daerah aliran sungai

BAB V HASIL DAN PEMBAHASAN

TINJAUAN PUSTAKA. Menurut Peraturan Menteri Kehutanan Nomor: P. 39/Menhut-II/2009,

BAB II. TINJAUAN PUSTAKA

TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK

BAB V HASIL DAN PEMBAHASAN

BAB V ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

BAB III METODOLOGI. 3.1 Waktu dan Tempat

PENDUGAAN TINGKAT SEDIMEN DI DUA SUB DAS DENGAN PERSENTASE LUAS PENUTUPAN HUTAN YANG BERBEDA

PENDUGAAN DEBIT PUNCAK MENGGUNAKAN WATERSHED MODELLING SYSTEM SUB DAS SADDANG. Sitti Nur Faridah, Totok Prawitosari, Muhammad Khabir

BAB I PENDAHULUAN. terus-menerus dari hulu (sumber) menuju hilir (muara). Sungai merupakan salah

MODEL HIDROGRAF BANJIR NRCS CN MODIFIKASI

ANALISIS POTENSI DAN PENGEMBANGAN SUMBER DAYA AIR STUDI KASUS: DAS. CITARUM HULU - SAGULING

ANALISA DEBIT BANJIR SUNGAI BATANG LUBUH KABUPATEN ROKAN HULU PROPINSI RIAU

Bab IV Metodologi dan Konsep Pemodelan

BAB I PENDAHULUAN Latar Belakang

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

KARAKTERISTIK DISTRIBUSI HUJAN PADA STASIUN HUJAN DALAM DAS BATANG ANAI KABUPATEN PADANG PARIAMAN SUMATERA BARAT

BAB II TINJAUAN PUSTAKA

PENGARUH PERUBAHAN PENGGUNAAN LAHAN TERHADAP DEBIT PUNCAK PADA SUBDAS BEDOG DAERAH ISTIMEWA YOGYAKARTA. R. Muhammad Isa

Kajian Model Hidrograf Banjir Rencana Pada Daerah Aliran Sungai (DAS)

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem

TINJAUAN PUSTAKA Siklus Hidrologi

I. PENDAHULUAN I.1 Latar Belakang I.2 Tujuan II. TINJAUAN PUSTAKA 2.1 Daur Hidrologi

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

REKAYASA HIDROLOGI II

DAFTAR ISI. HALAMAN JUDUL... iii. LEMBAR PENGESAHAN... iii. PERNYATAAN... iii. KATA PENGANTAR... iv. DAFTAR ISI... v. DAFTAR TABEL...

BAB V KESIMPULAN DAN REKOMENDASI. Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan

APLIKASI SIG UNTUK EVALUASI SISTEM JARINGAN DRAINASE SUB DAS GAJAHWONG KABUPATEN BANTUL

MENENTUKAN PUNCAK EROSI POTENSIAL YANG TERJADI DI DAERAH ALIRAN SUNGAI (DAS) LOLI TASIBURI DENGAN MENGGUNAKAN METODE USLEa

PENGARUH PERUBAHAN TATA GUNA LAHAN TERHADAP DEBIT LIMPASAN PADA SUB DAS SEPAUK KABUPATEN SINTANG KALIMANTAN BARAT

Sungai dan Daerah Aliran Sungai

PENGARUH HUJAN EKSTRIM DAN KONDISI DAS TERHADAP ALIRAN

Penggunaan SIG Untuk Pendeteksian Konsentrasi Aliran Permukaan Di DAS Citarum Hulu

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG

PENGARUH PERUBAHAN AREAL KEDAP AIR TERHADAP AIR PERMUKAAN. Achmad Rusdiansyah ABSTRAK

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*)

PERTEMUAN II SIKLUS HIDROLOGI

ANALISIS POTENSI LIMPASAN PERMUKAAN (RUN OFF) DI KAWASAN INDUSTRI MEDAN MENGGUNAKAN METODE SCS

KAJIAN MUATAN SEDIMEN TERSUSPENSI DI SUNGAI CODE DAERAH ISTIMEWA YOGYAKARTA. Rutsasongko Juniar Manuhana

PENDUGAAN EROSI DAN SEDIMENTASI PADA DAS CIDANAU DENGAN MENGGUNAKAN MODEL SIMULASI AGNPS (Agricultural Non Points Source Pollution Model)

PENERAPAN IPTEKS ANALISIS DAYA DUKUNG LINGKUNGAN DAERAH ALIRAN SUNGAI DELI. Nurmala Berutu W.Lumbantoruan Anik Juli Dwi Astuti Rohani

ANALISIS DEBIT BANJIR RANCANGAN BANGUNAN PENAMPUNG AIR KAYANGAN UNTUK SUPLESI KEBUTUHAN AIR BANDARA KULON PROGO DIY

TRANSFORMASI HUJAN HARIAN KE HUJAN JAM-JAMAN MENGGUNAKAN METODE MONONOBE DAN PENGALIHRAGAMAN HUJAN ALIRAN (Studi Kasus di DAS Tirtomoyo)

