Penerapan Beton Porous Untuk Resapan Air Injeksi Dalam Pengendalian Genangan Perkampungan Padat

dokumen-dokumen yang mirip
Analisis Pola Hujan dan Musim di Jawa Timur Sebagai Langkah Awal Untuk Antisipasi Bencana Kekeringan

SAATNYA BERBALIK HALUAN DALAM PARADIGMA PENGENDALIAN BANJIR

METODE MIX DESIGN BETON POREOUS UNTUK MENDAPATKAN POREOUSITAS OPTIMUM

PERENCANAAN SISTEM DRAINASE PERUMAHAN THE GREENLAKE SURABAYA

PENERAPAN SISTEM SEMI POLDER SEBAGAI UPAYA MANAJEMEN LIMPASAN PERMUKAAN DI KOTA BANDUNG

PENERAPAN KOLAM RETENSI DALAM PENGENDALIAN DEBIT BANJIR AKIBAT PENGEMBANGAN WILAYAH KAWASAN INDUSTRI

Perencanaan Sistem Drainase Kebon Agung Kota Surabaya, Jawa Timur

Perencanaan Sistem Drainase Perumahan Grand City Balikpapan

Studi Evaluasi Sistem Saluran Sekunder Drainase Tambaksari kota Surabaya

Executive Summary. Pemberdayaan Permukiman Sebagai Kontributor Pengendali Banjir Akibat Perubahan Pola Musim (Climate and Landscape Change)

PERENCANAAN SISTEM DRAINASE PERUMAHAN GRAND CITY BALIKPAPAN

ANALISIS VOLUME TAMPUNGAN KOLAM RETENSI DAS DELI SEBAGAI SALAH SATU UPAYA PENGENDALIAN BANJIR KOTA MEDAN

STUDI PENANGGULANGAN BANJIR KAWASAN PERUMAHAN GRAHA FAMILY DAN SEKITARNYA DI SURABAYA BARAT

Perencanaan Penanggulangan Banjir Akibat Luapan Sungai Petung, Kota Pasuruan, Jawa Timur

KAJIAN SISTEM DRAINASE KOTA BIMA NUSA TENGGARA BARAT

BAB I PENDAHULUAN. 1.1 Latar Belakang

TUJUAN PEKERJAAN DRAINASE

KAJIAN SISTEM DRAINASE PATUKANGAN-PEGULON KABUPATEN KENDAL

STUDI EVALUASI SISTEM DRAINASE JALAN AW.SYAHRANI KOTA SANGATTA KABUPATEN KUTAI TIMUR

Perencanaan Sistem Drainase Rumah Sakit Mitra Keluarga Kenjeran, Surabaya

APLIKASI SIG UNTUK EVALUASI SISTEM JARINGAN DRAINASE SUB DAS GAJAHWONG KABUPATEN BANTUL

PENGENDALIAN VOLUME LIMPASAN AKIBAT PERUBAHAN TATA GUNA LAHAN DENGAN KONSEP V = 0 DI DAS KALI KEDURUS HULU

ANALISIS CURAH HUJAN DI MOJOKERTO UNTUK PERENCANAAN SISTEM EKODRAINASE PADA SATU KOMPLEKS PERUMAHAN

SISTEM DRAINASE PERKOTAAN YANG BERWAWASAN LINGKUNGAN

Perencanaan Sistem Drainase Pembangunan Hotel di Jalan Embong Sawo No. 8 Surabaya

PENGARUH PERUBAHAN AREAL KEDAP AIR TERHADAP AIR PERMUKAAN. Achmad Rusdiansyah ABSTRAK

ANALISA SISTEM DRAINASE SALURAN KUPANG JAYA AKIBAT PEMBANGUNAN APARTEMEN PUNCAK BUKIT GOLF DI KOTA SURABAYA

BAB V ANALISA DATA. Analisa Data

ASSALAMU'ALAIKUM WR. WB.

