Perancangan Inverter Sinusoida 1 Fasa dengan Aplikasi Pemrograman Rumus Parabola dan Segitiga Sebagai Pembangkit Pulsa PWM

dokumen-dokumen yang mirip
Pengaruh Bentuk Gelombang Pembawa Terhadap Harmonisa pada Inverter Satu Fasa

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

Studi Pengaruh Pemilihan Frekuensi Carrier dan Komponen Filter Terhadap Bentuk Gelombang Keluaran pada Inverter Satu Fasa

BAB III METODE PENELITIAN

Desain Inverter Tiga Fasa dengan Minimum Total Harmonic Distortion Menggunakan Metode SPWM

BAB III METODE PENELITIAN

PERANCANGAN SISTEM UPS SPS DENGAN METODE INVERTER SPWM BERBASIS L8038CCPD

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah

50 Frekuensi Fundamental 100 Harmonik Pertama 150 Harmonik Kedua 200 Harmonik Ketiga

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA

BAB IV PENGUJIAN DAN ANALISIS

BAB II LANDASAN TEORI

Rancang Bangun AC - DC Half Wave Rectifier 3 Fasa dengan THD minimum dan Faktor Daya Mendekati Satu menggunakan Kontrol Switching PI Fuzzy

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

Penggunaan Filter Daya Aktif Paralel untuk Kompensasi Harmonisa Akibat Beban Non Linier Menggunakan Metode Cascaded Multilevel Inverter

Oleh : ARI YUANTI Nrp

ek SIPIL MESIN ARSITEKTUR ELEKTRO

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

Rancang Bangun Modul DC DC Converter Dengan Pengendali PI

INVERTER SATU FASA GELOMBANG PENUH SEBAGAI PENGGERAK POMPA AIR DENGAN KENDALI DIGITAL

KONVERTER TEGANGAN JALA-JALA SATU FASA KE TIGA FASA (Aplikasi Untuk Alat Pengajaran SMK di Rural Area)

BAB III PERANCANGAN SISTEM

PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM

Reduksi Harmonisa dan Ketidakseimbangan Tegangan menggunakan Hybrid Active Power Filter Tiga Fasa berbasis ADALINE-Fuzzy

Desain Konverter DC/DC Zero Voltage Switching dengan Perbaikan Faktor Daya sebagai Charger Baterai untuk Kendaraan Listrik

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

BAB II DASAR TEORI 2.1. Teori Catu Daya Tak Terputus

Pemodelan Sistem Kontrol Motor DC dengan Temperatur Udara sebagai Pemicu

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan

DESAIN SISTEM INVERTER DAN SWITCHING PADA UPS (UNINTERUPTABLE POWER SUPPLY) BERBASIS MIKROKONTROLER AT89C51

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya

Materi 3: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

VOLT / HERTZ CONTROL

Sistem Perbaikan Faktor Daya Pada Penyearah Diode Tiga Phasa Menggunakan Hysteresis Current Control

harmonisa, filter pasif, full bridge dc-dc converter 1. Pendahuluan

INVERTER TIPE VOLT/HERTZ TIGA FASA DENGAN INJEKSI HARMONISA ORDE KE TIGA

PERENCANAAN INVERTER PWM SATU FASA UNTUK PENGATURAN TEGANGAN OUTPUT PEMBANGKIT TENAGA ANGIN

PENGATURAN TEGANGAN DAN FREKUENSI GENERATOR INDUKSI MENGGUNAKAN VSI UNTUK SISTEM TIGA FASA EMPAT KAWAT

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER)

BAB I PENDAHULUAN. perhatian utama pada dunia industri. Banyak faktor yang menjadi penentu kualitas daya dari

