Perancangan Transformator Frekuensi Tinggi untuk Konverter DC-DC Full-Bridge Phase-Shifted 200 W

dokumen-dokumen yang mirip
BAB I PENDAHULUAN. aplikasi dari konverter dc-dc adalah untuk sistem battery charger. Pada aplikasi

1 BAB I PENDAHULUAN. bidang ilmu kelistrikan yang menggabungkan ilmu elektronika dengan ilmu ketenaga-listrikan.

BAB I 1. BAB I PENDAHULUAN

BAB I PENDAHULUAN. Bidang Teknik Elektro merupakan bidang yang sangat luas dan saat ini

PERANCANGAN DAN IMPLEMENTASI KONVERTER DC-DC SINGLE-INPUT MULTIPLE- OUTPUT BERBASIS COUPLED INDUCTOR

Perancangan dan Implementasi Konverter Boost Rasio Tinggi dengan Transformator Hybrid untuk Aplikasi Photovoltaic

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull

PERANCANGAN ZERO VOLTAGE SWITCHING BUCK CONVERTER DENGAN BEBAN RESISTIF BERVARIASI DAN SEBAGAI CATU DAYA UNTUK MOTOR ARUS SEARAH

SIMULASI TCSC DAN MERS UNTUK KOMPENSASI REAKTIF SALURAN 3 FASE

BAB IV HASIL PENGUJIAN DAN ANALISA. Pada bab ini akan dibahas hasil pengujian dan analisa dari system buck chopper

BAB III METODE PENELITIAN. Penelitian dan penulisan laporan tugas akhir dilakukan di Laboratorium

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

ANALISIS INVERTER SATU FASA PADA KONFIGURASI MASTER-SLAVE

NAMA :M. FAISAL FARUQI NIM : TUGAS:ELEKTRONIKA DAYA -BUCK CONVERTER

Perancangan dan Implementasi Konverter Boost Rasio Tinggi dengan Transformator Hybrid untuk Aplikasi Photovoltaic

Perancangan Battery Control Unit (BCU) Dengan Menggunakan Topologi Cuk Converter Pada Instalasi Tenaga Surya

REALISASI KONVERTER DC-DC TIPE PUSH-PULL BERBASIS IC TL494 DENGAN UMPAN BALIK TEGANGAN

ek SIPIL MESIN ARSITEKTUR ELEKTRO

Saklar Energi Pemulih Magnetik untuk Soft Starting Motor Induksi Tipe Sangkar Tupai

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

PERANCANGAN DC-DC CONVERTERBUCK QUASI RESONANT DENGAN MODE PENSAKLARAN ZERO CURRENT SWITCHING (ZCS) DAN ZERO VOLTAGE SWITCHING (ZVS)

Desain dan Implementasi Soft Switching Boost Konverter Dengan Simple Auxillary Resonant Switch (SARC)

Desain Konverter DC/DC Zero Voltage Switching dengan Perbaikan Faktor Daya sebagai Charger Baterai untuk Kendaraan Listrik

Materi 3: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

BAB II TINJAUAN PUSTAKA. Konverter elektronika daya merupakan suatu alat yang mengkonversikan

BAB I PENDAHULUAN. Inverter adalah alat yang banyak digunakan dalam aplikasi elektronis. Alat ini

Rancang Bangun Modul DC DC Converter Dengan Pengendali PI

BAB IV HASIL DAN PEMBAHASAN

Departemen Teknik Elektro, Universitas Diponegoro Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia

PENDEKATAN BARU UNTUK SINTESIS KONVERTER DAYA

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

RANCANG BANGUN MODUL BOOST CHOPPER VOLT DC 200 WATT BERBASIS MIKROKONTROLLER ATMEGA 16 ABSTRAK

DESAIN DAN IMPLEMENTASI PENAIK TEGANGAN MENGGUNAKAN KOMBINASI KY CONVERTER DAN BUCK- BOOST CONVERTER

Faisyal Rahman et al., Pengendalian Tegangan Inverter 3 Fasa... 12

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt

BAB III METODE PENELITIAN

BAB IV HASIL PERCOBAAN DAN ANALISIS

1 BAB I PENDAHULUAN. terbarukan hanya sebesar 5.03% dari total penggunaan sumber energi nasional.

Desain dan Simulasi Konverter Buck Sebagai Pengontrol Tegangan AC Satu Tingkat dengan Perbaikan Faktor Daya