Gambar 1. Peta DAS penelitian

ANALISIS DEBIT DI DAERAH ALIRAN SUNGAI BATANGHARI PROPINSI JAMBI

KAJIAN PERBANDINGAN DEBIT ANDALAN SUNGAI CIMANUK METODA WATER BALANCE DAN DATA LAPANGAN. Bakhtiar

BAB 4 ANALISIS DATA DAN PEMBAHASAN

VALIDASI MODEL KESETIMBANGAN AIR BEKEN DAN BYLOOS UNTUK PREDIKSI VOLUMETRIK HASIL AIR DAERAH ALIRAN SUNGAI

DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR TABEL... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN... 1

BAB III METODE PENELITIAN

PENDAHULUAN. tempat air hujan menjadi aliran permukaan dan menjadi aliran sungai yang

HIDROGRAF SATUAN OBSERVASI DAERAH ALIRAN SUNGAI CILIWUNG HULU-KATULAMPA SEBAGAI BENCHMARKING MANAJEMEN BANJIR JAKARTA

BAB I PENDAHULUAN. I.1. Latar Belakang Penelitian

Gambar 3.1 Peta lokasi penelitian Sub DAS Cikapundung

BAB II TINJAUAN PUSTAKA

PENGARUH TANAMAN KELAPA SAWIT TERHADAP KESEIMBANGAN AIR HUTAN (STUDI KASUS SUB DAS LANDAK, DAS KAPUAS)

Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...)

ANALISIS KARAKTERISTIK DEBIT PADA DAS TUNUO, KECAMATAN TOBELO BARAT KABUPATEN HALMAHERA UTARA

BAB III METODA ANALISIS

BAB III LANDASAN TEORI

ANALISA PENINGKATAN NILAI CURVE NUMBER TERHADAP DEBIT BANJIR DAERAH ALIRAN SUNGAI PROGO. Maya Amalia 1)

BAB I PENDAHULUAN A. Latar Belakang

BAB III METODOLOGI Rancangan Penulisan

STUDI PENGARUH SEDIMENTASI KALI BRANTAS TERHADAP KAPASITAS DAN USIA RENCANA WADUK SUTAMI MALANG

PENELUSURAN BANJIR MENGGUNAKAN METODE LEVEL POOL ROUTING PADA WADUK KOTA LHOKSEUMAWE

SIMULASI PENGARUH SEDIMENTASI DAN KENAIKAN CURAH HUJAN TERHADAP TERJADINYA BENCANA BANJIR. Disusun Oleh: Kelompok 4 Rizka Permatayakti R.

Analisis Hidrologi untuk Pendugaan Debit Banjir dengan Metode Nakayasu di Daerah Aliran Sungai Way Besai

DAERAH ALIRAN SUNGAI

MODEL SISTIM INFORMASI GEOGRAFIS UNTUK ESTIMASI VOLUME ALIRAN DAN EROSI SEDIMEN DI DAS RIAM KANAN PROVINSI KALIMANTAN SELATAN

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung.

BAB II TINJAUAN PUSTAKA

BAB IV HASIL DAN PEMBAHASAN

Tujuan: Peserta mengetahui metode estimasi Koefisien Aliran (Tahunan) dalam monev kinerja DAS

III. FENOMENA ALIRAN SUNGAI

PERUBAHAN KECEPATAN ALIRAN SUNGAI AKIBAT PERUBAHAN PELURUSAN SUNGAI

ESTIMASI POTENSI LIMPASAN PERMUKAAN MENGGUNAKAN PENGINDERAAN JAUH DAN SISTEM INFORMASI GEOGRAFIS DI DAERAH ALIRAN SUNGAI SERANG

Aplikasi Teknik Penginderaan Jauh Untuk Mengkaji Pengaruh Perubahan Penggunaan Lahan Terhadap Debit Puncak Di Sub DAS Garang ( Kreo Basin ) Semarang

ANALISIS KOEFISIEN ALIRAN PERMUKAAN DENGAN MENGGUNAKAN METODE BRANSBY-WILLIAMS DI SUB DAERAH ALIRAN SUNGAI BABURA PROVINSI SUMATERA UTARA

BAB II TINJAUAN PUSTAKA

PILIHAN TEKNOLOGI SALURAN SIMPANG BESI TUA PANGLIMA KAOM PADA SISTEM DRAINASE WILAYAH IV KOTA LHOKSEUMAWE

PENERAPAN SISTEM SEMI POLDER SEBAGAI UPAYA MANAJEMEN LIMPASAN PERMUKAAN DI KOTA BANDUNG

BAB I PENDAHULUAN. Meningkatnya jumlah populasi penduduk pada suatu daerah akan. memenuhi ketersediaan kebutuhan penduduk. Keterbatasan lahan dalam

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban.

