UNJUK KEMAMPUAN KATALIS TEMBAGA BERLAPIS MANGAN MODEL 2 UNTUK MENGURANGI EMISI GAS CARBON MONOKSIDA MOTOR BENSIN. Abstrak

dokumen-dokumen yang mirip
Unjuk Kemampuan Katalis Tembaga Berlapis Mangan Dalam Mengurangi Emisi Gas Carbon Monoksida Motor Bensin RM. Bagus Irawan 1, Purwanto 2, Hadiyanto 3

KARAKTERISASI KATALIS TEMBAGA PADA CATALYTIC CONVERTER UNTUK MENGURANGI EMISI GAS CARBON MONOKSIDA MOTOR BENSIN

Prosiding Seminar Nasional Pengelolaan Sumberdaya Alam dan Lingkungan Semarang, 11 September 2012

Rancang Bangun Catalytic Converter Material Substrat Tembaga Berlapis Mangan Untuk Mereduksi Emisi Gas Karbon Monoksida Motor Bensin. RM.

EFEKTIFITAS KATALIS MATERIAL SUBSTRAT PADUAN CuZn (KUNINGAN) DALAM MEREDUKSI EMISI GAS KARBON MONOKSIDA MOTOR BENSIN * RM Bagus Irawan*) Abstrak

EFEKTIFITAS PEMASANGAN CATALYTIC CONVERTER KUNINGAN TERHADAP PENURUNAN EMISI GAS CARBON MONOKSIDA PADA KENDARAAN MOTOR BENSIN RM Bagus Irawan*)

UNJUK KEMAMPUAN CATALYTIC CONVERTER DENGAN KATALIS KUNINGAN UNTUK MEREDUKSI GAS HIDRO CARBON MOTOR BENSIN. RM. Bagus Irawan 1 ), Muhammad Subri 2 )

BAB I PENDAHULUAN. udara terbesar mencapai 60-70%, dibanding dengan industri yang hanya

PENGARUH KATALIS TEMBAGA DAN KROM TERHADAP EMISI GAS CARBON MONOKSIDA DAN HIDRO CARBON PADA KENDARAAN MOTOR BENSIN. RM. Bagus Irawan ) Abstract

BAB I PENDAHULUAN. berasal dari saluran pembuangan kendaraan bermotor, sehingga industri industri

BAB I PENDAHULUAN. berpacu untuk menginovasi produk produk kendaraan yang mereka

CATALYTIC CONVERTER BERBAHAN TEMBAGA BERBENTUK SARANG LABA-LABA UNTUK MENGURANGI EMISI GAS BUANG PADA SUPRA X 125

BAB I PENDAHULUAN.

KARAKTERISASI CATALYTIC CONVERTER MOTOR BENSIN BERBAHAN KATALIS TEMBAGA BERLAPIS MANGAN ABSTRAK

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. meningkatnya pembangunan fisik kota dan pusat-pusat industri, kualitas udara

BAB III METODE PENELITIAN. berikut ini adalah diagram alir kerangka pelaksanaan penelitian. PEMBUATAN CATALYTIC CONVERTER PENGUJIAN EMISI

CATALITYC CONVERTER JENIS KATALIS KAWAT KUNINGAN BERBENTUK SARANG LABA-LABA UNTUK MENGURANGI EMISI KENDARAAN BERMOTOR

APLIKASI TEKNOLOGI CATALYTIC CONVERTER SISTEM SERABUT BAJA KARBON RENDAH PADA KENDARAAN BERMOTOR SEBAGAI PEREDUKSI POLUSI UDARA. Andi Sanata.

BAB II LANDASAN TEORI. didalam udara yang menyebabkan perubahan susunan (komposisi) udara dari

BAB V KESIMPULAN DAN SARAN

I. PENDAHULUAN. Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas

CATALYTIC CONVERTER BERBAHAN STAINLESS STEEL BERBENTUK SARANG LABA-LABA UNTUK MENGURANGI EMISI GAS BUANG TUGAS AKHIR BIDANG KONVERSI ENERGI

PENGUJIAN PENGGUNAAN KATALISATOR BROQUET TERHADAP EMISI GAS BUANG MESIN SEPEDA MOTOR 4 LANGKAH

VARIASI PENGGUNAAN IONIZER DAN JENIS BAHAN BAKAR TERHADAP KANDUNGAN GAS BUANG KENDARAAN

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

KONTRIBUSI BENGKEL SEBAGAI LEMBAGA UJI EMISI KENDARAAN BERMOTOR DALAM MENGURANGI POLUSI UDARA DARI KENDARAAN BERMOTOR

Seminar Nasional (PNES II), Semarang, 12 Nopember 2014

UPAYA PENINGKATAN DAYA MOTOR DENGAN MERUBAH BESARNYA LUBANG KELUARAN GAS BUANG

KAJIAN EKSPRIMENTAL PENGARUH BAHAN ADITIF OCTANE BOSTER TERHADAP EMISI GAS BUANG PADA MESIN DIESEL

JTM. Volume 01 Nomor 02 Tahun 2013,

ANALISIS VARIASI TEMPERATUR LOGAM KATALIS TEMBAGA

PENGARUH PEMASANGAN KAWAT KASA DI INTAKE MANIFOLD TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG PADA MESIN BENSIN KONVENSIONAL TOYOTA KIJANG 4K

UNIVERSITAS MUHAMMADIYAH MALANG

Pendahuluan. RM. Bagus Irawan. Kata kunci : Catalytic Converter, katalis Cu, Konsentrasi CO

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT

KAJI EKSPERIMENTAL PENGARUH PENGGUNAAN MEDAN MAGNET TERHADAP KINERJA MOTOR BENSIN

ek SIPIL MESIN ARSITEKTUR ELEKTRO

INFO TEKNIK Volume 5 No. 1, Juli 2004 (18-25)

PENGARUH PENGGUNAAN THREE WAY CATALYTIC CONVERTER TERHADAP EMISI GAS BUANG PADA KENDARAAN TOYOTA KIJANG INNOVA

BAB I PENDAHULUAN I-1

ANALISA KINERJA MESIN MOTOR 4 LANGKAH BERBAHAN BAKAR ETHANOL % DENGAN PENERAPAN 2 BUSI TUGAS AKHIR

ANALISIS PERBANDINGAN KADAR GAS BUANG PADA MOTOR BENSIN SISTEM PENGAPIAN ELEKTRONIK (CDI) DAN PENGAPIAN KONVENSIONAL

PENGARUH PENGGUNAAN METALLIC CATALYTIC CONVERTER BERBAHAN TEMBAGA DAN APLIKASI TEKNOLOGI SASS TERHADAP PERFORMA SEPEDA MOTOR HONDA NEW MEGA PRO