BAB III PERANCANGAN SISTEM

PEMBUATAN DC CHOPPER TIPE BOOST BERBASIS TRANSISTOR SC2555

Desain Inverter Tiga Fasa dengan Minimum Total Harmonic Distortion Menggunakan Metode SPWM

PERANCANGAN KONVERTER DC-DC RESONANSI BEBAN SERI

Rancang Bangun AC - DC Half Wave Rectifier 3 Fasa dengan THD minimum dan Faktor Daya Mendekati Satu menggunakan Kontrol Switching PI Fuzzy

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

Power Supply Jenis Switch Mode; Perancangan Tingkat Lanjut, oleh Dr. Ir. Saludin Muis, M.Kom. Hak Cipta 2014 pada penulis

BAB 1 PENDAHULUAN. adalah rectifier, converter, inverter, tanur busur listrik, motor-motor listrik,

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

ABSTRACT. Keyword ; Rectifier and filter C, Buck Converter,inverter. vii

Inverter Satu Fase dengan Pola Penyaklaran SPWM

PEMBUATAN DC-DC KONVERTER 300 VOLT JENIS BUCK

ANALISIS KERJA INVERTER SETENGAH JEMBATAN DENGAN RANGKAIAN RESONAN LC SERI

Rancang Bangun Interleaved Boost Converter Berbasis Arduino

ANALISIS PENGATURAN ARUS ROTOR PADA MOTOR INDUKSI ROTOR BELITAN TIGA FASA MENGGUNAKAN BUCK KONVERTER

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik

PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER)

Pengaruh Bentuk Gelombang Pembawa Terhadap Harmonisa pada Inverter Satu Fasa

ANALISIS PERBANDINGAN HASIL OPERASI CCM DAN DCM PADA DC CHOPPER TIPE CUK

BAB 3 DISAIN RANGKAIAN SNUBBER DAN SIMULASI MENGGUNAKAN MULTISIM

Pengkonversi DC-DC (Pemotong) Mengubah masukan DC tidak teratur ke keluaran DC terkendali dengan level tegangan yang diinginkan.

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

DAFTAR GAMBAR. Magnet Eksternal µt Gambar Grafik Respon Daya Output Buck Converter dengan Gangguan Medan

JURNAL TUGAS AKHIR DISAIN RANGKAIAN SNUBBER PADA SISTEM POWER SWITCHING MENGGUNAKAN MOSFET. Universitas Indonesia Depok

ANALISIS KERJA INVERTER SETENGAH JEMBATAN DENGAN RANGKAIAN RESONAN LC SERI

PENYEDIA DAYA DC BERBASIS MIKROKONTROLER MC68HC908QT2

BAB III METODE PENELITIAN

Auto Charger System Berbasis Solar Cell pada Robot Management Sampah

Perancangan dan Implementasi Konverter DC-DC Sepic yang Terintegrasi dengan Konverter Boost untuk Sistem Photovoltaic

TEORI DASAR. 2.1 Pengertian

Perancangan Sistem Pengendalian Kecepatan Motor Pompa Air Tekanan Konstan

PERANCANGAN INVERTER JEMBATAN PENUH DENGAN RANGKAIAN PASIF LC BEBAN PARALEL

BAB I PENDAHULUAN. Teknologi konverter elektronika daya telah banyak digunakan pada. kehidupan sehari-hari. Salah satunya yaitu dc dc konverter.

Laporan Praktikum rangkaian listrik dan rangkaian logika. Power supply OLEH: PUTU NOPA GUNAWAN NIM : D

Analisa dan Pemodelan PWM AC-AC Konverter Satu Fasa Simetri

PENGARUH PENGATURAN BOOST CONVERTER TERHADAP TORSI DAN KECEPATAN MOTOR INDUKSI TIGA FASE ROTOR BELITAN

II. TINJAUAN PUSTAKA

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

Politeknik Elektronika Negeri Surabaya ITS Kampus ITS Sukolilo Surabaya

Perbaikan Variabel Step Size MPPT pada Aplikasi Panel Surya untuk Perubahan Iradiasi Matahari yang Cepat

ANALISIS PERBANDINGAN HASIL OPERASI CCM DAN DCM PADA DC CHOPPER TIPE CUK

Desain Switch Mode Power Supply Jenis Push Pull. Converter Sebagai Catu Kontroler