STUDI PERBANDINGAN ANTARA HIDROGRAF SCS (SOIL CONSERVATION SERVICE) DAN METODE RASIONAL PADA DAS TIKALA

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan

4.6 Perhitungan Debit Perhitungan hidrograf debit banjir periode ulang 100 tahun dengan metode Nakayasu, ditabelkan dalam tabel 4.

BAB IV ANALISA Kriteria Perencanaan Hidrolika Kriteria perencanaan hidrolika ditentukan sebagai berikut;

BAB IV ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

BAB I PENDAHULUAN. secara topografik dibatasi oleh igir-igir pegunungan yang menampung dan

BAB I PENDAHULUAN. A. Latar Belakang Masalah

Transkripsi:

Jurnal Teknobiologi, 1 (2) 2010: 100-112 ISSN: 208-5428 PENENTUAN KEHILANGAN AIR DARI HUJAN PADA SUB-DAS NGRANCAH HULU KABUPATEN KULONPROGO YOGYAKARTA MENGGUNAKAN METODE KOEFISIEN ALIRAN SESAAT Evi Nadhifah* * Program Studi Teknik Lingkungan, Fakultas Teknik Universitas Riau ABSTRACT Hydrologic response of a watershed or sub-watershed to the presence of rain is an interesting study in order to know the character of a watershed hydrology. Besides it can be used to predict soil and vegetation response to rainfall in a watershed, the results of this study can also be used to calculate the potential of rain water into surface streams. This will be very useful to see how big the potential occurrence of floods from a river stream in case of rain. There are several methods to test the hydrologic response of a watershed or sub-watershed. One of widely used model is the moment flow coefficient (MFC). This study aims to predict some parameters of hydrological response in the Ngrancah Hulu sub-watershed in Yogyakarta Province using MFC model. The parameters examined, i.e the flow coefficient for a moment, lose water from the rain (watershed response to rain), and the potential of rain water come into streams. The study begins by defining the characteristics of rainfall and flow rates through the primary and secondary data analysis, followed by the analyzes of water losses using the MFC model, and analyzes the potential of rain water into streams. The study found that the moment flow coefficient in the study is the low level, which means that in the sub-watershed, only a little rain water flows into the rivers. The amount of rain water lost is influenced by variables including heavy rain, I-max, long rains and the API-7 days respectively. From the calculations, it is obtained the equation for water loss Y = 0.898 P + 0.03308. Flow coefficient value is not in the normal classification, i.e with an average value of 0.095. The amount of rain in the area of research becoming the flow are 10.07% of the total of each rainfall event. Keywords: moment flow coefficient model, hydrologic response, Ngrancah Hulu subwatershed PENDAHULUAN Pemanfaatan sumberdaya air pada suatu DAS khususnya air permukaan dewasa ini semakin meningkat seiring dengan meningkatnya kebutuhan akan air untuk berbagai keperluan. Melalui pengelolaan DAS secara baik, maka sumberdaya air permukaan yang ada diharapkan dapat dimanfaatkan dan dilestarikan lebih optimal. Saat ini telah 201

banyak diimplementasikan berbagai upaya rencana teknis wilayah sungai berupa pemanfaatan, pengendalian dan pelestarian sumberdaya air permukaan. Umumnya rencana-rencana teknis tersebut diwujudkan dalam bentuk bangunan air, seperti bangunan pengendali banjir, dam, dan waduk yang dibangun berdasarkan kajian kondisi hidrologis setempat. Gambaran kondisi hidrologi setempat diantaranya dapat diperoleh dari analisis kehilangan air dari hujan di dalam DAS. Kehilangan air dari hujan (storm loss) merupakan kehilangan yang terjadi selama kejadian hujan berlangsung. Pada dasarnya kehilangan itu disebabkan oleh adanya prosesproses hidrologi yang berlangsung di dalam DAS, seperti: intersepsi, tampungan pada ledokan, infiltrasi, dan evapo-transpirasi. Dalam analisis hidrologi proses-proses tersebut dijadikan dalam bentuk yang lebih sederhana sebagai kehilangan air dari hujan. Dengan demikian, apabila diketahui proses-proses hidrologinya, maka secara langsung dapat diketahui pula besarnya kehilangan air dari hujan. Besarnya debit aliran yang terjadi di suatu DAS dipengaruhi oleh beberapa variable diantaranya adalah variable iklim, terutama karakteristik hujan, yaitu intensitas hujan, lama hujan, distribusi curah hujan dalam daerah aliran, dan tebal hujan (Seyhan, 1983). Pengaruh intensitas hujan pada aliran, tergantung pada kapasitas infiltrasi. Jika intensitas hujan melampaui infiltrasi, maka besarnya aliran akan segera meningkat sesuai dengan peningkatan intensitas curah hujan. Lama waktu hujan yang jatuh, erat hubungannya dengan lama waktu mengalirnya air hujan di atas tanah menuju sungai. Kalau lama waktu hujan melebihi lama waktu hujan rata-rata tahunan, maka hujan yang jatuh di seluruh DAS akan mencapai sungai sebelum hujan terhenti. Suatu model hubungan antara hujan dengan aliran yang digunakan untuk menduga hujan efektif secara akurat adalah model kehilangan air dari hujan. Mengingat ketelitian dalam pendugaan hujan efektif mempengaruhi hasil estimasi banjir, maka diperlukan studi yang lebih mendalam agar dapat dihasilkan suatu model kehilangan air dari hujan yang baik dengan memperhatikan faktor-faktor yang mempengaruhinya. 202