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

ESTIMASI SEBARAN KERUANGAN EMISI GAS BUANG KENDARAAN BERMOTOR DI KOTA SEMARANG LAPORAN TUGAS AKHIR

CATALITYC CONVERTER JENIS KATALIS PLAT TEMBAGA BERBENTUK SARANG LEBAH UNTUK MENGURANGI EMISI KENDARAAN BERMOTOR

PENGARUH PEMANASAN BAHAN BAKAR PADA RADIATOR TERHADAP KONSUMSI BAHAN BAKAR DAN KADAR EMISI GAS BUANG DAIHATSU HIJET Suriansyah Sabaruddin 1)

CAPABILITY TEST ON ZEOLITES AS CATALYTIC CONVERTERS TO REDUCE AIR POLLUTANTS FROM GASOLINE ENGINES

CATALITYC CONVERTER JENIS KATALIS PIPA TEMBAGA BERLUBANG UNTUK MENGURANGI EMISI KENDARAAN BERMOTOR

BAB VII KESIMPULAN DAN SARAN

BAB I PENDAHULUAN. beracun dan berbahaya terhadap kesehatan manusia dan lingkungan. kendaraan bermotor dan konsumsi BBM (Bahan Bakar Minyak).

PENAMBAHAN REAKTOR PLASMA DBD (DIELECTRIC-BARRIER DISCHARGE)

PENGARUH LETAK MAGNET TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG PADA ELECTRONIC FUEL INJECTION PADA SEPEDA MOTOR ABSTRAK

BAB I PENDAHULUAN. mempengaruhi kesehatan manusia. Hal ini disebakan karena gas CO dapat mengikat

BAB I PENDAHULUAN A. Latar Belakang Masalah Kualitas lingkungan yang baik merupakan hal penting dalam menunjang kehidupan manusia di dunia.

BAB I PENDAHULUAN 1.1. Latar Belakang .

BAB I PENDAHULUAN. utama pencemaran udara di daerah perkotaan. Kendaraan bermotor merupakan

Emisi gas buang Sumber bergerak Bagian 1 : Cara uji kendaraan bermotor kategori M, N, dan O berpenggerak penyalaan cetus api pada kondisi idle

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto

' Polusi udara dapat dirasakan semakin hari kian meningkat terutama di daerah yang

JTM.Volume 03 Nomor 02 Tahun 2014,

BAB I PENDAHULUAN. dalam bidang sarana transportasi.sektor transportasi merupakan salah satu sektor

BAB II TINJAUAN PUSTAKA

ANALISA PERBANDINGAN EMISI GAS BUANG BAHAN BAKAR LGV DENGAN PREMIUM PADA DAIHATSU GRAND MAX STANDAR

Emisi gas buang Sumber bergerak Bagian 3 : Cara uji kendaraan bermotor kategori L Pada kondisi idle SNI

KAJIAN HUBUNGAN ANTARA VARIASI KECEPATAN KENDARAAN DENGAN EMISI YANG DIKELUARKAN PADA KENDARAAN BERMOTOR RODA EMPAT

PENGARUH VARIASI SUDUT BUTTERFLY VALVE PADA PIPA GAS BUANG TERHADAP UNJUK KERJA MOTOR BENSIN 4 LANGKAH

PENGARUH PENGGUNAAN BROQUET PADA PRESTASI MESIN SEPEDA MOTOR

ANALISA PENGARUH KATALIS TEMBAGA PADA KATALYTIK KONVERTER TERHADAP EMISI GAS CARBON MONOKSIDA DAN HIDRO KARBON PADA KENDARAAN MOTOR BENSIN

EMISI GAS CARBON MONOOKSIDA (CO) DAN HIDROCARBON (HC) PADA REKAYASA JUMLAH BLADE TURBO VENTILATOR SEPEDA MOTOR SUPRA X 125 TAHUN 2006

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. Universitas Sumatera Utara

PERANCANGAN KOMPOR BIOETANOL MENGGUNAKAN PRINSIP BEJANA BERHUBUNGAN DAN TABUNG BERTEKANAN TUGAS AKHIR

berbagai cara. Pencemaran udara terutama datang dari kendaraan bermotor, industri,

PENGARUH SISTEM PEMBAKARAN TERHADAP JENIS DAN KONSENTRASI GAS BUANG PADA SEPEDA MOTOR

Alat Uji Emisi Gas Buang Kendaraan Bemotor Terintegrasi Komputer

KAJIAN EKSPERIMENTAL TENTANG PENGARUH INJEKSI UAP AIR PADA SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR BENSIN 2 LANGKAH 110 CC

DAFTAR ISI. HALAMAN JUDUL... i. LEMBAR PENGESAHAN... ii. KATA PENGANTAR... iii. ABSTRAK... vi. ABSTRACT... vii. DAFTAR ISI... viii. DAFTAR TABEL...

Journal of Electrical Electronic Control and Automotive Engineering (JEECAE)

BAB I PENDAHULUAN. I.1. Latar Belakang Masalah. Bagi masyarakat, transportasi merupakan urat nadi kehidupan sehari-hari

PENGARUH VARIASI TINGKAT PANAS BUSI TERHADAP PERFORMA MESIN DAN EMISI GAS BUANG SEPEDA MOTOR 4 TAK

Analisis Perbandingan Emisi Gas Buang Mesin Diesel Menggunakan Bahan Bakar Solar dan CNG Berbasis Pada Simulasi

PENGARUH KATALITIK KONVERTER KUNINGAN TERHADAP PENURUNAN EMISI HC DAN CO MESIN OTTO MULTI SILINDER. Oleh, Samuel P.