Artikel Reguler. Volume 1 Nomor 1, April 2014

Disain Konverter Charge Pump Rasio Tinggi Untuk Aplikasi Mobil Listrik

Pengendalian Kecepatan Motor DC Magnet Permanen Dengan Menggunakan Sensor Kecepatan Rotari

RANCANGBANGUN TRANSFORMATOR STEP UP

PRAKTIKUM KONVERTER DC-AC INVERTER

TRAINER KIT SWITCHING MODE POWER SUPPLY LAPORAN PROYEK AKHIR. Oleh : CAESAR YOGA SAPUTRA OKTVIANTO

PERANCANGAN INVERTER JEMBATAN PENUH DENGAN RANGKAIAN PASIF LC BEBAN PARALEL

Teknik Tenaga Listrik (FTG2J2)

Analisis Rugi-Rugi Daya Konverter DC-DC

PRAKTIKUM KENDALI ELEKTRONIS SISTEM TENAGA LISTRIK (TEE 309P)

Perancangan dan Implementasi Multi-Input Konverter Buck Untuk Pengisian Baterai Menggunakan Panel Surya dan Turbin Angin

SIMULASI CONVERTER DAYA FREKUENSI TINGGI DENGAN TEKNOLOGI PLD BERBASIS SISTEM MIKROKONTROLLER

Perancangan Boost Converter Untuk Sistem Pembangkit Listrik Tenaga Surya

PERCOBAAN 5 REGULATOR TEGANGAN MODE SWITCHING. 1. Tujuan. 2. Pengetahuan Pendukung dan Bacaan Lanjut. Konverter Buck

DESAIN DAN ANALISIS RESONANT CONVERTER BERTENAGA AKUMULATOR 12 VOLT SEBAGAI RANGKAIAN PENGGERAK LAMPU LED MENGGUNAKAN MATLAB-SIMULINK

BAB III METODE PENELITIAN

RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM

Transkripsi:

Perancangan Transformator Frekuensi Tinggi untuk Konverter DC-DC Full-Bridge Phase-Shifted 200 W Johan Agung Irawan, Eka Firmansyah, F. Danang Wijaya Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada Yogyakarta johanagungirawan@gmail.com Abstrak Konverter dc-dc digunakan untuk menghindari penggunaan transformator frekuensi rendah yang memiliki ukuran besar dan berat pada proses konversi energi listrik dari energi terbarukan. Konverter dc-dc full-bridge menggunakan transformator frekuensi tinggi. Dengan bekerja pada frekuensi tinggi, transformator ini memiliki ukuran yang ringkas dan ringan. Penelitian ini bertujuan untuk merancang dan membuat transformator frekuensi tinggi untuk konverter dc-dc full-bridge phase-shifted 200 W dengan frekuensi penyaklaran 50 khz dan memiliki efisiensi di atas 80%. Simulasi dengan software PSIM dan eksperimen terhadap transformator hasil rancangan telah dilakukan. Hasil menunjukkan bentuk gelombang yang hampir sama dengan hasil eksperimen. Transformator hasil eksperimen memiliki efisiensi 91,63-99,36%. Kata kunci transformator frekuensi tinggi, konverter dc-dc fullbridge, pulse-width-modulation (PWM) phase-shifted, PSIM I. PENDAHULUAN Perkembangan teknologi elektronika daya menjadi salah satu hal penting dalam memanfaatkan energi terbarukan semaksimal mungkin. Konverter dc-dc, sebagai salah satu peralatan konversi energi, berkembang untuk memenuhi tuntutan ini. Salah