Sehubungan dengan uraian di atas, maka penulis tertarik untuk melakukan penelitian mengenai pengaruh antara karakteristik hujan terhadap kehilangan air hujan yang kemudian digunakan untuk mengestimasi potensi air hujan yang menjadi aliran menggunakan model Koefisien Aliran Sesaat (KAS). Penelitian dilakukan di sub-das Ngrancah Hulu yang bermuara pada Waduk Sermo di Kabupaten Kulonprogo Propinsi DI Yogyakarta. Sebagai suatu sistem, DAS memiliki komponen masukan (input) dan keluaran (output). Komponen yang masuk adalah curah hujan sedangkan yang keluar adalah evaporasi, aliran sungai serta sediment. Kawasan DAS dalam hal ini bertindak sebagai pengatur proses. Dengan dasar pemikiran ini, maka debit aliran sebagai keluaran dapat diidentifikasi dari karakteristik curah hujan sebagai masukan (Suyono, 1983). Koefisien aliran atau sering disebut C adalah bilangan yang menunjukkan perbandingan antara besarnya air larian (limpasan) terhadap besarnya curah hujan. Nilai C ini dipengaruhi oleh intensitas hujan, penutup lahan, tekstur tanah, topografi dan kandungan lengas tanah pada saat hujan. Angka C juga merupakan indikator apakah suatu DAS telah mengalami gangguan fisik atau tidak. Nilai C berkisar antara 0-1 atau dapat ditulis dalam 0-100%. Nilai 1 mengandung arti, semua air hujan mengalir sebagai limpasan (Griend, 1979). Hidografi aliran terdiri dari empat komponen yakni: limpasan permukaan, limpasan sub permukaan (inter flow), aliran air tanah (base flow), dan hujan yang jatuh langsung ke sistem pengaliran. Untuk menghitung nilai C sesaat atau harian, maka besar limpasan permukaan dan sub permukaan (inter flow) merupakan bagian dari limpasan (runoff) (Subarkah, 1988). Besarnya aliran langsung yang keluar dari DAS tidak hanya dipengaruhi oleh hujan di dalamnya, tetapi dipengaruhi juga oleh bermacammacam faktor yang saling terkait secara komplek, seperti intensitas hujan, lama hujan, kondisi kelembaban DAS pada saat mulai hujan dan berbagai kondisi fisik DAS (Griend, 1979). Kehilangan air dari hujan adalah perbedaan antara hujan yang jatuh pada 203

suatu DAS dengan aliran langsung yang dihasilkan dari hujan tersebut (Baron et al., 1980). Kehilangan tersebut diakibatkan oleh adanya proses-proses hidrologi, yaitu: intersepsi, tampungan pada ledokan, infiltrasi, dan evapotranspirasi serta kondisi kelembaban tanah. Kehilangan air dari hujan dapat dihitung dengan cara pendekatan koofisien aliran sesaat, Phiindeks dan infiltrasi (Griend, 1979). Ada empat faktor yang mempengaruhi kehilangan air dari hujan yaitu tebal hujan, intensitas hujan, lama hujan, karakteristik permukaan tanah dan kodisi kelembaban tanah daerah aliran sungai sebelum terjadi hujan (MacDonald, 1979). Faktor tebal hujan dan kondisi kelembaban tanah merupakan faktor yang berpengaruh paling dominant terhadap besarnya kehilangan air dari hujan. Kustanto (1990) menyebutkan bahwa, bahwa sebaran kehilangan air dari hujan yang tinggi terletak pada hilir DAS, begitu pula sebaliknya untuk daerah hulu yang nilai kehilangan air hujannya rendah sampai menengah. Dari hasil analisa statistik hubungan antara kehilangan air dari hujan dengan karakteristik hujan dan indeks curah hujan terdahulu, diperoleh informasi bahwa variabel yang mempengaruhi variasi kehilangan air hujan (mulai dari tingkat pengaruh yang paling tinggi) adalah intensitas hujan maksimum 30 menit, indeks curah hujan terdahulu, lama hujan dan tebal hujan. BAHAN DAN METODE Penelitian ini dilakukan di sub DAS Ngrancah Hulu dengan luas 12,73 km 2 yang rnerupakan salah satu daerah tangkapan terluas Waduk Sermo. Sepanjang pengetahuan penulis sejak waduk ini dioperasikan penelitian tentang kehilangan air dari hujan belurn pernah dilakukan. Data penelitian yang digunakan dalam penelitian ini berupa data primer yang diperoleh dari pengukuran lapangan dan data sekunder. Data primer yang diperoleh mencakup data curah hujan sesaat periode Januari 1999 - Januari 2000, data tinggi muka air periode Januari 1999 - Januari 2000, dan data debit aliran dari berbagai tinggi rnuka air. Sedangkan data sekunder yang digunakan meliputi peta topografi skala 1:25.000; peta geologi skala 1:100.00; peta penggunaan lahan 204