BAB I PENDAHULUAN. Bab I Pendahuluan

BAB I PENDAHULUAN. orang berhak hidup sejahtera lahir dan batin, bertempat tinggal dan mendapatkan

PENGARUH MEDAN ELEKTROMAGNET TERHADAP EMISI GAS BUANG PADA MOTOR BENSIN 4 TAK 1 SILINDER

: exhaust gas emissions of CO and HC, electric turbo, modified of air filter

Unjuk Kemampuan Metallic Catalytic Converter Berbahan Dasar Kuningan Berlapis Nikel

BAB III METODELOGI PENELITIAN

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat

BAB I PENDAHULUAN. makhluk hidup lainnya (Peraturan Pemerintah Republik Indonesia Nomor 41. Tahun 1999 tentang Pengendalian Pencemaran Udara).

kesehatan. Udara sebagai komponen lingkungan yang penting dalam kehidupan perlu

Pemanfaatan Elektrolisis Sebagai Alternatif Suplemen Bahan Bakar Motor Diesel Untuk Mengurangi Polusi Udara

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

I. PENDAHULUAN. tahun 2010 hanya naik pada kisaran bph. Artinya terdapat angka

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN. Pembangunan kota lebih banyak mencerminkan adanya perkembangan

Transkripsi:

UNJUK KEMAMPUAN KATALIS TEMBAGA BERLAPIS MANGAN MODEL 2 UNTUK MENGURANGI EMISI GAS CARBON MONOKSIDA MOTOR BENSIN RM. Bagus Irawan 1, Purwanto 2 dan Hadiyanto 3 Abstrak Salah satu teknologi rekayasa yang dapat digunakan untuk mengurangi polusi udara adalah dengan pemakaian Catalytic Converter yang dipasang pada saluran gas buang kendaraan bermotor (Heisler, 1995). Sayangnya harga alat tersebut sangat mahal dipasaran dan tidak semua kendaran bermotor menggunakan teknologi tersebut, karena katalisnya terbuat dari bahan logam mulia yang mahal dan jarang didapatkan dipasaran seperti : Palladium, Platinum, dan Rodium. Disamping itu katalis tersebut sangat rentan terhadap bahan bakar premium yang memiliki kadar timbal (Pb) yang berakibat merusak fungsi katalis karena akan terjadi penyumbatan pada honeycomb Catalytic Converter. Oleh sebab itu perlu dilakukan penelitian yang dirancang sedemikian rupa dalam skala laboratorium dengan menguji material substrat lain ebagai bahan katalis, untuk melihat kemampuan katalis pada Catalytic Converter dalam mereuksi emisi gas buang Carbon Monoksida khususnya. Pada penelitian ini akan melihat unjuk kemampuan dan mengkaji efektifitas katalis Tembaga Berlapis Mangan yang di disain sedemikian rupa sehingga didapatkan bentuk dan jenis katalis Catalytic Converter yang tepat dan cocok untuk kendaraan bermotor yang berbahan bakar premium. Peneltian ini bertujuan untuk mendapatkan dan menggali informasi lanjutan serta mengkaji tentang material substrat sebagai bahan katalis, karakteristrik Catalytic Converter, efektifitas dan efesiensi Catalytic Converter. Dengan target khusus (1) Rancang Bangun Catalytic Converter (2) Mengkaji kemampuan Katalis Tembaga Berlapis Mangan dalam mereduksi emisi gas CO. Kata Kunci: Catalytic Converter, Katalis Tembaga, Mangan, Emisi Gas Buang, Karbon Monoksida PENDAHULUAN Penurunan kualitas lingkungan hidup dewasa ini salah satunya disebabkan oleh aktifitas kendaraan bermotor yang menjadi sumber pencemar udara di berbagai kota besar dunia. Gas-gas beracun yang keluar dari jutaan knalpot tersebut, setiap harinya telah menimbulkan masalah lingkungan dan kesehatan yang sangat serius di berbagai Negara, ter- 1 Program Doktor Ilmu Lingkungan - Program Pascasarjana Universitas Diponegoro 2 Program Doktor Ilmu Lingkungan - Program Pascasarjana Universitas Diponegoro 3 Program Doktor Ilmu Lingkungan - Program Pascasarjana Universitas Diponegoro 78

masuk Indonesia. Emisi gas buang yang dihasilkan dari kendaraan bermotor khususnya motor bensin akibat proses pembakaran yang tidak sempurna telah menghasilkan gas-gas berbahaya, salah satu diantaranya adalah Gas Carbon Monoksida (CO), yang menjadi sumber pencemar udara terbesar melebihi polutan atau cemaran udara lain dari sektor industri dan kegiatan rumah tangga. Sektor transportasi mempunyai kontribusi terbesar pada pencemaran udara di daerah perkotaan (Cooper & Alley, 1994 and PCI, 1997). Sektor transportasi merupakan sumber pencemar udara terbesar, dimana 70% polusi udara diperkotaan, disebabkan oleh aktivitas kendaraan bermotor yang mengeluarkan emisi gas buang antara lain CO, HC, NOx, SOx dan partikulat. Hal ini disebabkan oleh jumlah kendaraan bermotor yang terus meningkat dari tahun ke tahun (Bacrun, 1993, KLH, 2003; Naning, 2008). Sedangkan pertumbuhan kendaraan bermotor di Indonesia saat ini telah mencapai lebih dari 10% per tahun menjadi faktor dominan penyebab utama naiknya angka pencemaran udara. Kondisi ini diperburuk dengan angka pertumbuhan jalan yang tidak sebanding dengan pertumbuhan kendaraan bermotor yang hanya 2% per tahun, semakin memperburuk kondisi udara di berbagai kota (Statistik Dirjen Perhubungan Darat, 2008). Menurut Asisten Deputi Urusan Pengendalian Pencemaran Emisi Sumber Bergerak KLH, dari hasil kajian yang dilakukan oleh KLH dikemukakan bahwa pada tahun 2009 terdapat 26 kota metropolitan di Indonesia yang memiliki kualitas udara buruk dimana angka pencemaran udara mencapai 80%, diantaranya termasuk kota Semarang (Palguna A. 2010). Pakar Transportasi dari Universitas Khatolik Soegiyopranoto mengemukakan bahwa jumlah kendaraan bermotor di kota Semarang saat ini telah mencapai 1 juta unit dengan jumlah penduduk 1,4 juta jiwa, sementara itu kapasitas jalan yang ada tidak bertambah jumlahnya. Hal ini tentu saja akan membawa implikasi kemacetan dan peningkatan polusi udara di kota Semarang (Setijowarno D. 2010). Dari seluruh emisi gas buang yang dikeluarkan dari sumber kendaraan bermotor, persentasi emisi gas buang CO (Carbon Monoksida) cukup signifikan mencapai 60% dan termasuk jenis gas yang sangat berbahaya karena bisa mengakibatkan kematian bagi bagi yang menghirupnya (Bachrun, 1993). Peningkatan polusi udara dari sektor transportasi sangat signifikan dan bedampak pada kehidupan dan lingkungan saat ini. Sebuah kendaraan dari proses bekerjanya dapat 79