satu aplikasi dari konverter ini adalah untuk menghindari penggunaan transformator frekuensi rendah pada proses konversi energi listrik dc dari energi terbarukan menjadi ac yang dapat langsung digunakan pada beban rumah tangga. Transformator frekuensi rendah ini memiliki kekurangan yaitu ukuran besar dan berat. Konverter dc-dc mengubah tegangan dc menjadi tegangan dc yang lebih tinggi level tegangannya. Tegangan dc tinggi inilah yang kemudian dikonversi menjadi tegangan ac. Salah satu topologi konverter dc-dc adalah full-bridge. Topologi full-bridge ini menggunakan transformator frekuensi tinggi. Dengan bekerja pada frekuensi tinggi, transformator ini memiliki ukuran lebih kecil dari transformator frekuensi rendah. Akan tetapi, transformator ini di pasaran hanya tersedia secara terbatas untuk spesifikasi tertentu, sehingga transformator biasanya didesain dan dibuat sendiri untuk aplikasi tertentu [1]. Studi tentang perancangan transformator frekuensi tinggi yang diterapkan pada konverter daya full-bridge phase-shifted dapat ditemukan pada penelitian [2]. Perancangan transformator harus mempertimbangkan kenaikkan suhu, rugi-rugi inti dan belitan yang diperbolehkan. Perhitungan rugi-rugi inti magnetis telah dilakukan pada [3]. Gbr. 1. Rangkaian dc-dc full-bridge Pada penelitian ini, dilakukan perancangan transformator frekuensi tinggi yang memiliki efisiensi di atas 80%. Transformator ini diterapkan pada konverter dc-dc full-bridge phaseshifted 200 W yang menaikkan tegangan dc masukan 12 V menjadi 400 V. Konverter dc-dc menggunakan frekuensi penyaklaran 50 khz. Pada penelitian ini, dilakukan pula simulasi menggunakan software PSIM terhadap transformator hasil perancangan yang diterapkan pada konverter dc-dc full-bridge phase-shifted. Hasil simulasi juga dibandingkan dengan hasil eksperimen. Perbandingan ini dimaksudkan untuk mengetahui seberapa sesuai hasil eksperimen dengan simulasi. Pengujian efisiensi transformator hasil eksperimen dengan beban resistif yang berbeda-beda juga dilakukan. II. RANGKAIAN KONVERTER DC-DC FULL-BRIDGE PHASE-SHIFTED Rangkaian konverter dc-dc full-bridge ditunjukkan pada Gbr. 1. Rangkaian ini terdiri dari beberapa bagian, yaitu rangkaian penyaklaran (inverter full-bridge), transformator frekuensi tinggi, penyearah, filter, gate-drive, dan rangkaian kendali. Rangkaian penyaklaran inverter full-bridge menggunakan empat buah saklar elektronis. Saklar elektronis yang dapat digunakan untuk frekuensi penyaklaran tinggi adalah MOS- FET. MOSFET yang digunakan pada penelitian ini adalah IRFB4710. Rangkaian ini akan mengubah tegangan dc masukan menjadi tegangan ac melalui proses penyaklaran. Pada