skala 1:50.000; dan peta lereng skala 1:25.000. Data-data berupa tebal hujan, lama hujan dan distribusi aliran diperoleh dari basil pembacaan data hujan otomatis dari stasiun curah hujan terdekat dengan lokasi, sedangkan intensitas hujan maksimum 30 menit, ditentukan dengan memakai data tebal hujan, lama hujan dan distribusi alirannya. Data Indeks Hujan Terdahulu (API) digunakan sebagai pendekatan untuk mengetahui kondisi kelembaban umum tanah setempat. Adapun rumus yang dipakai untuk menghitung nilai indeks curah hujan terdahulu adalah (Griend, 1979), API n t 1 Pt. K dimana API merupakan Indeks curah hujan terdahulu, Pt curah hujan pada suatu hari t sebelum perhitungan dan K merupakan konstanta, antara 0,8-0,98. Pengukuran debit aliran sungai di daerah penelitian dilakukan dengan menggunakan metode kekasaran Manning. Peralatan yang dipergunakan dalam metode ini antara lain pita ukur, yalon dan selang waterpass. Perhitungan debit aliran dengan metode ini diperoleh dengan menggunakan t rumus, 1 Q A. R n 2 3. S dimana Q adalah debit aliran (m 3 / detik), A luas penampang sungai (m 2 ), n adalah tetapan kekasaran Manning (dapat dilihat dalam Chow, 1964) dan R radius hidrolik (m) dengan R A P dimana P adalah panjang perimeter basah (m), S gradien muka air dengan S=(h 1 h 2 )/p dimana h 1 adalah tinggi selang pada yalon 1, h 2 adalah tinggi selang pada yalon 2 serta p merupakan jarak yalon1 sampai yalon 2. Untuk mengetahui hubungan antara tinggi muka air dengan debit aliran diperlukan pengukuran debit dari berbagai tinggi muka air yang berbedabeda. Hubungan tersebut ditunjukkan dalam persamaan : dimana Q Q a h h ) ( 0 1 2 debit aliran sungai di H (m 3 /detik), h tinggi muka air (m), ho tinggi muka air pada debit 0 (m) serta a dan b konstanta pada tempat tersebut. Hirograf aliran (discharge hydrograph) di daerah penelitian dibuat berdasarkan Subarkah (1980) yang secara garis besar meliputi pemilihan b 205

data hujan, pembuatan hidrograf tinggi muka air, pembuatan hidrograf aliran dengan melihat kurva hubungan debit dengan tinggi muka air (rating curve), memisahkan aliran dasar dari hidrograf aliran dengan "straight line method", menggambarkan hidrograf aliran langsung dan menghitung volumenya, dan terakhir menghitung tebal aliran langsung dengan jalann membagi volume aliran langsung dengan luas DAS. Untuk menghitung potensi air hujan yang masuk ke waduk, dilakukan dengan rnenggunakan pendekatan dari besarnya kehilangan air dari hujan dengan menggunakan metode koefisien aliran sesaat dan phi-indeks. Koefisien aliran sesaat merupakan perbandingan antara tebal aliran langsung dengan tebal hujan penyebabnya dan dirumuskan (Softah, 2000): R C P dimana C koefisien aliran sesaat, R tebal aliran langsung (mm) dan P tebal hujan (mm). Untuk mengetahui besarnya kehilangan air dari hujan dapat dihitung dengan persamaan (Griend, 1979): PI ( 1 C) P dengan PI adalah kehilangan air dari hujan, C koefisien aliran sesaat dan P tebal hujan (mm). Dalam penelitian ini, penentuan persamaan (model) dilakukan regresi linier. Dalam hal ini yang merupakan variabel terikat adalah kehilangan air dari hujan (C), sedangkan variabel bebas yang diikutsertakan adalah karakteristik hujan (P, Imaks 30 menit, D) dan indeks curah hujan lerdahulu (API). Dari hasil persebaran data yang terbentuk dipilih persamaan regresi yang mempunyai koefisien determinasi paling tinggi, apabila garis yang terpilih tidak linier, maka untuk mengubah ke dalam bentuk linier dilakukan transformasi (Asdak, 1995). Hubungan antara variabel terikat dan variabel bebas diasumsikan berbentuk linier dan dinyatakan dalam persamaan model regresi linier berganda sebagai berikut: C = f (P, Imaks, API, D) Untuk mendapatkan model regresi linier berganda dilakukan analisis statistik dengan bantuan komputer. Analisis statistik yang dilakukan meliputi korelasi linier berganda, uji korelasi linier berganda, uji keberartian regresi linier berganda. Dalam 206