INVERTER MODULASI LEBAR PULSA SINUSOIDA. BERBASIS dspic 30F4012

SISTEM PENGENDALIAN MOTOR SINKRON SATU FASA BERBASIS MIKROKONTROLER

KENDALI KECEPATAN MOTOR INDUKSI SATU FASA PADA V/F KONSTAN DENGAN INVERTER SPWM BERBASIS FPGA ALTERA ACEX1K

PERANCANGAN ZERO VOLTAGE SWITCHING BUCK CONVERTER DENGAN BEBAN RESISTIF BERVARIASI DAN SEBAGAI CATU DAYA UNTUK MOTOR ARUS SEARAH

BAB I PENDAHULUAN. Teknologi konverter elektronika daya telah banyak digunakan pada. kehidupan sehari-hari. Salah satunya yaitu dc dc konverter.

BAB 2 TINJAUAN PUSTAKA. yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan

Perancangan Inverter Satu Fasa PWM dengan Teknik Eliminasi Harmonisa

BAB II TINJAUAN PUSTAKA. Konverter elektronika daya merupakan suatu alat yang mengkonversikan

BAB III DESAIN BUCK CHOPPER SEBAGAI CATU POWER LED DENGAN KENDALI ARUS. Pada bagian ini akan dibahas cara menkontrol converter tipe buck untuk

PENGARUH BENTUK GELOMBANG SINUS TERMODIFIKASI (MODIFIED SINE WAVE) TERHADAP UNJUK KERJA MOTOR INDUKSI SATU FASA

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3157

Rancang Bangun Inverter Tiga Phasa Back to Back Converter Pada Sistem Konversi Energi Angin

SISTEM KONVERTER DC. Desain Rangkaian Elektronika Daya. Mochamad Ashari. Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012

Pemanfaatan Harmonisa pada Beban Non Linier Sebagai Sumber Energi Menggunakan Full Bridge DC-DC Converter dan Inverter

Desain dan Simulasi Konverter Buck Sebagai Pengontrol Tegangan AC Satu Tingkat dengan Perbaikan Faktor Daya

BAB II LANDASAN TEORI

PENGENDALI MOTOR INDUKSI 1 FASA DENGAN METODE PWM SINUSOIDA BERBASIS MIKROKONTROLER 68HC11

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt

ANALISIS HARMONIK DAN PERANCANGAN HIGH PASS DAMPED FILTER

BAB III PERANCANGAN SISTEM

APLIKASI PEMBANGKIT PWM SINUSOIDA 1 FASA BERBASIS MIKROKONTROLER ATMEGA8535 SEBAGAI PENGGERAK MOTOR INDUKSI

BAB II TINJAUAN PUSTAKA. A. Sistem Pembangkit Listrik Tenaga Hibrid (Pembangkit Listrik Sistem

BAB 1 PENDAHULUAN. Pemakaian daya listrik dengan beban tidak linier banyak digunakan pada

BAB 3 DISAIN RANGKAIAN SNUBBER DAN SIMULASI MENGGUNAKAN MULTISIM

BAB 2 TINJAUAN PUSTAKA. Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika

LAPORAN PRAKTIKUM SISTEM TELEKOMUNIKASI ANALOG PERCOBAAN OSILATOR. Disusun Oleh : Kelompok 2 DWI EDDY SANTOSA NIM

LAPORAN PENELITIAN HIBAH BERSAING DENGAN BIAYA BOPTN

BAB IV HASIL DAN PEMBAHASAN. 4.1 Harmonisa Arus Di Gedung Direktorat TIK UPI Sebelum Dipasang Filter

BAB 2 TINJAUAN PUSTAKA. berdasarkan induksi medan magnet stator ke statornya, dimana arus rotor motor ini

PEMANFAATAN IC MEMORI TERPROGRAM UNTUK MENGENDALIKAN INVERTER 3 FASA

BAB III METODE PENELITIAN. Penelitian dan penulisan laporan tugas akhir dilakukan di Laboratorium

BAB IV HASIL PENGUJIAN DAN ANALISA. Pada bab ini akan dibahas hasil pengujian dan analisa dari system buck chopper