penelitian ini, proses penyaklaran dilakukan pada frekuensi penyaklaran 50 khz. Keadaan hidup dan mati MOSFET diatur oleh sinyal pulse-width-modulation (PWM). Penelitian ini menggunakan metode PWM phase-shifted. Pada metode ini, tegangan keluaran rangkaian penyaklaran dikendalikan oleh perbedaan fase antara pulsa on dua saklar diagonal (Q A dengan Q D dan Q B dengan Q C ), sedangkan duty-cycle setiap saklar dibuat tetap yaitu sekitar 50%. Pada metode ini, tegangan MOSFET akan dibuat nol pada saat transisi hidup (zero voltage transition). Ini dilakukan dengan memanfaatkan keberadaan kapasitor parasitis MOSFET dan induktans bocor pada transformator [4]. Sinyal PWM phase-shifted (SA, SB, SC, dan SD) dihasilkan oleh IC kontroler PWM UC3879 di rangkaian kendali. Rangkaian kendali menggunakan voltage-modecontrol dengan umpan balik negatif untuk mempertahankan tegangan keluaran konstan walaupun terjadi perubahan beban. Namun, sinyal PWM ini terlebih dahulu dilewatkan rangkaian gate-drive agar dihasilkan tegangan gate terhadap source (V GS ) sesuai spesifikasi MOSFET. Pada penelitian ini, gatedrive menggunakan IC gate-drive IR2110. Tegangan ac keluaran rangkaian penyaklaran dinaikkan level tegangannya oleh transformator frekuensi tinggi. Tegangan ac tersebut disearahkan oleh rangkaian penyearah fullbridge sehingga menjadi tegangan dc. Rangkain penyearah pada penelitian ini menggunakan dioda frekuensi tinggi BYC8X-600. Untuk mengurangi riak, tegangan dc keluaran penyearah terlebih dahulu dilewatkan filter. Kapasitor filter yang digunakan sebesar 2,2 µf. Induktans bocor pada sekunder trafo digunakan sebagai induktor filter. Tegangan dc keluaran konverter diumpanbalikan ke rangkaian kendali sebagai sinyal feedback. III. PERANCANGAN TRANSFORMATOR FREKUENSI TINGGI Transformator ini digunakan untuk menaikkan level tegangan ac keluaran dari rangkaian penyaklaran. Transformator dirancang untuk memiliki daya 200 W. Dalam perancangan, perlu ditentukan dahulu parameter transformator yang akan dirancang, seperti topologi rangkaian, frekuensi kerja, kenaikkan suhu maksimal, serta rugi-rugi daya yang diperbolehkan. Kenaikan suhu pada transformator perlu diperhatikan karena kenaikan suhu material inti dan belitan dapat menurunkan unjuk kerja material ini. Supaya penurunan unjuk kerja tetap pada batas tertentu, suhu inti dan belitan harus dijaga di bawah suatu nilai maksimal. Rugi-rugi juga harus dijaga di bawah suatu nilai maksimal [1]. Kenaikan suhu maksimal yang diijinkan ( T ) sebesar 25 o C. Pada topologi full-bridge, simpangan fluks inti adalah setengah dari frekuensi penyaklaran (50 khz) [2], maka frekuensi kerja transformator ini adalah 25 khz. Rugi daya merupakan jumlah rugi inti dan kawat tembaga. A. Penentuan inti transformator Karena transformator bekerja pada frekuensi tinggi (lebih besar dari 10 khz), inti yang digunakan adalah inti ferrite MnZn. Ferrite MnZn adalah material inti yang popular untuk Gbr. 2. Spesifikasi ukuran inti PQ26/25 [6] aplikasi konverter sampai dengan 1 atau 2 MHz. Permeabilitas ferrite sebesar 1500-3000, permeabilitas ini cukup tinggi untuk menjaga arus magnetisasi untuk aplikasi transformator [5]. Ferrite memiliki resistivitas yang tinggi sehingga rugi arus eddy ferrite kecil dan dapat diabaikan, tetapi ferrite memiliki kerapatan fluks saturasi yang rendah (sekitar 0,3 T) [1]. Bahan inti ferrite yang dipilih adalah PC44 dari TDK Corporation karena cocok untuk frekuensi penyaklaran 50 khz, sedangkan ukuran inti yang dipilih adalah PQ26/25 karena ukuran ini mampu menangani daya 200 W. Inti PQ26/25 memiliki volume inti efektif (V e ) 6,53 cm 3, luas penampang efektif (A e ) 1,18 cm 2, dan spesifikasi ukuran yang ditunjukkan pada Gbr. 2 [6]. B. Perhitungan jumlah belitan Rugi-rugi inti per satuan volume yang diijinkan (P m,sp ) dapat dihitung melalui (1) dengan nilai r = ( 3 V e ( 3 6,53 4π ) 1 3 = 1, 16 cm [3]. P m,sp = σ c T r A V T 8, 33r 2 + 133r 4π ) 1 3 = Maka diperoleh nilai P m,sp sebesar 151,07 mw/cm 3. Rugirugi inti total (P c ) yang diperbolehkan dapat diperoleh melalui (2), sehingga diperoleh nilai P c sebesar 0,9865 W. (1) P c = P m,sp V e (2) Sifat rugi-rugi inti dan kawat terhadap kerapatan fluks saling berlawanan, dan agar optimal biasanya rugi-rugi kawat bernilai sama dengan rugi-rugi inti. Maka rugi-rugi kawat tembaga yang diperbolehkan (P copper ) adalah sebesar 0,9865 W. Untuk menentukan kerapatan fluks puncak digunakanlah grafik rugi inti terhadap frekuensi dan kerapatan fluks bahan inti PC44 yang ditunjukkan pada Gbr. 3. Kerapatan fluks dapat diperoleh melalui grafik di atas dengan cara memotongkan grafik frekuensi kerja trafo (25 khz) dengan rugi-rugi inti yang diperoleh di atas (151,07 mw/cm 3 ). Namun, dari Gbr. 3, grafik untuk frekuensi 25 khz tidak ada. Grafik untuk frekuensi ini dapat diperoleh dengan mengestimasikan grafik untuk frekuensi 25 khz PC44 berhimpit dengan grafik untuk frekuensi 50 khz PC95. Maka diperoleh kerapatan fluks puncak 180 mt atau 0,18 T. Nilai ini cukup jauh dari kerapatan fluks saturasi ferrite (sekitar 0,3 T). Simpangan