penelitian ini taraf signifikan yang dipilih taraf uji 0,05. Pembuktian berikutnya, mengenai sumbangan karakteristik hujan dan indeks curah hujan terdahulu yang paling signifikan terhadap nilai kehilangan air hujan, diuji dengan menggunakan rumus regresi linier sederhana Y = ax + K dengan Y adalah kriterium, X prediktor, K konstanta, dan a bilangan koefisien prediktor. HASIL DAN PEMBAHASAN Karakteristik Hujan dan Debit Aliran Data hujan yang digunakan dalam analisis kehilangan air dari hujan merupakan data hujan sesaat rerata tahunan dari suatu stasiun hujan terdekat. Tebal hujan di daerah penelitian yang menyebabkan aliran langsung yang paling rendah adalah 9,4 mm dan yang paling tinggi adalah sebesar 49,1 mm. Lama hujan di daerah penelitian yang terendah adalah 1 jam dan yang tertinggi adalah 8 jam. Tebal hujan dan lama hujan mempunyai korelasi sebesar 51,2 %, korelasi antara tebal hujan dengan intensitas hujan 30 menit sebesar 58,1%, serta korelasi antara tebal hujan dengan API adalah 27,2%. Nilai korelasi dari semua variabel di atas jauh dari taraf signifikan sebesar 0,001. Korelasi antara lama hujan dengan intensitas hujan maksimum dari hasil perhitungan diperoleh nilai sebesar 10,1%, dan korelasi hubungan antara lama hujan dengan API sebesar 8,9%. Nilai korelasi tersebut jauh dari signifikan pada taraf uji 0,001. Dari hasil tersebut menujukkan lemahnya hubungan antar variabel, sehingga variabel-variabel tersebut dapat digunakan dalam menentukan model persamaan kehilangan air hujan. Data intensitas hujan yang terendah di daerah penelitian adalah 6mm/jam dan yang tertinggi sebesar 40 mm/jam. Hubungan intensitas hujan dengan API mempunyai korelasi sebesar 18,6 %, nilai tersebut jauh dari signifikan pada taraf 0,001, sehingga variabel tersebut keduanya dapat digunakan dalam penentuan model selanjutnya. Pada penelitian ini faktor indeks curah hujan terdahulu digunakan sebagai petunjuk terhadap nilai kelembaban tanah. Nilai K yang diperoleh berkisar 0,80-0,98 yang berarti fungsi musim yang 207

menyebabkan variasi kelembaban tidak begitu berpengaruh. Untuk daerah yang beriklim basah dimana kondisi alirannya terus mengalir, biasanya menggunakan urutan kejadian hujan sebelurnnya yang dihitung 6 sampai 10 hari (Linsley, 1949). Hasil perhitungan indeks curah hujan terdahulu daerah penelitian untuk Api 7 hari yang terendah adalah 37,71 dan tertinggi adalah 98,86. Dari hasil perhitungan antara debit dengan tinggi muka air (TMA) diperoleh nilai koefisien korelasinya sebesar 0,99 dan signifikan pada taraf 0,001. Hal ini berarti bahwa 99 % dari debit aliran dipengaruhi oleh ketinggian muka airnya. Semakin besar tinggi muka airnya, debit yang terjadi semakin tinggi pula. Persamaan rating curvenya adalah Q = 15,0688 (H- 0,23) 1,669 untuk selanjutnya persamaan ini digunakan dalam menghitung hidrograf satuan daerah penelitian. Koofisien aliran sesaat Koefisien aliran sesat merupakan perbandingan antara tebal aliran langsung dengan curah hujan penyebabnya. Perhitungan koefisien aliran sesaat daerah penelitian berdasarkan pada rumus (6). Koefisien aliran sesaat ini dapat digunakan untuk kepentingan analisis besarnya banjir maksimum dan sebagai salah satu faktor untuk mengetahui kondisi hidrologi suatu daerah aliran sungai (Soeratman, 1985). Koefisien aliran sesaat di daerah penelitian termasuk dalam klasifikasi rendah, dengan ratarata sebesar 0,095, dan hanya pada satu kejadian hujan termasuk dalam klasifikasi normal. Hal ini menunjukkan bahwa pada DAS tersebut hanya sedikit air hujan yang menjadi aliran ke dalam sungai. Dari segi pencagaran air, hal tersebut menguntungkan, karena besarya air tanah akan meningkat, dan dengan semakin sedikitnya jumlah air hujan yang menjadi aliran, maka ancaman terjadinya erosi dan banjir semakin berkurang. Koefisien aliran sesaat, yang termasuk dalam klasifikasi normal terjadi pada tanggal 24 Januari 1999. Pada Kejadian hujan tersebut karakteristik hujan termasuk dalam rata-rata jika dibandingkan pada kejadian hujan yang lain. Hal ini dapat terjadi karena hujan di daerah penelitian tidak selalu tersebar merata di seluruh DAS dan pengukuran hujan tersebut diwakili oleh satu stasiun 208