Pemanfaatan Harmonisa pada Beban Non Linier Sebagai Sumber Energi Menggunakan Full Bridge DC-DC Converter dan Inverter

Mono Amplifier Class D menggunakan Semikron SKHI 22B dan IGBT Module Semikron SKM75GB128DN

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. rendah banyak dibahas dalam forum-forum kelistrikan. Permasalahan kualitas daya

BAB I PENDAHULUAN. tombak pemikulan beban pada konsumen. Gangguan-gangguan tersebut akan

BAB I PENDAHULUAN. resistor, kapasitor ataupun op-amp untuk menghasilkan rangkaian filter. Filter analog

Politeknik Elektronika Negeri Surabaya ITS Kampus ITS Sukolilo Surabaya

Desain Penyearah 1 Fase Dengan Power Factor Mendekati Unity Dan Memiliki Thd Minimum Menggunakan Kontrol Pid-Fuzzy Pada Boost Converter

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali

BAB 2 TINJAUAN PUSTAKA

Kendali Sistem Pengisi Baterai Tenaga Surya Metode Incremental Conductance Berbasis Mikrokontrol

DESAIN PENYEARAH 1 FASE DENGAN POWER FACTOR MENDEKATI UNITY DAN MEMILIKI THD MINIMUM MENGGUNAKAN KONTROL PID-fuzzy PADA BOOST CONVERTER

WATAK HARMONIK PADA INVERTER TIGA FASA TAK BERBEBAN

ANALISIS FILTER HARMONISA PASIF UNTUK MENGURANGI HARMONISA PADA PENYEARAH TERKENDALI SATU FASA

BAB III METODE PENELITIAN

RANGKAIAN PENYEARAH ARUS OLEH : DANNY KURNIANTO,ST ST3 TELKOM PURWOKERTO

BAB III METODOLOGI PENELITIAN

BAB II LANDASAN TEORI. Harmonisa adalah satu komponen sinusoidal dari satu perioda gelombang

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian

RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti

UNINTERRUPTIBLE POWER SUPPLY MENGGUNAKAN INVERTER PWM 3 LEVEL. oleh Roy Kristanto NIM :

PENGATURAN ARUS KOMPENSASI UNTUK PEMBEBANAN NONLINIER PADA SISTEM FILTER AKTIF TIGA FASE

Transkripsi:

Perancangan Inverter Sinusoida 1 Fasa dengan Aplikasi Pemrograman Rumus Parabola dan Segitiga Sebagai Pembangkit Pulsa PWM Agus Rusdiyanto P2Telimek, LIPI riesdian@gmail.com Bambang Susanto P2Telimek, LIPI B3nks@yahoo.com Abstrak Penggunakan inverter saat ini sangat banyak terutama di industri, kantor, maupun di perumahan. Bahkan dengan munculnya energi alternatif seperti solar sel, turbin angin, fuel cell, tidak lepas dari penggunaan inverter. Walaupun inverter kini banyak dipasaran namun keluaran yang dihasilkan masih banyak kelemahan, diantaranya bentuk gelombang yang tidak ideal dan adanya kandungan harmonisa yang justru akan merusak peralatan yang disuplainya. Inverter jenis True Sine Wave adalah jenis gelombang terbaik yang dapat dihasilkan oleh inverter saat ini. Gelombang yang dihasilkan sangat ideal bahkan mungkin lebih baik dari gelombang yang dihasilkan listrik untuk rumah. Untuk memperoleh hasil tersebut digunakan teknik penghilangan harmonisa yaitu membuat pola gelombang yang diprogram dan didukung dengan adanya komponen daya yang mempunyai kecepatan respon yang tinggi untuk pengaturan pada pembangkit sinyal kendali PWM. Berdasarkan pola gelombang tersebut dibuat program pembangkit sinyal kendali PWM yang dikendalikan oleh mikroprosesor, kemudian diterapkan pada inverter satu fasa jembatan penuh yang menggunakan komponen daya mosfet.. Kata kunci: inverter, harmonisa, PWM, mikroprosesor 1. Pendahuluan Banyak sumber-sumber listrik yang tidak terlepas dari penggunaan inverter saat ini antara lain: UPS (Unteruptable Power System) yaitu merupakan sumber listrik cadangan yang berasal dari batere yang memiliki tegangan searah (DC) kemudian diubah melalui inverter menjadi tegangan bolak-balik (AC) sehingga dapat menggantikan energi listrik dari suplai daya utama (PLN). Inverter yang digunakan sebagai suplai daya memberikan keuntungan dibandingkan dengan suplai daya utama (PLN), yaitu membangkitkan tegangan/arus yang konstan serta frekuensi yang konstan pula meski terjadi perubahan beban. Akan tetapi muncul suatu kekurangan yaitu bahwa inverter ini selalu menghasilkan harmonisa yang besar, dibandingkan dengan sumber dari pembangkit (PLN) yang tidak mempunyai harmonisa karena tegangan/arusnya sudah berupa sinus murni (Pure Sine Wave). Harmonisa inilah yang mempengaruhi kualitas daya (Energy Quality) yang dihasilkan inverter dan akan mengganggu dan sekaligus dapat mempercepat umur beban yang disuplainya. Sebagai contoh bila inverter tersebut digunakan untuk menggerakkan motor pada kondisi frekuensi yang diubah-ubah, motor akan mengeluarkan noise karena adanya harmonisa yang terkandung dalam tegangan input. Akibatnya bisa timbul panas dan torsi yang melonjak-lonjak pada kecepatan rendah. Bahkan harmonisa yang dihasilkan inverter yang juga disertai noise, ripple, transient dapat menyebabkan operasi beban tidak efisien dan dapat merusak perangkat. Berdasarkan Tabel 4 Kelas Level Harmonisa SNI 04-7021.2.1-2004, harmonisa yang terjadi pada jaringan listrik tidak boleh melebihi 5%. 1

2. Perancangan sistem Dalam penelitian ini akan diracang inverter 1 fasa dengan spesifikasi : Vin = 12 Vdc, Vout = 220 Vac, P = 1 KW, bentuk gelombang outputnya sinus murni (Pure Sine Wave) dengan menggunakan komponen utama mikroprosesor sebagai pembangkit sinyal kendalinya. Secara keseluruhan sistem perancangan inverter satu fasa dapat dilihat pada diagram blok pada gambar1. + Gambar 1 Diagram blok inverter PWM 1 Fasa dengan kendali mikrokontroler Dari gambar 1, secara garis besar dapat dijelaskan prinsip kerja inverter sebagai berikut : a. Batere mensuplai tegangan DC yang nantinya diubah ke bentuk tegangan AC, batere ini juga digunakan untuk menyuplai mikroprosesor. b. Dalam mikroprosesor dilakukan pemrograman untuk menghasilkan PWM. c. PWM Sebagai penghasil pulsa tegangan yang digunakan untuk mendriver mosfet dengan duty cycle yang berubah-ubah. d. Mosfet sebagai swithching, dipilih karena memiliki waktu switching yang cepat. e. Kapasitor sebagai filter untuk mengurangi ripple tegangan. f. Induktor digunakan untuk mengurangi ripple arus. g. Keluaran dari filter, PWM tadi diharapkan sudah berubah bentuk menjadi tegangan AC yang sinusoida. 3. Proses pembangkitan PWM Seperti yang sudah dijelaskan sebelumnya bahwa pembangkitan PWM dilakukan melalui pemrograman dalam mikroprosesor. Mikroprosesor yang digunakan adalah jenis AT89C51. Kecepatan kerja sistem mikroprosesor merupakan pembatas dalam desain sistem. Oleh karena itu, sinyal kendali inverter dibangkitkan dengan cara mengambil data yang disimpan sebagai pola gelombang dalam memori. Sebagaimana telah dijelaskan sebelumnya bahwa sinyal PWM tersebut dibentuk dari 2 buah sinyal sinus dan 1 sinyal segitiga atau dengan menggunakan 1 buah sinyal sinus dan 2 buah sinyal segitiga. Untuk menghasilkan sinyal PWM tersebut dapat menggunakan 2 buah sinyal sinus dan 1 sinyal segitiga atau dengan menggunakan 1 buah sinyal sinus dan 2 buah sinyal segitiga. Pada proses pembangkitan SPWM dengan menggunakan 2 buah sinyal sinus dan sebuah sinyal segitiga, dilakukan pembandingan amplitudo antara sinyal segitiga dengan sinyal sinus. Sinyal penggerak akan dibangkitkan apabila amplitudo sinyal sinus lebih besar daripada amplitudo sinyal segitiga. Masing masing sinyal penggerak digunakan untuk penyaklaran sehingga diperoleh sinyal PWM. Proses pembangkitan SPWM tersebut dapat dilihat pada gambar 2. Gambar 2 Proses pembangkitan sinal PWM Dari gambar 2 diatas dapat digambarkan sebagai berikut: 2