menghasilkan polutan berupa gas Carbon monoksida (CO), Hidrokarbon (HC), Nitorgen oksida (NOx), Sulfur Oksida (SO 2 ) dan Timbal (Pb) yang sering disebut sebgai polutan primer Salah satu polutan udara yang berbahaya dan sangat dominan jumlahnya adalah gas Carbon Monoksida yang dihasilkan dari proses pembakaran bahan bakar dan udara motor bensin yang tidak sempurna (Wardhana A.W. 1995 ). Gas carbon Monoksida dihasilkan dari proses pembakaran yang tidak sempurna akibat dari pencampuran bahan bakar dan udara yang terlalu kaya. Boleh dikatakan bahwa terbentuknya CO sangat tergantung dari perbandingan campuran bahan bakar yang masuk dalam ruang bakar. Menurut teori bila terdapat oksigen yang melebihi perbandingan campuran ideal (teori) campuran menjadi terlalu kurus maka tidak akan terbentuk CO. Tetapi kenyataannya CO juga terjadi dan dihasilkan pada saat kondisi campuran terlalu kurus. Proses terjadinya CO : 2C + O 2 2CO 2CO + O 2 CO 2 Akan tetapi reaksi ini sangat lambat dan tidakm dapat merubah seluruh sisa CO menjadi CO 2 (Swisscontact, 2000). Mengingat bahaya emisi gas buang khusunya Carbon Monoksida tersebut yang bisa menyebabkan kematian bagi manusia yang menghirupnya, maka perlu usaha-usaha untuk mengendalikan dan mengurangi pencemaran udara agar dampak negatif bagi manusia dapat dikurangi dan diminimalkan. Sesuai dengan program Environment Sustainable Transportation (EST) atau lebih dikenal dengan transportasi ramah lingkungan ada 12 program atau pendekatan yang bisa dilakukan untuk mengurangi permasalahan polusi udara yang bersumber dari sektor transportasi, salah satunya adalah Vehicle Emissions Control yang akan menjadi fokus kajian penelitian. Untuk mengurangi emisi gas buang tersebut sebenarnya dapat dilakukan dengan membatasi jumlah kendaraan bermotor, hal ini merupakan kewenangan dari pemerintah dan sangat sulit terwujud mengingat pajak kendaraan bermotor masih menjadi penyumbang pendapatan negara terbesar saat ini. Pemakaian bahan bakar yang tidak berpolusi atau ramah lingkungan juga merupakan kewenangan dan otoritas dari PERTAMINA sebagai tangan panjang pemerintah, cara inipun masih belum bisa diwujudkan dan saat ini 80

masih dalam bentuk kajian serta membutuhkan investasi yang besar untuk proses produksi bahan bakar yang ramah lingkungan. Langkah-langkah dan usaha yang dilakukan untuk menurangi gas buang yang berbahaya pada kendaraan bermotor sudah banyak dilakukan terutama di negara-negara maju (USA, Eropa) dan kini termasuk negara-negara di Asia, seiring semakin ketatnya peraturan dunia tentang emisi gas buang kendaraan bermotor. Metode dan teknik yang dilakukan ada beberapa macam, antara lain dengan mengubah atau memodifikasi beberapa bagian dari kendaraan bermotor. Menurut Mathur (1975 : 15) pendekatan yang biasanya dilakukan dn dipakai dalam mengurangi gas buang kendaraan bermotor antara lain: modifikasi mesin, modifikasi pada saluran gas buang, modifikasi penggunaan bahan bakar atau system bahan bakarnya. Secara umum dengan merujuk pada program EST, untuk mengontrol atau mengurangi polutan udara dari kendaraan bermotor (internal combustion engine) dapat dilakukan dengan cara modifikasi pada mesin, modifikasi penggunaan bahan bakar atau sistem bahan bakarnya dan modifikasi pada saluran gas buang (B. Irawan, 2003). Sedang hal yang dapat dilakukan peneliti peneliti dan sebagai wujud dari Vehicle Emission Control adalah cara ke tiga yaitu modifikasi saluran gas buang dengan melakukan Rancang Bangun dan Pemasangan Catalytic Converter pada system saluran pembuangan gas kendaraan bermotor. Toksisitas dari mesin pembakar internal dikurangi dengan menggunakan alat Catalytic Converter. Alat ini telah digunakan di USA sejak 1975 karena peraturan EPA yang semakin ketat tentang gas buang kendaraan bermotor. Alat ini mengkonversi senyawasenyawa toksit dalam gas buang menjadi zat-zat yang kurang toksit atau tidak toksit. Dengan demikian untuk memenuhi peratutan tersebut, kendaraan bermotor harus dilengkapi dengan Catalytic Converter. Pemerintah Indonesia juga mengikuti peraturan tentang emisi gas buang yang mengacu pada EURO 1, EIRO 2dan EURO 3. Sehingga kendaraan bermotor di wilayah ini harus dilengkapi dengan piranti Catalytic Converter. Catalytic Converter pada dasarnya merupakan sebuah reaktor unggun tetap (Fixed Bed Reaktor) yang beroperasi dinamis dan mengolah zat-zat yang mengandung emisi gas buang berbahaya menjadi zat-zat yang tidak berbahaya. Catalytic Converter merupakan sebuah converter (pengubah) yang menggunakan media yang bersifat katalis, dimana media tersebut diharapkan dapat membantu atau mempercepat terjadinya proses perubahan 81