Gbr. 4. Transformator frekuensi tinggi yang telah dibuat Gbr. 3. Grafik rugi-rugi inti terhadap frekuensi dan kerapatan fluks PC95 dan PC44 [7] fluks puncak ke puncak ( B) adalah dua kali kerapatan fluks puncak [2], yaitu sebesar 0,36 T. Jumlah belitan primer (N p ) dapat diperoleh melalui (3) dengan nilai t on = 16 µs dan V in = 12 V, sehingga diperoleh N p sebanyak 4,5 5 lilit. Perbandingan belitan trafo (N) diperoleh melalui (4) dengan nilai D max = 0,8 dan V o = 400 V, sehingga diperoleh N sebesar 3:125. Jumlah belitan sekunder (N s ) dapat diperoleh melalui perbandingan trafo yaitu sebanyak 208,33 208 lilit. N p = V in t on 10 4 A e B N = V out inverter V o C. Perhitungan jumlah kawat paralel (3) = V in D max V o (4) Akibat adanya skin effect pada belitan tembaga, sebagian besar arus hanya akan mengalir pada permukaan kawat penghantar dan akan mengurangi kapasitas arusnya. Hal ini dapat diatasi dengan menggunakan beberapa kawat dengan diameter lebih kecil yang diparalel. Untuk mencari jumlah kawat paralel, perlu dihitung terlebih dahulu luas penampang belitan primer dan sekunder yang dibutuhkan. Kawat tembaga akan dililitkan pada sekitar lingkaran tengah inti, sehingga dapat diperkirakan panjang kawat tembaga primer (l p ) dan sekunder (l s ). Keliling rata-rata daerah kosong di sekitar lingkaran tengah inti diperoleh dengan mengasumsikan diameter rata-rata daerah kosong tersebut sebesar 15,5 mm atau 0,0155 m. Maka diperoleh panjang kawat tembaga belitan primer sebesar l p = π 0, 0155 N p = π 0.0155 5 = 0,2 m dan sekunder sebesar l s = π 0, 0155 208 = 10,13 m. P cooper yang telah diperoleh sebelumnya dapat dinyatakan sebagai (5). Resistivitas tembaga (ρ Cu ) sebesar 1.68 10 8 Ωm. P copper = I 2 max R = I 2 max ρ Cu l A (5) Diinginkan efisiensi transformator lebih besar dari 80%, maka dapat diperoleh perbandingan rugi-rugi kawat tembaga yang diperbolehkan pada belitan primer dengan sekunder yaitu 1:0,8 = 5:4. Melalui (6) dan (7), luas penampang primer (A p ) dan sekunder (A s ) dapat diperoleh. Pada daya 200 W, nilai arus rata-rata primer (I in ) sebesar 16,67 A dan arus rata-rata sekunder (I out ) sebesar 0,5 A. Maka diperoleh A p sebesar 1,7 10 2 cm 2 dan A s sebesar 9,7 10 4 cm 2. Kawat tembaga yang akan digunakan memiliki diameter 0,3 mm dengan luas penampang (A Cu ) sebesar 7,07 10 4 cm 2. 5 9 P copper = I 2 in ρ l p A p (6) 4 9 P copper = I 2 out ρ l s A s (7) Sekarang jumlah kawat paralel dapat dicari, yaitu melalui (8) dengan menggunakan koefisien fill factor tembaga 0,4. n p = A p 0, 4 A Cu and n s = A s 0, 4 A Cu (8) Maka diperoleh jumlah kawat paralel pada primer yaitu 9,64 10 kawat paralel. Untuk amannya, dipilih jumlah kawat paralel yang lebih banyak yaitu 21 kawat paralel. Jumlah kawat paralel pada sekunder yaitu 0,55 1 kawat paralel. Setelah perancangan dilakukan, dilanjutkan dengan pembuatan transformator. Gbr. 4 menunjukkan transformator frekuensi tinggi yang telah dibuat. Secara praktis, transformator tidaklah ideal. Belitan pada transformator memiliki hambatan dan induktans bocor dan inti transformator memiliki reaktans non-induktif dan induktans magnetisasi [8]. Sebelum diterapkan pada rangkaian konverter dc-dc, ada baiknya dilakukan pengukuran parameter ketidakidealan ini. Pada penelitian ini, dilakukan pengukuran dengan LCR meter GWIN- STEK 819. Hasil pengukuran ditunjukkan pada Tabel I. TABEL I HASIL PENGUKURAN DENGAN LCR METER Parameter Primer Sekunder Hambatan belitan (Ω) 0.0093 153.58 Induktans bocor (µh) 0,01 461,4 Reaktans non-induktif (Ω) 371,2807 besar sekali Induktans magnetisasi (mh) 0.01234 21,2156