PERENCANAAN SISTEM DRAINASE DI DAERAH ALIRAN SUNGAI (DAS) KALI DAPUR / OTIK SEHUBUNGAN DENGAN PERKEMBANGAN KOTA LAMONGAN

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan perumahan di perkotaan yang demikian pesatnya,

Vol.14 No.1. Februari 2013 Jurnal Momentum ISSN : X

TINJAUAN PERENCANAAN DRAINASE KALI GAJAH PUTIH KODIA SURAKARTA

PERENCANAAN SISTEM DRAINASE SEGOROMADU 2,GRESIK

BAB 1 PENDAHULUAN. Sebuah komplek kampus merupakan kebutuhan dasar bagi para mahasiswa, para

PERENCANAAN SISTEM DRAINASE SEGOROMADU 2 GRESIK

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

STUDI PENGENDALIAN BANJIR KOTA TEMBILAHAN KABUPATEN INDRAGIRI HILIR

PERUBAHAN KECEPATAN ALIRAN SUNGAI AKIBAT PERUBAHAN PELURUSAN SUNGAI

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

KONSEP PENGEMBANGAN SUMUR RESAPAN DI KAMPUNG HIJAU KELURAHAN TLOGOMAS KOTA MALANG

PERENCANAAN SISTEM DRAINASE PADA RENCANA KAWASAN INDUSTRI DELI SERDANG DI KECAMATAN MEDAN AMPLAS M. HARRY YUSUF

KAJIAN PENGEMBANGAN SUMUR RESAPAN AIR HUJAN

BAB III METODOLOGI PENELITIAN. Pencapaian penelitian secara optimal sangat ditentukan pada kadar pemahaman

BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) ISSN: Perencanaan Embung Bulung Kabupaten Bangkalan

TUGAS AKHIR. Perencanaan Sistem Drainase Pembangunan Hotel di Jalan Embong sawo No. 8 Surabaya. Tjia An Bing NRP

PILIHAN TEKNOLOGI SALURAN SIMPANG BESI TUA PANGLIMA KAOM PADA SISTEM DRAINASE WILAYAH IV KOTA LHOKSEUMAWE

STUDI PENERAPAN SUMUR RESAPAN DANGKAL PADA SISTEM TATA AIR DI KOMPLEK PERUMAHAN

OPTIMALISASI SUNGAI WISA DAN SUNGAI KANAL SEBAGAI PENGENDALI BANJIR DI KAWASAN KOTA JEPARA

DAFTAR ISI. Halaman Judul... Lembar Pengesahan... Berita Acara Tugas Akhir... Lembar Persembahan... Kata Pengantar... Daftar Isi...

TUGAS AKHIR DAMPAK SISTEM DRAINASE PEMBANGUNAN PERUMAHAN GRAHA NATURA TERHADAP SALURAN LONTAR, KECAMATAN SAMBIKEREP, SURABAYA

BAB III METODA ANALISIS. desa. Jumlah desa di setiap kecamatan berkisar antara 6 hingga 13 desa.

Surface Runoff Flow Kuliah -3

BAB 2 TINJAUAN PUSTAKA. penelitian tentang Analisis Kapasitas Drainase Dengan Metode Rasional di

BAB IV HASIL DAN PEMBAHASAN. hidrologi dengan panjang data minimal 10 tahun untuk masing-masing lokasi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan negara kepulauan yang memiliki banyak sungai,

NORMALISASI SUNGAI RANTAUAN SEBAGAI ALTERNATIF PENANGGULANGAN BANJIR DI KECAMATAN JELIMPO KABUPATEN LANDAK

BAB III METODOLOGI. 3.2 Pengumpulan Data Pengumpulan data meliputi data primer maupun data sekunder Pengumpulan Data Primer

STUDI PENGARUH PERUBAHAN TATA GUNA LAHAN TERHADAP INFRASTRUKTUR JARINGAN DRAINASE KOTA RANTEPAO

BAB IV ANALISA. membahas langkah untuk menentukan debit banjir rencana. Langkahlangkah

BAB VI ANALISIS KAPASITAS DAN PERENCANAAN SALURAN

Perencanaan Sistem Drainase Stadion Batoro Katong Kabupaten Ponorogo

BAB III. INFILTRASI DAN PERKOLASI

KAJIAN DRAINASE TERHADAP BANJIR PADA KAWASAN JALAN SAPAN KOTA PALANGKARAYA. Novrianti Dosen Program Studi Teknik Sipil UM Palangkaraya ABSTRAK