hujan. Hasil analisis regresi linier hubungan antara koefisisen aliran dengan tebal hujan menunjukan nilai determinasi sebesar 0,0196 yang berarti bahwa hanya sebesar 0,0196% besarnya koefisien aliran dapat dijelaskan oleh tebal hujan dan sisanya sebesar 99,94%, dipengaruhi oleh sebab-sebab yang lain. Persamaan dari hasil perhitungan adalah Y = 0,0825 P + 7,3977, dengan korelasi sebesar 14%. Hubungan antara koefisien aliran dengan lama hujan mempunyai pola yang menyebar dengan koefisien determinasi sebesar 0,0486, yang berarti bahwa koefisien aliran dapat diterangkan oleh variabel lama hujan sebesar 4,86%, dan sisanya sebesar 95,14% disebabkan oleh faktor yang lain. Persamaan yang dihasilkan adalah Y=0,0129 D + 6,5254 dengan korelasi sebesar 22%. Dari sebaran data yang dihasilkan yaitu hubungan antara koofisien aliran dengan intensitas hujan menunjukkan pola data yang mengelompok dengan koofisien determinasi sebesar 0,0006 yang berarti bahwa hanya sebesar 0,006% dari koofisien aliran yang dipengaruhi oleh intensitas hujan maksimum. Dengan persamaan Y=0,0183 Imaks + 9,1494 dengan korelasi sebesar 2,44%. Hubungan antara koofisien aliran sesaat dengan kelembaban tanah terdahulu menunjukkan koofisien determinasi sebesar 0,0005 yang berarti bahwa 0,5% dari koofisien aliran dipengaruhi oleh variabel indeks kelembaban tanah terdahulu. Persamaan yang dihasilkan adalah Y = 0,009 API + 8,9678 dengan koofisien sebesar 2,23%. Dalam perkembangannya koofisien aliran sesaat dimanfaatkan untk menentukan besarnya kehilangan air hujan. Perhitungan kehilangan air dari hujan dengan menggunakan metode koofisien aliran sesaat merupakan cara yang sederhana. Dari hasil perhitungan diperoleh nilai ratarata kehilangan air sebesar 23,09 mm. Kehilangan Air Koefisien Aliran Sesaat Dalam penelitian ini klarifikasi model dilakukan menggunakan persamaan garis regresi linier yang merupakan hubungan antara variabel terikat dan variabel bebas. Variabel terikat yang dimaksud disini adalah koefisien aliran sesaat dan variabel 209

bebasnya adalah karakteristik hujan (tebal hujan, lmna hujan, I maks 30 menit) dan indeks curah hujan terdahulu. Dari sebaran data yang dihasilkan untuk kehilangan air koefisisen aliran sesaat dengan tebal hujan, terlihat adanya pola yang mellunjukkan hubungan yang bersifat linier dengan koefisisen determinasi sebesar 0,9817. Hal ini berarti bahwa 98,17 % dari koefisisen aliran sesaat dapat dijelaskan oleh tebal hujan, sedangkan 1,83 %) dijelaskan oleh sebab-sebab lain (variabel random). Persamaan dari hasil perhitungannya adalah Y = 0,8977 P + 0,0331 Persamaan ini menunjukkan bahwa telah terjadi penambahan perubahan kehilangan air sebesar 0,0331 terhadap perubahan tebal hujan pada kisaran antara 9 mm sampai 49 mm. Korelasi yang ditunjukkan untuk hubungan ini adalah 99% dan berdasarkan pada tabel harga kritis korelasi rank spearman menunjukkan signifikan pada taraf uji 0,001. Grafik kehilangan air koefisien aliran sesaat dengan tebal hujan dapat dilihat pada Gambar 1. Gambar 1. Indeks laju kehilangan air (C) dengan tebal hujan Untuk data kehilangan air dihasilkan adalah 0,02542 yang berarti koofisien aliran sesaat dengan lama bahwa hasil koofisien aliran sesaat hujan, pola datanya cenderung sebesar 25,42% yang dapat diterangkan menyebar. Koofisien determinasi yang oleh lama hujan, sedangkan sisanya 210