Gbr. 5. Transformator tidak ideal pada Gbr. 7. Tegangan dan arus sekunder transformator pada beban 43,2 W hasil Gbr. 6. Tegangan dan arus primer transformator pada beban 43,2 W hasil IV. SIMULASI SOFTWARE PSIM Simulasi dilakukan untuk mengetahui bagaimana bentuk gelombang pada konverter, terutama pada primer dan sekunder transformator. Pada penelitian ini, simulasi transformator frekuensi tinggi yang diterapkan pada konverter dc-dc fullbridge phase-shifted dilakukan pada software PSIM. Simulasi dilakukan sedekat mungkin dengan kenyataannya. Parameter ketidakidealan transformator diterapkan pada transformator, seperti yang ditunjukkan pada Gbr. 5. Parameter ketidakidealan komponen yang dipakai juga diterapkan, seperti hambatan drain terhadap source keadaan on IRFB4710 (0,014 Ω), kapasitor parasitis drain terhadap source IRFB4710 (430 pf), dan tegangan maju BYC8X-600 (1,4 V). Pada daya beban 43,2 W, tegangan dan arus primer transformator ditunjukkan pada Gbr. 6. Tegangan rata-rata primer sebesar 6,724 V dan arus rata-ratanya 10,51 A. Tegangan primer transformator merupakan tegangan keluaran rangkaian penyaklaran. Pada konverter daya phase-shifted, saat dua saklar diagonal (Q A dengan Q D atau Q B dengan Q C ) on, dihasilkan tegangan keluaran (ditandai dengan keadaan high pada gelombang primer transformator). Saat dua saklar sisi atas (Q A dengan Q C ) atau dua saklar sisi bawah (Q B dengan Q D ) dalam keadaan on, maka tidak ada tegangan keluaran yang dihasilkan (0 V). Pada daya beban rendah ini, duty-cycle keluaran rangkaian penyaklaran kecil. Hal ini karena tegangan jatuh akibat hambatan belitan dan induktans bocor pada transformator kecil, sehingga duty-cycle yang diperlukan untuk mengompensasi tegangan jatuh ini kecil. Proses kompensasi ini dilakukan oleh sistem kendali voltage-mode-control. Tegangan dan arus sekunder transformator pada beban 43,2 W ditunjukkan pada Gbr. 7. Transformator menaikkan level tegangan primer. Puncak tegangan primer sebesar 12 V di- Gbr. 8. Tegangan dan arus primer transformator pada beban 206 W hasil Gbr. 9. Tegangan dan arus sekunder transformator pada beban 206 W hasil naikkan menjadi 400 V pada sekunder. Tegangan rata-rata sekunder sebesar 240,733 V dan arus rata-ratanya 0,193 A. Pada daya beban 206 W, tegangan dan arus primer transformator ditunjukkan pada Gbr. 8. Tegangan rata-rata primer sebesar 11,33 V dan arus rata-ratanya sebesar 24,787 A. Tegangan dan arus sekunder ditunjukkan pada Gbr. 9. Tegangan rata-rata sekunder sebesar 377,358 V dan arus rataratanya sebesar 0,506 A. Duty-cycle pada gelombang ini besar dan bahkan hampir maksimal. Pada daya beban besar ini, tegangan jatuh akibat hambatan belitan dan induktans bocor besar, sehingga diperlukan duty-cycle yang besar untuk mengompensasi tegangan jatuh ini supaya tegangan keluaran akhir konverter dapat tetap 400 V.