Proses pembangkitan SPWM secara digital dapat dilakukan dengan membangkitkan gelombang segitiga dan gelombang sinus secara diskret dengan metode look up table. Kemudian dilakukan pembandingan untuk masing masing nilai amplitudo gelombang sinus dan segitiga. Cara ini sama halnya dengan membangkitkan gelombang sinus analog dan gelombang segitiga analog secara digital. Dengan mencari terlebih dahulu waktu (perpotongan) untuk setiap pulsa masing masing sinyal penggerak, untuk dijadikan data dalam proses pembangkitan sinyal penggerak secara look up table. Sinyal sinus (reference signal) diperoleh dari hasil pemrograman dalam mikroprosessor dengan rumus persamaan parabola yaitu : y = m ( x p) (x q) (1) dimana : y = amplitudo x = perioda m = gradien p & q = titik potong parabola pada sumbu x untuk setengah perioda. Sinyal segitiga (carier signal) dihasilkan dari persamaan segitiga yaitu : y = mx ± c (2) dimana : y = amplitudo x = perioda m = gradien c = konstanta Masing masing sinyal penggerak digunakan untuk penyaklaran sehingga diperoleh sinyal PWM. Diagram alir proses pembangkitan PWM dapat dilihat pada gambar 3. 3.1 Filter pasif Filter Pasif tersusun dari kapasitor dan induktor dengan satu frekuensi yang disetting pada frekuensi tegangan harmonisa dan ripple tegangan yang akan dihilangkan. (3) fr = Frekuensi setting. L = Induktansi. C = Kapasitansi. Karakteristik susunan frekuensi setting filter: n r = f r / f 1 (4) nr = Orde dari resonansi. fr = Frekuensi setting. f1 = Frekuensi fundamental. Gambar 3 Diagram alir proses pembangkitan PWM Karakteristik kompensasi daya reaktif: (5) Q var = Daya reaktif untuk kompensasi. U1 = Tegangan fasa-fasa. C = Kapasitansi. f1 = Frekuensi fundamental. 3