BAB IV PEMBAHASAN DAN ANALISIS

PENELUSURAN BANJIR MENGGUNAKAN METODE LEVEL POOL ROUTING PADA WADUK KOTA LHOKSEUMAWE

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB I PENDAHULUAN

STUDI POTENSI PENERAPAN SISTEM DRAINASE BERWAWASAN LINGKUNGAN PADA KECAMATAN RUNGKUT KOTA SURABAYA

TATA CARA PEMBUATAN RENCANA INDUK DRAINASE PERKOTAAN

PENANGGULANGAN BANJIR SUNGAI MELAWI DENGAN TANGGUL

3.1 Metode Pengumpulan Data

BAB III LANDASAN TEORI. A. Hidrologi

Rt Xt ...(2) ...(3) Untuk durasi 0 t 1jam

BAB IV ANALISIS DAN PEMBAHASAN

BAB I PENDAHULUAN. Provinsi DKI Jakarta terletak pada posisi Lintang Selatan dan Bujur

PENGARUH PENAMBAHAN KOMPOS PADA TANAH UNTUK MENGURANGI GENANGAN DI KELURAHAN BULAK, KECAMATAN KENJERAN, KOTA SURABAYA

Gambar 2.1.Komponen Drainase Sistem Polder yang Ideal

PERENCANAAN SISTEM DRAINASE KAWASAN KAMPUS UNIVERSITAS SAM RATULANGI

ANALISIS REDUKSI LIMPASAN HUJAN MENGGUNAKAN METODE RASIONAL DI KAMPUS I UNVERSITAS MUHAMMADIYAH PURWOKERTO

UJI LABORATORIUM RESAPAN BERPORI SEBAGAI KENDALI BANJIR DAERAH GENANGAN KECAMATAN ANTANG

TINJAUAN PERENCANAAN DIMENSI PENAMPANG BATANG MARANSI DAN BATANG LURUIH KOTA PADANG

Berfungsi mengendalikan limpasan air di permukaan jalan dan dari daerah. - Membawa air dari permukaan ke pembuangan air.

Perencanaan Sistem Drainase Apartemen De Papilio Tamansari Surabaya

BAB I PENDAHULUAN Latar Belakang

PENDAMPINGAN PERENCANAAN BANGUNANAN DRAINASE DI AREA PEMUKIMAN WARGA DESA TIRTOMOYO KABUPATEN MALANG

IDENTIFIKASI POTENSI BANJIR PADA JARINGAN DRAINASE KAWASAN PERUMAHAN NASIONAL (PERUMNAS) LAMA JALAN RAJAWALI PALANGKA RAYA

BAB I PENDAHULUAN. dan mencari nafkah di Jakarta. Namun, hampir di setiap awal tahun, ada saja

STUDI PERBANDINGAN ANTARA HIDROGRAF SCS (SOIL CONSERVATION SERVICE) DAN METODE RASIONAL PADA DAS TIKALA

Limpasan (Run Off) adalah.

BAB III METODOLOGI PENELITIAN

KAJI ULANG SISTEM DRAINASE UNTUK MENGATASI BANJIR GENANGAN DI PERUMAHAN VILLA JOHOR, KEC. MEDAN JOHOR. Elgina Febris Manalu 1, Ir. Terunajaya, M.

EVALUASI SISTEM JARINGAN DRAINASE DI JALAN SOEKARNO HATTA MALANG

BAB III LANDASAN TEORI. A. Hidrologi

EVALUASI ASPEK TEKNIS PADA SUB SISTEM PEMATUSAN KEBONAGUNG HULU KOTA SURABAYA. Prisma Yogiswari 1, Alia Damayanti

Modul 3 ANALISA HIDROLOGI UNTUK PERENCANAAN SALURAN DRAINASE

PERENCANAAN SALURAN DRAINASE DI GAYUNGSARI BARAT SURABAYA DENGAN BOX CULVERT

BAB III METODE PENELITIAN

I. PENDAHULUAN. Kata kunci : Air Baku, Spillway, Embung.

BAB III METODOLOGI PENELITIAN. Penanganan banjir pada sistem drainase perlu dilakukan dalam beberapa

Transkripsi:

Penerapan Beton Porous Untuk Resapan Air Injeksi Dalam Pengendalian Genangan Perkampungan Padat Kuntjoro dan Hendra Wahyudi Staft Pengajar Diploma Teknik Sipil ITS e-mail : kuntjoro@ce.its.ac.id ABSTRAK Perumahan Manyar Tirtoyoso Cs dan Klampis Ngasem adalah kawasan perumahan yang bersebelahan namun mempunyai karakter yang sangat berbeda. Keduanya mempunyai saluran drainase sekunder yang melintasinya, kedua saluran ini bermuara pada saluran drainase primer Kali Bokor Keputih. Dengan bertambah padatnya perumahan di daerah layanan drainase Kali Bokor Keputih, sedangkan kapasitas saluran primer ini tetap sehingga sering terjadi masalah genangan di perumahan lama. Mengatasi genangan ini dengan memperbesar kapasitas saluran sudah tidak mungkin lagi, sehingga dicoba dengan metode injection infiltrate tank. Analisis hidrologi kawasan ini menghasilkan debit puncak banjir Manyar Tirtoyoso Cs adalah Q5 = 5,61 m3/dt sedangkan Klampis Ngasem adalah Q5 = 5,22 m3/dt. Kapasitas saluran sekunder Manyar Tirtoyoso Cs adalah 0,53 m3/dt dan dilengkapi dengan mini boozem dengan kapasitas 78.662,50 m3, kapasitas saluran sekunder Klampis Ngasem adalah 0,44 m3/dt. Dengan fasilitas saluran dan mini boozem tersebut area Manyar Tirtoyoso Cs aman dari genagan untuk Q5, sedangkan area Klampis Ngasem akan terjadi genangan kumulatip Q5 tersebut adalah 94.163, 65 m3 Dengan karakter kedua area perumahan yang berbeda tersebut didapat retensi banjir yang berbeda. Untuk Manyar Tortoyoso Cs debit banjirnya sudah diretensi oleh fasilitas mini boozem sedangkan area Klampis Ngasem agar tidak berpengaruh ke hilirnya harus meretensi banjir dengan genangan rata rata dalam kaveling adalah 0,137 m. Angka ini adalah dasar perhitungan volume injection infiltrate tank yang harus dibangun di area ini untuk Kampung Klampis Ngasem dengan menggunakan beton porous. Kata Kunci : injection infiltrate tank, beton porous 1. PENDAHULUAN Perkampungan padat merupakan sumber masalah genangan di kota - kota besar, infiltrasi injeksi merupakan upaya pengendalian genangan di perkampungan padat yang solusinya berada pada sumber masalah itu sendiri. Salah satu tujuan dari peneltian beton porous adalah untuk pengendalian banjir di perkampungan kota yang padat, dengan menggunakan sarana infiltrasi injeksi. Untuk memperkirakan kebutuhan jumlah dan dimensi sarana infiltrasi injeksi tersebut dintinjau dua lokasi dengan perbedaan yang memadai, kemudian dengan analisis hidrologi, kapasitas infiltrasi, kepadatan perumahan dan porousitas beton rencana pada kedua lokasi bisa ditentukan kebutuhan sarana infiltrasi injeksi yang diperlukan. Perbedaan karakter kedua kampung permukiman penelitian dinyatakan dalam Tabel : 1. Tabel : 1. Perbedaan dua kampung permukiman penelitian Manyar Tirtoyoso Cs Tata letak kaveling terencana Gambar 1.a Mempunyai mini boozem, Foto 1.a Ukuran kaveling besar Rumah rumah terpisah Jalan dan gang berukuran lebar ( > 8 m ) Kampung Klampis Berkembang dari kampung lama, Gambar. 1.b. Tidak ada mini boozem, Foto 1.b Ukuran kaveling kecil Rumah rumah berhimpitan Jalan dan gang kecil ( + 2,50 m) ISBN 978-979-18342-1-6 A-435

Manyar Tirtoyoso Cs Klampis Gambar : IV.4. Tata letak kaveling pemukiman Manyar Tirtoyoso Cs dan Klampis Foto : 1.a. Mini Boozem Manyar Tirtoyoso Foto : 1.b. Permukiman Klampis tanpa Mini A-436 Seminar Nasional Aplikasi Teknologi Prasarana Wilayah 2009