suatu zat (reaksi kimia) sehingga gas seperti CO dapat teroksidasi menjadi CO 2 (Springer-Verlag. New York Inc, 1970). Media katalis adalah suatu zat yang mempercepat laju reaksi kimia pada sushu tertantu, tampa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Media yang biasa digunakan sebagai katalis adalah logam yang mahal dan jarang seperti Palladium, Platinum dan Stainless Steel (Heisler, l995 ). Catalytic converter yang umum dipakai ada berbagai macam bentuk, secara garis besar dapat digolongkan menjadi dua golongan (Husselbee W.L., 1985), yaitu: Sistem ini sering disebut juga Sigle bed Oksidation, mampu mengubah CO dan HC menjadi CO 2 dan H20. Catalytic jenis ini beroperasi pada beroperasi pada kendaraan udara berlebih (Excess air setting). Udara berlebih yang digunakan untuk proses oksidasi dapat diperoleh melalui pengaturan campuran miskin (Lean mixture setting) atau system injeksi udara sekunder. Jenis ini banyak digunakan pada motor diesel karena kemampuannya mengoksidasi zat-zat partikel dengan mudah. Pada system ini terdiri dari dua system katalis yang dipasang segaris. Dimana gas buang pertama kali mengalir melalui Catalytic Reduksi dan kemudian Catalytic Oksidasi. Sistem pertama (bagian depan) merupakan kalatis reduksi yang berfungsi menurunkan emisi NO x, sedang system kedua ( bagian belakang ) merupakan katalis oksida yang menurunkan emisi HC dan CO. Mesin yang dilengkapi dengan system ini biasanya dioperasikan dengan kondisi campuran kaya. Tipe yang lain adalah Tree-Way Catalytic Converter. Pada tipe ini dirancang untuk mengurangi gas-gas polutan seperti CO, HC dan Nox yang keluar dari exhaust system dengan cara mengubah melalui reaksi kimia menjadi CO 2. Uap air (H 2 O) dan Nitrogen (N) (Emission Control Toyota, 2000). Aplikasi pada perlakuan terhadap gas buang kendaraan bermotor dengan memasang Catalytic Converter banyak dikembangkan dan dilakukan oleh peneliti akhir-akhir ini. Menurut Dowden dalam bukunya "Catalytic Hand Book", umumnya Catatytic Converter yang dipakai pada kendaraan bermotor (ada di pasaran) adalah tipe pelet dan monolithic dengan bahan katalis dari logam-logam mulia seperti Paladium (Pd), Platinum (Pt), dan Rodium (Rh) (Dowden. 1970). Logam-logam mulia tersebut memiliki aktifitas spesifik yang tinggi, namun memiliki tingkat volatilitas besar, mudah teroksidasi dan mudah rusak pada suhu 500-900 de- 82

rajat Celicius sehingga mengurangi aktifitas katalis. Selain itu logam-logam mulia tersebut mempunyai kelimpahan yang rendah dan harga yang cukup mahal. Pemasangan Catalytic Converter pada saluran gas buang yang menggunakan bahan logam katalis Pd, Pt dan Rh dengan penyangga alumina, silica dan keramik, saat ini memerlukan biaya yang cukup mahal dalam pembuatannya, sulit di dapat dan kurang cocok digunakan di Indonesia yang bahan bakarnya masih ada yang mengandung Pb. Jenis Catalytic Converter ini dapat mengkonversi emisi gas buang (CO, HC dan NOx) cukup tinggi (80-90%) (Warju, 2006). Oleh sebab itu penggunaan logam transisi yang mempunyai kelimpahan yang tinggi dan harga relatif murah dapat menjadi salah satu alternatif. Beberapa oksida logam transisi yang cukup aktif dalam mengoksidasi emisi gas CO antara lain: CuO, NiO dan Cr 2 O 3. Beberapa bahan yang diketahui sebagai katalis oksidasi yaitu Platinum. Plutonium, nikel, Mangan, Chromium dan oksidanya dari logam-logam tersebut Sedangkan beberapa logam diketahui sebagai katalis reduksi, yaitu besi, tembaga, nikel paduan dan oksida dari bahan-bahan tersebut (Obert, 1973). Disamping itu beberapa logam yang diketahui efektif sebagai bahan katalis oksida dan reduksi mulai dari yang besar sampai yang kecil adalah Pt, Pd, Ru > Mn, Cu > > Ni > Fe > Cr > Zn dan oksida dari logam-logam tersebut (Dowden, 1970). Penelitian yang dilakukan oleh Dwyer dengan menggunakan skala laboratorium menunjukkan bahwa aktifitas Catalytic Copper Chromite yang merupakan campuran antara CuO dengan Cr 2 O 3 lebih baik daripada campuran tunggalnya dalam mengosidasi CO. Disamping itu masih ada logam katalis yang lebih murah, mudah dikerjakan dan mudah didapat untuk dijadikan catalityc converter antara lain : CuO/zeolite alam, Cu- Al 2 O 3, Cu, Mn, Mg dan Zeolit Alam, Catalytic Converter jenis ini mampu mengurangi emisi gas buang (CO, HC, Nox) cukup tinggi antara 16% sampai 80% (Dwyer, 1973). Mengingat bahaya emisi gas buang tersebut, maka perlu usaha-usaha untuk mengendalikan dan mengurangi pencemaran udara agar dampak negatif bagi manuisa dapat dikurangi dan diminimalkan. Sesuai dengan program Environment Sustainable Transportation (EST) atau lebih dikenal dengan transportasi ramah lingkungan ada 12 program atau pendekatan yang bisa dilakukan untuk mengurangi permasalahan polusi udara yang bersumber dari sektor transportasi, salah satunya adalah Vehicle Emissions Control yang akan menjadi fokus kajian penelitian. 83

Salah satu teknologi rekayasa sebagai wujud dari Vehicle Emission Control adalah modifikasi saluran gas buang dengan melakukan pemasangan Catalytic Converter pada system pembuangan gas kendaraan bermotor. Peneliti akan melakukan penelitian dengan mengkaji dan melakukan rancang bangun Catalytic Converter dengan bahan Katalis Tembaga-Mangan. Penelitian ini bertujuan untuk merancang bangun/membuat alat yang berfungsi untuk mereduksi emisi gas buang kendaraan bermotor yang sering disebut dengan Catalytic Converter dan ingin mengkaji kemampuan katalis Tembaga Berlapis Mangan khususnya untuk mengurangi emisi gas buang Carbon Monoksida yang menjadi polutan dominan pada motor bensin METODOLOGI PENELITIAN Peneltian ini berdasarkan pemikiran dan tahapan yang disusun secara sistematis. Tahap awal penelitian dilakukan dengan studi pustaka untuk memperdalam bidang yang akan diteliti baik mengenai permasalahan polusi udara dan teknologi pengendalian emisi, khususnya dalam hal rancang bangun Catalytic Converter. Studi pustaka pada penelitian terdahulu digunakan sebagai pijakan dan untuk membandingkan hasil penelitian yang nantinya di dapat dengan penelitian terdahulu, sehingga originalitas penelitian tetap terjaga dan tidak terjadi duplikasi penelitian. Bahan Penelitian. Bahan penelitian ini terdiri dari dua bagian utama yaitu konstruksi bagian dalam dan bagian konstruksi bagian luar Catalytic Converter. Konstruksi bagian dalam berupa material substrat dan washcoat yang terbuat dari logam Tembaga sebagai katalisnya, sedangkan bagian luar berupa rumah katalis (Chasing) yang terbuat dari Stainless Stell dan ditambah support/penopang. Material Substart. Material substrat bagian dalam terbuat dari Tembaga Berlapis Mangan yang berbentuk plat lembaran berukuran 36 x 120 cm dengan ketebalan 1 mm. Plat kemudian dipotong berbentuk oval sesuai dengan bentuk Chasing dan setengah dari luasan diberi lubang 2 mm dengan jarak antar lubang 3 mm. 84