Karakteristik impedansi: (6) Xo = Impedansi filter. Karakteristik faktor kualitas: q = Xo/r q = Faktor kualitas dari reaktor. Xo = Impedansi filter. r = Tahanan reaktor. sinyal sinus, dan port P2.1 merupakan alamat yang berisikan data-data penghasil sinyal segi tiga. Hasil pengujian kedua sinyal melalui pengukuran kedua port tersebut dapat dilihat pada gambar 5. 4. Pengujian dan analisa 4.1 Pengujian pembangkit sinyal sinus dan sinyal segitiga Untuk melakukan pengujian pembangkit gelombang sinus dan gelombang segitiga memerlukan oscilloscop untuk dapat mengetahui bentuk gelombang keluaran rangkaian tersebut. Melalui pemrograman dengan menggunakan rumus parabola dan rumus segitiga kemudian hasil pemrograman tersebut kita download ke dalam chip mikroprosesor. Gambar 5 Gambar gelombang sinus dan gelombang segitiga 4.2 Pengujian komparator LM339N Rangkaian komparator LM 393 berfungsi untuk membandingkan gelombang sinus dan gelombang segitiga keluaran dari mikroprosesor port P2.0 dan P2.1 (titik A dan B input komparator), seperti pada gambar 6. Gambar 4 Minimum sistem sikroposesor penghasil sinyal sinus dan segitigfa Pada gambar 4 diatas output dari hasil pemrograman dapat diukur melalui 2 port, yaitu port (P2.0 dan P2.1) pada kaki 21 dan 22 IC mikroprosesor. Port P2.0 merupakan alamat yang berisikan data-data penghasil Gambar 6 Komparator sebagai pembanding antara dua sinyal pembentuk PWM Proses pembangkitan PWM dapat dilakukan dengan membangkitkan gelombang sinus dan gelombang segi tiga secara diskret dengan metode look up table. 4

Kemudian dilakukan pembandingan untuk masing-masing nilai amplitudo gelombang sinus dan segitiga. Hasil pembandingan kedua sinyal melalui pengukuran output komparator tersebut dapat dilihat pada gambar 7. Gambar 8 Konfigurasi Mosfet pada Inverter Tap tengah Hasil pengujian rangkaian daya mosfetnya dapat dilihat pada gambar 9. Gambar 7 Sinyal PWM keluaran komparator 4.3 Pengujian rangkaian Mosfet Sebagai mana telah dijelaskan bahwa inverter ini menggunakan konfigurasi tap tengah, maka rangkaian daya mosfet ini digunakan sebagai switching terhadap terminal negatif (ground) batere terhadap sisi primer trafo. Sedangkan tegangan positifnya mendapat suplay secara kontinyu dari terminal positif batere. Mosfet harus dapat dengan cepat memberikan arus dan membuang arus pada saat berada pada switching frekuensi tinggi (50 100 ns). Rangkaian daya mosfet ini sebelumnya diisolasi dengan rangkaian optokopler agar tidak terjadi gangguan yang dapat mempengaruhi rangkaian kontrol saat dilakukan pembebanan. Dengan daya maksimum 40 ampere (IRF540) dan kecepatan switching yang tinggi, komponen ini sangat efektif untuk digunakan. Konfigurasi rangkaian dayanya dapat dilihat pada gambar 8. Gambar 9 Pengujian rangkaian daya Mosfet Sedangkan hasil pengujian daya mosfet dengan filter kapasitor dapat dilihat pada gambar 10. Gambar 10 Pengujian rangkaian daya Mosfet dengan filter kapasitor 4.4 Pengujian rangkaian filter Harmonisa dan ripple pada sisi sekunder trafo (beban) Rangkaian filter ini terdiri dari induktor (L) yang dipasang seri terhadap beban dan kapasitor(c) yang dipasang paralel terhadap 5