2. MASALAH Permasalahan yang dihadapi dalam pengendalian genangan kota adalah kekompeksan kondisi pemukiman. Yaitu berupa perkampungan lama tidak terencana tata letak perumahannya di satu sisi dan ada perumahan yang sudah tertata dengan menggunakan fasilitas pengendali genangan yang berupa mini mini boezem. Dengan kondisi yang kompleks tersebut bagaimana menentukan kebutuhan jumlah dan dimensi infiltrasi injeksi yang akan dibangun. Untuk tujuan ini disajikan kondisi awal lokasi studi sebagai berikut : 2.1. Kondisi Kapasitas Infiltrasi Data kapasitas infiltrasi yang diukur dengan ring infiltrometer pada tanah tanpa penutup dengan kondisi muka air tanah masing-masing lokasi yang diukur di Manyar sebagai yang ditunjukkan pada Tabel 2. Tabel 2. : Kapasitas Infiltrasi tanah Manyar, Keputih, Pandugo, dan Kenjeran. Waktu (menit) Penurunan (cm) T (jam) f (cm/jam) 5.56 2.30 0.09 24.73 6.14 3.00 0.10 29.41 7.30 3.00 0.12 24.59 10.00 2.00 0.17 11.98 25.00 2.00 0.42 4.80 60.00 1.20 1.00 1.20 100.00 0.20 1.67 0.12 Kedalaman air tanah = 0.65 cm f adalah kepasitas infiltrasi 2.2. Kondisi Hujan Harian Maksimum Stasiun Keputih Data curah hujan maksimim yang dihimpum oleh stasiun penakar hujan Keputih dari tahun 1950 sampai dengan tahun 2005 sebagai yang ditunjukkan Tabel 3. maksimum Tabel tersebut menunjukkan angka terjadi di stasiun Keputih pada tahun 1962. Hujan yang terjadi adalah 175 mm. Tabel 3. Hujan Maksimum Stasiun Keputih. Tahun 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 R Maks 50 70 75 114 145 132 110 120 150 94 Tahun 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 R Maks 101 145 175 91 95 74 53 125 130 93 Tahun 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 R Maks 99 60 105 101 100 67 55 63 110 67 Tahun 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 R Maks 78 114 95 70 65 85 108 100 100 100 Tahun 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 R Maks 70 60 105 95 85 90 85 15 96 96 Tahun 2000 2001 2002 2003 2004 2005 R Maks 88 103 123 102 58 78 ISBN 978-979-18342-1-6 A-437

Tinggi Hujan (mm) Tinggi Hujan (mm) Tinggi Hujan (mm) Gambar 2 : Pola Hujan Harian Pada Pengukuran Hujan Otomatis Manyar. 6.0 5.0 Rabo, 27-1-93 4.0 3.0 2.0 1.0 0.0 1 2 3 4 5 6 7 8 9 10 11 12 Waktu (Jam) 5.0 4.5 Kamis, 28-1- 93 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1 2 3 4 5 6 7 8 9 10 11 12 Waktu (Jam) 14.0 12.0 Jumat, 29-1 - 93 10.0 8.0 6.0 4.0 2.0 0.0 1 2 3 4 5 6 7 8 9 10 11 12 Waktu (Jam) 2.3. Porousitas Beton Untuk menggantikan infiltration space akibat perubahan tataguna lahan dipakai beton porous. Porousitas beton didapat dari A-438 campuran bahan batu porous dan batu pecah sebagai agregat kasar ditambah pasir sebagai agregat halus. Tabel 4 menunjukkan porousitas beton yang dihasilkan sesuai dengan kadar Seminar Nasional Aplikasi Teknologi Prasarana Wilayah 2009