100 mm 160 mm Ø 2 mm 3 mm Gambar 1. Dimensi Katalis Gambar 2. Material Substrat Berlapis Mangan Model 2 Chasing. Chasing adalah bagian luar dari Catalytic Converter yang dipilih sesuai bentuk umum yang sering digunakan terbuat dari plat baja Stainless Stell. Chasing ini memiliki penutup yang dapat dibuka dan ditutup dengan baut seperti slorokan, saat pergantian variasi jumlah sel kerangka bagian dalam. Chasing (Gambar 3) ini dipasang asbes yang berguna melindungi bagian dalam dengan konstruksi luar, peredam getaran, insulator panas dan menghindari kobocoran dari gas buang. Pada ujung Chasing dipasang Flange ( penopang ) dan diberi packing knalpot, sehingga pada saat pemasangan kondisi Catalytic Converter benar benar rapat dan kencang serta tidak terjadi kebocoran emisi gas buang saat pengujian berlangsung. Gambar 3. Chasing Catalytic Converter 85

Peralatan Pengujian Mesin Uji Mesin uji yang digunakan adalah mesin engine Stand Toyota 1500 CC, C,. Gambar 4. Mesin Uji Gas Analyzer Alat yang digunakan untuk menguji emisi gas buang Carbon Monoksida pada penelitian ini adalah menggunakan Gas Analyzer Qrotech Tipe QRO-402 milik Peneliti yang lebih akurat dari tipe 401 yang umum dipakai di bengkel mobil. Gambar 5. Qrotech Tipe 402 Thacometer Alat ini digunakan untuk mengetahui dan melihat perubahan putaran mesin kendaraan saat peneliti melakukan variasi putran mesin kendaraan uji. Gambar 6. Thacometer 86

Persiapan Kondisi Standart Mesin. Sebelum pengambilan data pengujian dilakukan, terlebih dahulu perlu mempersiapkan kondisi standart, sehingga mesin dalam kondisi siap untuk kerja. Adapun kegiatan yang dilakukan saat pengkondisian mesin adalah sebagai berikut: Pertama kali mengganti minyak pelumas dan memeriksa dari adanya kebocoran-kebocoran yang mungkin terjadi, kemudian melakukan Tune up mesin kendaraan uji, melakukan penggantian saringan udara, melakukan pemeriksaan air radiator, dan memeriksa system kelistrikan mobil dan accu. Tahapan Pengambilan Data Pengujian. Pada tahap pengambilan data, peneliti melakukan kegiatan sebagai berikut antara lain: pemanasan mesin yang bertujuan untuk mempersiapkan mesin supaya siap pada kondisi pengujian. Adapun langkah-langkahnya adalah sebagai berikut: pertama menghidupkan mesin dan dipanaskan selama 5 menit dalam kondisi stasioner, memeriksa kondisi mesin uji dan memastikan semua berjalan normal dan istrument berfungsi dengan baik. Selanjutnya setalah pemanasan mesin dilakukan Kalibrasi Gas Analyzer yang bertujuan untuk mendapatkan hasil pengukuran yang akurat. Kalibrasi ini bekerja secara otomatis. Setelah selesai kalibarasi pengujian emisi gas buang siap dilakukan, adapun tahapannya sebagai berikut: Tahap pertama, Pengukuran Tampa Catalytic Converter. Pengukuran ini memilikin tujuan untuk mengetahui konsentrasi emisi gas buang yang dikeluarkan mesin uji tampa penambahan alat apapun juga. Pengukuran dilakukan sebanyak tiga kali dan setiap data yang didapat dicacat hasilnya untuk dianalisis. Langkah-langkahnya sebagai berikut : pertama mesin dalam keadaan menyala, putaran idle, colok ukur dimasukkan kedalam mulut knalpot, kemudian injak pedal gas dan baca display rpm motor, kemudian baca display pada alat uji gas analyzer, cacat hasil angka pengukuran pada display, ulangi langkah ke dua untuk variasi rpm yang berbeda, 1000, 1500, 2000, 2500, 3000, kembali ke 2500, 2000, 1500, 1000 dan sampai putanan idle kembali dan setiap pengukuran rpm yang berbeda colok ukur ditarik dari lubang knalpot. Setelah pengkuran tampa Catalytic Converter selesai, dilanjutkan dengan pengukuran dengan Catalytic, adapun langkah-langkagnya sebagai berikut : pertama mesin uji dimatikan, kemudian pasang unit Catalytic Converter pada sambungan saluran gas buang 87

setelah exhaust manipol, setelah terpasang, mesin dihidupkan kembali untuk melakukan pengukuran tahap pertama dengan jumlah katalis 5 sel, kemudian 10 sel dan 15 sel, pada saat pengantian sel katalis, pastikan tidak terjadi kebocoran gas. Pengukuran dilakukan sebanyak tiga kali. HASIL DAN PEMBAHASAN Sebagaimana telah dikemukakan oleh Dowden (1970) dan Obert (1973) bahwa logam logam yang diketahui efektif sebagai bahan katalis oksida dan reduksi mulai dari yang besar sampai yang kecil adalah Pt, Pd, Ru > Mn, Cu > Ni > Fe > Cr > Zn dan oksida dari logam-logam tersebut. Merujuk pustaka di atas tersebut, maka peneliti menggunakan modikasi material Tembaga sebagai bahan katalis pada penelitian awal dan akan dilanjutkan pada penelitian selanjutnya menggunakan Tembaga Berlapis Mangan. Berdasarkan penetian Warju (2006) pemasangan Catalytic Converter pada saluran gas buang yang menggunakan bahan logam katalis Pd, Pt dan Rh dengan penyangga Alumina, silica dan keramik, saat ini memerlukan biaya yang cukup mahal dalam pembuatannya, sulit di dapat dan kurang cocok digunakan di Indonesia yang bahan bakarnya masih ada yang mengandung Pb. Penelitian yang dilakukan peneliti dengan modifikasi dan penggunaan material Tembaga sebagai bahan katalis menunjukan kemampuan dalam mengurangi emisi gas buang Carbon Monoksida, disamping itu material Tembaga memiliki kelimpahan dan lebih murah pembuatannya. Sehingga dapat dijadikan sebagai alternatif dalam penggantian bahan katalis yang mahal tersebut. Berdasarkan hasil penelitian yang dilakukan peneliti dan pengujian yang telah dilakukan, hasil pengukuran menunjukkan bahwa penggunaan material substrat Tembaga (Cu) mampu menurunkan keluaran emisi gas bunag Carbon Monoksida. Penurunan emisi gas Buang Carbon Monoksida ini bervariasi sesuai dengan variasi perubahan putaran mesin dan variasi penambahan sel katalis yang dilakukan oleh peneliti. Dari hasil pengujian emisi gas buang yang telah dilakukan peneliti dengan tampa Catalytic Converter dan menggunakan Catalytic Converter Tembaga Berlapis Mangan ditunjukan dengan metode grafis seperti pada Gambar 8 sampai dengan Gambar 11. Dari gambar tersebut dapat dianalisis bahwa pemasangan Catalytic Converter dengan bahan katalis Tembaga berlapis Mangan untuk tiap variasi penambahan sel katalis mengalami penurunan emisi gas Buang Carbon Monoksida yang cukup signifikan. Pengunaan 88