Gbr. 10. Tegangan dan arus primer transformator pada beban 43,2 W Gbr. 11. Tegangan dan arus sekunder transformator pada beban 43,2 W V. HASIL EKSPERIMEN Pengujian dilakukan dengan menggunakan beban resistif lampu pijar 220 V yang diseri. Lampu pijar divariasi untuk memperoleh beberapa kondisi hambatan/beban yang berbeda. Pada saat pengujian, tegangan masukan konverter dan tegangan suplai rangkaian kendali dan gate-drive sebesar 12 V. Pengamatan bentuk gelombang dilakukan melalui osiloskop GDS-3154 dengan probe tegangan tinggi GDP-100 dan probe arus GCP-530 buatan GWINSTEK. Pada daya beban 43,2 W, tegangan dan arus primer transformator hasil eksperimen ditunjukkan pada Gbr. 10. Tegangan rms primer 6,93 V dan arusnya 10,3 A. Bentuk gelombang tegangan dan arus ini hampir sama dengan hasil simulasi PSIM. Perbedaannya adalah timbul ringing dan juga spikes pada gelombang tegangan. Hal ini karena pada belum mempertimbangkan komponen parasitik pada komponen lain yang dipakai, seperti induktans pada penghantar/kabel yang dipakai, dan juga reverse recovery time dari body diode MOSFET dan dioda penyearah. Induktans dan reverse recovery time ini yang menyebabkan spikes dan ringing. Tegangan dan arus sekunder pada daya beban 43,2 W ditunjukkan pada Gbr. 11. Tegangan rms sekunder 262 V dan arusnya 0,203 A. Sama seperti pada primer transformator, bentuk gelombang hasil eksperimen hampir sama dengan hasil. Pada hasil eksperimen, timbul ringing akibat reverse recovery time dari dioda penyearah yang digunakan. Bila dibandingkan dengan primer, spikes pada tegangan sekunder sudah tidak besar. Hal ini karena transformator memiliki induktans bocor yang bertindak sebagai filter. Hal yang sama juga terjadi ketika pengujian transformator dilakukan dengan beban 206 W. Tegangan dan arus primer ditunjukkan pada Gbr. 12. Tegangan rms primer 11,9 V dan arusnya 23,7 A. Tegangan dan arus sekunder ditunjukkan pada Gbr. 13. Tegangan rms sekunder 391 V dan arusnya 0,554 V. Hasil eksperimen menunjukkan hasil yang hampir sama dengan. Akan tetapi, pada hasil eksperimen, timbul spikes pada gelombang tegangan primer akibat induktans penghantar/kabel yang digunakan. Efisiensi transformator diperoleh dengan membandingkan daya sekunder dengan daya primer transformator. Daya primer dan sekunder diperoleh dengan menggunakan fitur power Gbr. 12. Tegangan dan arus primer transformator pada beban 206 W Gbr. 13. Tegangan dan arus sekunder transformator pada beban 206 W analysis pada osiloskop. Gbr. 14 menunjukkan grafik efisiensi transformator terhadap daya beban. Transformator hasil perancangan ini sudah memiliki efisiensi yang tinggi. Efisiensi transformator memiliki rentang antara 91,63-99,36%. VI. KESIMPULAN Perancangan transformator frekuensi tinggi yang diterapkan pada konverter dc-dc full-bridge phase-shifted telah dipaparkan. Hasil dan eksperimen transformator menunjukkan bentuk gelombang tegangan dan arus yang hampir sama. Pengukuran efisiensi transformator frekuensi tinggi juga telah dilakukan. Hasil eksperimen menunjukkan bahwa efisiensi transformator memiliki rentang antara 91,63-99,36%.

Gbr. 14. Grafik efisiensi transformator terhadap daya beban REFERENSI [1] N. Mohan, T. M. Undeland, and W. P. Robbins, Eds., Power Electronics : Converters, Applications, and Design, 3rd ed. Minnesota: Wiley, 2003. [2] B. Andreycak, Design review : 500 watt, 40 W/in 3 phase shifted ZVT power converter, Unitrode Power Supply Design Seminar Manual SEM- 900, 1993. [3] D. L. Feucht, Method for approximating magnetic core power loss density, EN-Genius Network, 2008. [4] M. Kamil and Microchip Technology Inc., Switching mode power supply (SMPS) topologies (part I), Application Note, 2007. [5] L. H. Dixon, Magnetics design for switching power supplies : Section 2 magnetic core characteristics, Unitrode Magnetics Seminar, 2001. [6] TDK Corporation, Ferrite for switching power supplies PQ/LP/EPC/EP series, Tech. Rep., 2011. [7] Y. Sezai, Ferrite materials for power transformer PC 95, TDK Corporation, Tech. Rep., 2003. [8] H. Berahim, Pengantar Teknik Tenaga Listrik : Teori Ringkas dan Penyelesaian Soal. Yogyakarta: Andi Offset, 1994.