beban. Rangkaian LC filter ini digunakan untuk menghilangkan ripple tegangan dan arus akibat pembebanan pada sisi sekunder trafo. Fungsi lain dari rangkaian LC filter ini juga dapat mengurangi harmonisa orde tinggi pada keluaran trafo, sehingga dengan berbagai kombinasi L dan C dapat dicari faktor kualitas/bentuk yang mendekati ideal. Konfigurasi rangkaian LC filter dapat dilihat pada gambar 11. Hasil pengujian keluaran inverter pada sisi sekunder trafo sebelum dipasang LC filter adalah seperti pada gambar 12. Sedangkan hasil pengujian keluaran inverter pada sisi sekunder trafo setelah dipasang LC filter adalah seperti pada gambar 13. Gambar 11 Konfigurasi rangkaian LC filter Gambar 12 Pengujian keluaran invertor pada sisi sekunder trafo sebelum dipasang LC filter Gambar 13 Pengujian keluaran inverter pada sisi sekunder trafo setelah dipasang LC filter 4.5 Analisa harmonisa keluaran inverter Dari hasil pengujian keluaran inverter sebelum di filter terdapat distorsi harmonik (THD) sebesar 12,6%. Pemasangan Pasif Filter terbukti dapat meredam ripple dan harmonisa orde tinggi tegangan keluaran inverter. Hasil dari beberapa percobaan pemasangan filter di sisi sekunder trafo dengan kombinasi nilai L dan C yang berubah-ubah, maka dengan nilai L=47mH, dan C = 60µF, mampu meredam harmonisa sebesar 12% menjadi 0.6%. Penambahan pemasangan kapasitor di sisi primer trafo dilakukan untuk mengatasi tegangan jatuh pada batere saat pembebanan awal, juga untuk meredam distorsy harmonisa PWM yang timbul dari system kendali yang terdiri dari komponenkomponen semikonduktor dan komponen elektronika daya. Sedangkan untuk menghilangkan harmonisa orde rendah dilakukan dengan mengatur ulang waktu dan jumlah pemberian pulsa pembawa ke PWM. Teknik ini dapat menentukan waktu dan jumlah pulsa yang tepat yang harus diberikan ke PWM inverter sehingga menghasilkan harmonisa yang minimal dari keluaran inverter. Frekuensi sinyal pembawa harus merupakan keliapatan dari frekuensi fundamentalnya sehingga akan berpengaruh pada faktor bentuk gelombang keluaran serta untuk mengantisipasi timbulnya harmonisa. 5. Kesimpulan Penggunaan mikroprosesor sangat efektif digunakan sebagai pembangkit sinyal PWM pada inverter, dimana setting waktu dan jumlah sinyal dapat ditentukan sesuai keinginan hanya dengan merubah program. PWM dihasilkan dengan membandingkan gelombang fundamental (sinus) dan gelombang pembawa (segitiga) secara diskret dengan metode look up table. Kemudian dari titik potong kedua gelombang tersebut akan dihasilkan 6

deretan pulsa dengan duty cycle yang berbeda. Frekuensi sinyal pembawa haruslah kelipatan dari frekuensi sinyal fundamentalnya agar dihasilkan PWM yang simetris. Mosfet sebagai switching dipilih karena memiliki waktu switching yang cepat, dengan mempertimbangkan kapasitas daya inverter dan tegangan batere yang digunakan maka akan didapat rating arus yang diinginkan. Pemasangan pasif filter berhasil meredam ripple dan harmonisa orde tinggi tegangan keluaran inverter, sedangkan untuk meredam harmonisa orde rendahnya dilakukan mengatur ulang waktu dan jumlah pemberian pulsa pembawa ke PWM. 10. Daftar pustaka [1] Yanuarsyah Haroen, Elektronika Daya Lanjut, EL 642, Jurusan Teknik Elektro FTI, Institut Teknologi Bandung, 1998. [2] Tole Sutikno, Pembangkit Sinyal PWM Sinusoida Dua Fasa Berbasis FPGA, Program Studi Teknik Elektro, Program Pasca Sarjana, Universitas Gajah Mada, Yogyakarta, 2004. [3] Francisco C. De La Rosa, Harmonics And Power Systems, Distribution Control Systems, Inc., Taylor and Francis Group, Hazelwood, Missouri, USA, 2006. [4] National Instruments, Multisim User Guide, Electronics Workbench Group, Texas, USA, 2007. [5] Yusak Tanoto, et. al, Simulasi Filter Pasif dan Perbandingan Unjuk Kerjanya dengan Filter Aktif Hibrid dalam Meredam Harmonisa pada Induction Furnace, Jurnal Teknik Elektro, Vol. 5, UK Petra, Surabaya, 2005 7