Catalytic Converter secara langsung dapat menurunkan konsentrasi emisi gas CO dan masih sesuai dengan standart kelayakan baku mutu international Standart Euro 3. Konsentrasi Emisi Gas CO (%) 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 5 Katalis Cu dan Cu*Mn Terhadap Konsentrasi CO 5 Katalis Cu 5 Katalis Cu*Mn Non C.C Idle 1000 1500 2000 2500 3000 2500 2000 1500 1000 Idle Putaran Mesin (Rpm) Gambar 8. Grafik penurunan emisi CO dengan 5 Sel Katalis 10 Katalis Cu dan Cu*Mn Terhadap Konsentrasi CO Konsentrasi Emisi Gas CO (%) 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 10 Katalis Cu 10 Katalis Cu*Mn Non C.C Idle 1000 1500 2000 2500 3000 2500 2000 1500 1000 Idle Putaran Mesin (Rpm) Gambar 9. Grafik Penurunan Emisi CO Dengan 10 Sel katalis 89

Konsentrasi Emisi Gas CO(%) 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 15 Katalis Cu dan Cu*Mn Terhadap Konsentrasi CO 15 Katalis Cu 15 Katalis Cu*Mn Non C.C Idle 1000 1500 2000 2500 3000 2500 2000 1500 1000 Idle Putaran Mesin (Rpm) Gambar 10. Grafik Penurunan Emisi CO Dengan 15 Sel katalis % CO 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Grafik CO 5 Katalis Cu*Mn 10 Katalis Cu*Mn 15 Katalis Cu*Mn Non C.C Idle 1000 1500 2000 2500 3000 2500 2000 1500 1000 Idle Rpm Gambar 11. Grafik Penurunan Emisi CO Dengan Tembaga Berlapis Mangan 90

Dari gambar tersebut menunjukkan bahwa penurunan konsentrasi emisi gas buang Carbon Monoksida ada kecenderungan semakin meningkat dengan penambahan lapisan/jumlah sel katalis yang dipasang pada Catalytic Converter. Penurunan emisi gas buang tersebut tiap variasi perubahan rpm yang berbeda, tampak dalam gambar terjadi fluktuasi. Fluktuasi ini disebabkan adanya perubahan campuran bahan bakar dan udara yang berbeda saat masuk ke dalam ruang bakar. Tren naik-turun merupakan hal yang wajar, mengingat mesin uji masih menggunakan system karburator (bahan bakar tidak dapat optimal, belum menggunakan sistem bahan bakar injeksi elektronik seperti sistem EFI. Pada system EFI jumlah bahan bakar yang masuk ke ruang bakar dapat optimal untuk tiap variasi putaran rpm. KESIMPULAN 1. Rancang bangun Catalytic Converter dan modifikasi bahan katalis bisa menjadi alternatif untuk mengatasi tingginya polusi udara dari sektor transportasi, khususnya emisi gas buang Carbon Monoksida dari motor bensin. 2. Penggunaan Tembaga Berlapis Mangan Model 2 sebagai bahan katalis pada Catalytic Converter mampu menurunkan emisi gas buang Carbon Monoksida signifikan. 3. Penurunan kadar konsentrasi emisi gas Buang CO tertinggi terjadi pada putaran tertinggi 3000 rpm sebagai berikut : - Pada 5 sel katalis : 6,17 % turun menjadi 1,36 % (penurunan 78,0 %) - Pada 10 sel katalis :6,17 % turun menjadi 1,09 % (penurunan 81,5 %) - Pada 15 sel katalis : 6,17 % turun menjadi 1,28 % (penurunan 79,3 %) DAFTAR PUSTAKA Aris, 2005, Penggunaan Cu Murni di Exhaust Muffller dalam Upaya Pengurangan Emisi Gas Buang, Institut Teknologi Subaraya. Arismunandar. 2002, Penggerak Mula : Motor bakar, Edisi 5, Intitut Teknologi Bandung Arcadio P. Sincero Sr, Gregoria A. Aincero, 1995, Environmental Engineering A Design Approach. A Prentice Hall Company, New Jersey. Aryanto, Razif, 2000, Study Penggunaan Tembaga ( Cu ) Sebagai Catalytic Converter Pada Knalpot Sepeda Motor Dua Tak Terhadap Emisi Gas CO (jurnal), Teknik Lingkungan, ITS. Bachrun, 1993, Polusi Udara Perkotaan, Pemantauan dan Pengaturan, Lab Termodinamika PAU Intitut Teknologi Bandung, Bandung. 91