sebesar 74,58% dijelaskan oleh variabel random. Persamaan yang dihasilkan adalah: Y=0,0454 D + 12,549 dengan korelasi yang ditunjukkan sebesar 50,41% dan signifikan pada taraf 0,05. Pola data dari koofisien aliran sesaat dengan intensitas hujan maksimum 30 menit adalah menyebar, dengan koofisien determinasi 0,3319 yang artinya bahwa sebesar 33,19% dari variabel koofisien aliran sesaat dapat diterangkan oleh I maks, sedangkan sebesar 66,81% diterangkan oleh variabel random. Persamaan yang dihasilkan pada hubungan ini adalah Y=0,6557I + 9,7876 dengan korelasi sebesar 57,61% dan signifikan pada taraf 0,025. Hubungan antara koofisien aliran sesaat dengan API 7 hari menunjukkan pola yang menyebar dengan arah grafik yang negatif, dengan koofisien determinasi sebesar 0,0858 artinya bahwa variabel koofisien aliran sesaat hanya sebesar 8,58% yang dapat diterangkan oleh API 7 hari sedangkan sisanya sebesar 91,42% diterangkan oleh variabel random. Persamaan yang dihasilkan adalah Y = -0,1862 API + 34,463 dengan korelasi sebesar 29,29% serta signifikan di bawah taraf uji 0,1. Dari persamaan diatas menunjukkan kehilangan air akan semakin berkurang dengan semakin besarnya nilai API pada kisaran antara 37,71 sampai 98,86. Dari hasil pengujian regresi linier berganda dengan variabel terikat berupa koefisien aliran sesaat dan variabel bebas berupa tebal hujan (P), lama hujan (D), Intensitas hujan maksimum (I maks) dan kelembaban tanah 7 hari (API) model persamaan yang diajukan adalah Y = ap + bd + ci + d API + C. Dari pengolahan data diperoleh model terbaik untuk kehilangan air koofisien aliran sesaat dengan persamaan sebagai berikut: Y = 0,898 P + 0,03308 Persamaan tersebut mempunyai korelasi sebesar 0,979 dan koefisien determinasi 0,981. Hal ini berarti bahwa 98,1 % variabel kehilangan air dapat dijelaskan oleh tebal hujan. Potensi Air Hujan Yang Menjadi Aliran Dari hasil pencirian model kehilangan air dari hujan, dapat ditentukan besamya potensi air hujan yang menjadi aliran, yaitu hujan yang jatuh di daerah aliran dikurangi dengan besarnya air yang hilang. Dari hasil 211

perhitungan diperoleh potensi air hujan yang menjadi aliran mempunyai kisaran sebesar 0,92572 mm sampai 4,97512mm atau sebesar 10,07 % dari seluruh total hujan yang ada. KESIMPULAN Berdasarkan analisis dan pembahasan yang dilakukan dalam penelitian ini, maka dapat disimpulkan bahwa berdasarkan hasil perhitungan aliran untuk koofisien aliran sesaat menunjukkan bahwa, koofisien aliran sesaat di daerah penelitian berdasarkan klasifikasi Bransby & William termasuk dalam klasifikasi rendah, dengan rata-rata sebesar 0,095 dan hanya pada satu kejadian hujan, termasuk dalam klasifikasi normal. Hal ini menunjukkan bahwa sedikit air hujan yang menjadi aliran ke sungai. Dari segi konservasi air, hal tersebut menguntungkan, karena besarnya air tanah akan meningkat, dan dengan semakin sedikitnya jumlah air hujan yang menjadi aliran, maka ancaman terjadinya erosi dan banjir akan semakin berkurang. Berdasarkan analisis regresi linier sederhana dari koofisien aliran sesaat dengan karakteristik hujan, variabel yang mempunyai pengaruh terbesar secara berurutan adalah lama hujan, tebal hujan, Imaks dan API. Dari hasil analisis statistik untuk mengetahui hubungan kehilangan air dengan karakteristik hujan di daerah penelitian, menunjukkan untuk kehilangan air dengan metode koofisien aliran sesaat, variabel yang mempunyai pengaruh dari yang terbesar berturut-turut adelah tebal hujan, I maks, lama hujan dan API 7 hari. Dari hasil perhitungan untuk menentukan model kehilangan air, diperoleh model kehilangan air metode koofisien aliran sesaat Y= 0,898 P + 0,03308. DAFTAR PUSTAKA Chow, VT., 1964, Aplied Hydrology, Me Graw Hill, New York. Griend V., A.A., 1979, Modelling Cathment Response and Runoff Analysis, Institute of Eart Science Free University, Amsterdam. Kustanto, 1990, Studi Kehilangan Air Dari Hujall DAS Tadji Kec. Kokap Kab. Kulonprogo,Skripsi, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta MacDonald, M., and Partners, 1979, Sermo and Sambiroto Dams, Pre- Feasibility Study Report, Proyek Irigasi Kali Progo,Yogyakarta Soeratman, 1985, Hidrologi Hutan, Gadjah Mada University Press, Yogyakarta 212

Santoso, S., 2000, Statstik Parametrik, Elex Media Komputindo, Jakarta Schulz,E.P., 1976, Problem in Applied Hydrology, Water Resources Publication,Fort Collins, Collorado. Seyhan, E., 1983, Dasar-dasar Hidrologi, Gajah Marla University Press, Yogyakarta. Softah, S., 2000, Agihan Kualitas Air di Waduk Sermo Kabupateu Kulouprogo Propinsi DIY, Skripsi, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta Sosrodarsono, S., dan K. Takeda, 1977, Hidrologi Untuk Pengairan, Pradnya Paramita, Jakarta. Subarkah, I., 1988, Hidrologi Untuk Perencanaan Bangunan Air, Idea Danna, Bandung. Suyono, 1983, Pemantauan Pengelolaall Daerah Aliran Sungai Ditinjau Dari Segi Hidrologi, Makalah Seminar Hidrologi, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta. 213