Balenovi. M, 2002, Modeling and Model-Based Control of a Three-Way Catalytic Converter Bapedal, 1996, Pedoman Teknis Pengendalian Pencemaran Udara, Semarang. Bapedal, 2002, Presentasi Data ISPU - Januari 2002 hingga Desembar 2002. Bapedal, 2002, Sumber dan Standar Kesehatan Emisi Gas Buang. Bappenas, 2009, Pengaruh Pertumbuhan Kendaraan Bermotor, Studi Bappenas BPS, 2010, Angka Pertumbuhan Kendaraan Bermotor, Jurnal BPS, 2009, Semarang Dalam Angka Budhi ; Habibi, 2009, Kelakuan Dinamik Catalytik Converter pada Kondisi Hot-Run untuk Oksidasi CO, Institut Teknologi Subaraya. Cooper and Alley, 1994. Air Pollution Control, a design approach. Darsono, Valentino, 1995, Pengantar Ilmu Lingkungan, Edisi revisi, Penerbit Universitas Airlangga, Yogyakarta. Dirjen Perhubungan Darat, 2000, Program Langit Biru dan Konservasi Energi (Jurnal). Dowden, at all, 1970, Catalytic Hand Book, Verlag New York, Inc Fitiryana, 2002, Uji kemampuan Catalytic Converter Tembaga Nikel (CuNi) untuk Mereduksi Emisi Gas Buang Kendaraan Berbahan Bakar Premium, Institut Teknologi Subaraya. Hakam ; Sungkono, 2006, Analisa Pengaruh Penggunaan Logam Tembaga sebagai Katalis pada Saluran Gas Buang Mesin Bensin Empat Langkah terhadap Konsentrasi Polutan CO dan HC. Harsanto, 2001, Pencemaran Udara, Pengaruh Serta Car a Penanggulangannya (Jurnal) Heisler, 1995, Advanced Engine Tecnology Hodder Headline Group, London. Intisari, 1998, Merenda Birunya Langit Kota (Jurnal). Irawan, 2003, Rancang Bangun Catalytric Converter dengan Material Substrat Tembaga (Cu) untuk Mereduksi Emisi Gas CO, Tesis MIL UNDIP Irawan, 2006, Pengaruh Catalytic Converter Kuningan Terhadap Keluaran Emisi Gas Carbon Monoksida dan Hidro Carbon Motor Bensin, Majalah Traksi Irawan, 2007, Pengaruh Letak Pemasangan Catalytic Converter Terhadap Keluaran Emisi Gas Carbon Monoksida dan Hidro Carbon Motor Bensin, Majalah Traksi Irawan, 2010, Modifikasi Catalytic Converter Kuningan Untuk Mereduksi Emisi Gas Carbon Monoksida dan Hidro Carbon Motor Bensin, Majalah Traksi Jenbacher. 1996, Combustion Engines I Vol I Jenbacher. 1996, Combustion Engines II Vol II Jenbacher. 1996, Spark Ignition Engine Design Vol 3 J. C. Prince, C. Trevino, and M. Diaz, 2008, Modeling a Catalytic Converter for CO and NO Emissions. Krisbayu, 2001, Pengaruh injeksi Oksigen pada Catalytic Converter Oksida Tembaga (CuO) terhadap Penurunan CO dan HC Motor Bensin. Mathur, 1975, Internal Combustion Engine. Second Edition. McGraw-Hill Book Company, Inc, New York 92

Obert, 1973, Internal Combustion Engine and Air Pollution, Third Edition. Harper & Row, Publisher, Inc, New York Onogawa, 2007, Environmental Sustainable Transportation (EST), Jurnal Palguna, 2010, Pengendalian Pencemaran Emisi Sumber Bergerak, KLH PCI Report, 1997. Study of Fine Atmospheric Particles And Gases in The Jakarta Region Peavy ; D.R. Rowe and G. Tchobanoglous, 1985, Environmental Engineering. Mc. Graw- Hill. Inc, Singapore Pelangi, 1997, The Study on The Intregated air Quality Management for Jakarta Metropolitan Area (Jurnal). Pelangi, 1999, Upaya Mengurangi Emisi Gas Buang Kendaraan Bermotor (Jurnal). Pramudya, 2001, Melindungi Lingkungan dengan Menerapkan ISO 14001, Terbitan pertama, PT. Gramedia Indonesia, Jakarta. Setyowarno, 2010, Peningkatan Jumlah Kendaraan Bermotor di Semarang, Suara merdeka Sitepoe, 1997, Usaha Mencegah Pencemaran Udara, Terbitan pertama, PT Gransindo, Jakarta Sitorus, Ronal, dkk, 2000, Reparasi dan Perawatan Mobil. Pionir jaya, Bandung Samin And Shen, 2003, Effect of Geometric Parameter on The Performance of Automotive Catalytic Converter. Springer - Verlag New York Inc, 1970, Catalyst Hanbook. Walfe Scintific Book, London - England. Surdia, 1985, Pengetahuan Bahan Teknik, Cetakan Pertama, PT Pradnya Paramita, Jakarta. Swisscontact, 2003, Clean Air Project, Jakarta. Toyota-Astra Motor Service Division. 1998, Dasar-Dasar Automobil. Jakarta. Toyota Training Center, 2000, Emission Control Step Two. Jakarta. V.A.W Heller, 1995, Fundamental Motor Vehicle Technology, Edisi ke-4, FIMI Stanley Thorne (Publisehers ) Ltd. Warju, 2003, Eksperimen tentang pengaruh Penggunaan Catalytic Converter Kuningan Berlapis Crom Terhadap Emisi Gas Buang Co dan HCpada Mesin Toyota KijangTipe 4K. Institut Teknologi Surabaya. Warju, 2006, Pengaruh Penggunaan Catalytic Converter Tembaga berlapis Mangan Terhadap Kadar Polutan Motor Bensin Empat langkah. Institut Teknologi Surabaya. William, 1985, Automotive Cooling Exhaust, Fuel and Lubricating Systems. A Prentice Hall Company, Reston, Virginia. Wisnu, 1999, Dampak Pencemaran Lingkungan, Cetakan Kedua, Penerbit Andi Offset, Yogyakarta WHO, 2000, Pengaruh Polusi Udara, Jurnal. Wolf, 1971, Carbon Monoxide - Measurement and Monitorong in Urban Air Environment, Sei and Technol. 93

Yusad, 2003. Polusi Udara di kota Besar Dunia, Fakultas Kesehatan Masyarakat USU Medan. PENULIS: 1. RM. BAGUS IRAWAN Program Doktor Ilmu Lingkungan Program Pascasarjana Universitas Diponegoro Jl. Imam Barjo SH No. 5 Semarang E-mail: bagusirawanmail@yahoo.com 2. PURWANTO Program Doktor Ilmu Lingkungan Program Pascasarjana Universitas Diponegoro Jl. Imam Barjo SH No. 5 Semarang E-mail : p.purwanto@undip.ac.id 3. HADIYANTO Program Doktor Ilmu Lingkungan Program Pascasarjana Universitas Diponegoro Jl. Imam Barjo SH No. 5 Semarang E-mail : hady.hadiyanto@gmail.com 94