campurannya masing masing untuk kondisi campuran dengan slump 0 10 Tabel 4. Porousitas Beton Sesuai Pada Slump 0 10. Poreousitas (mm/jam) 20,36 1.208,15 1.575,00 1.857,14 Kadar Batu Porous (%) 0 40 60 100 Kadar Batu Pecah (%) 100 60 40 0 Porousitas optimum dihasilkan pada komposisi 8% batu apung dan 92% batu pecah, menghasilkan poreousitas 330 mm/jam. 3. PENDEKATAN PENYELESAIAN MASALAH 3.1. Kajian Kapasitas Saluran : Kajian kapasitas Saluran memerlukan pekerjaan dan data sebagai berikut : 1) Pekerjaan pengukuran saluran 2) Pengumpulan data sekunder yang terdiri dari : Long and cross section saluran, Pasang surut, Tata guna lahan, Topografi, data Bangunan, Curah Hujan, Pompa dan Pintu Air. 3) Besar kapasitas saluran dianalisis dengan menggunakan Manning formula. 3.2. Analisis Banjir Rencana : Estimasi banjir rencana akan dilakukan pengkajian Direct Run off Hydrograf untuk mendapatkan estimasi banjir. Analisis ini dilakukan dengan data sekunder : curah hujan, luas daerah layanan drainase, 3.3. Estimasi Volume Retensi : Volume run off yang harus ditahan adalah selisih volume banjir rencana dengan kapasitas sarana drainase. Dari hasil kajian kapasitas drainase dan analisa banjir rencana dengan pertimbangan kajian tataguna lahan dan bangunan, kemudian volume retensi dapat diestimasi. 3.4. Estimasi Volume Injection Infiltrate Tank : Volume Injection Infiltrate Tank dihitung berdasarkan volume retensi diatas dan dengan pertimbangan type bangunan, Direct Run off Hydrograf, hydraulic conductivity tanah. Kemudian dengan mempertimbangkan kapasitas infiltrasi dan perkolasi sesuai ISBN 978-979-18342-1-6 dengan perumusan yang dihasilkan dalam penelitian pendahuluan. 3.5. Hidrograf Banjir Tertekan. Dapat dihitung dari penjumlahan antara hidrograf run off dengan kapasitas injection infiltrate tank. Hidrograf run off adalah hidrograf banjir setelah dikurangi dengan hidrograf teretensi. Besarnya puncak hidrograf banjir tertekan ini diharapkan lebih kecil dari pada kapasitas saluran drainase yang ada. 4. HASIL DAN ANALISIS Dari hasil analisis data dapat ditarik kesimpulan sebagai berikut : 4.1. Curah Hujan Dengan data curah hujan yang terkumpul dari empat stasiun terdekat, selama 55 tahun dan dengan metode Gumbel didapat tinggi hujan harian dengan periode ulang 5 tahun adalah 112,563 mm 4.2. Luasan Daerah Layanan Drainase (Catchment Area), Topografi dan Tutupan Lahan (Tataguna Lahan) Luasan kedua daerah layanan drainase yang digunakan yaitu 106,73 Ha untuk Manyar Tirtomoyo Cs dan 76,25 Ha untuk Kampung Klampis Topografi kedua DAS adalah sama sama sangat datar dengan kemiringan medan 0,0003 Tata guna lahan antara kedua DAS adalah berbeda yaitu DAS Manyar Tirtomoyo Cs berkembang terencana sedangkan Kampung Klampis berkembang mengikuti kebutuhan pengguna. 4.3. Long and cross section saluran Long and cross section saluran Manyar Tirtomoyo Cs berbeda dengan Kampung Klampis Manyar Tirtomoyo Cs terdapat fasilitas mini boozem dan saluran drainase Kampung Klampis Hanya saluran drainase A-439

4.4. Pompa dan Pintu Air Kedua lokasi sama sama tidak menggunakan pompa air. Untuk Kampung Klampis menggunakan pintu air Tirtomoyo Cs Manyar tidak menggunakan pintu air 4.5. Banjir Rencana 5 Tahun (Q 5 ) Q 5 puncak yang dihasilkan DAS Manyar adalah 5,61 m 3 /dt terjadi pada jam ke 3. Q 5 puncak yang dihasilkan DAS Klampis adalah 5,22 m 3 /dt terjadi pada jam ke 2 4.6. Pengendalian Debit Yang Dibutuhkan Dengan metode reservoir routing Q 5 pada fasilitas mini boozem, DAS Manyar Tirtoyoso Cs sudah bebas banjir dan tanpa harus membangun fasilitas injection infiltrate tank. DAS Kampung Klampis dengan fasilitas salurannya untuk mengendalikan debit banjir Q 5 harus membangun fisilitas untuk meretansi run off setinggi 0,137 meter didalam kavelingnya masing masing. Retensi run off setinggi 0,137 meter ini akan diinjeksikan kedalam injection infiltrate tank. 4.7. Kebutuhan volume injection infiltrate tank Keanekaragaman luasan kapling di Kampung Klampis menyebabkan keanekaragaman kubutuhan volume injection infiltrate tank. Secara umum volume kebutuhan injection infiltrate tank dinyatakan dalam persamaan : Volume = tinggi retensi x luas kapling. Jika tidak ada infiltrasi maka diperlukan kapasitas tangki untuk kapling 10m x 20m adalah : Volume run off = 0,137 x 10 x 20 = 27,40 m 3 yang ditampung dalam satu hari. Dengan mempertimbangkan kapasitas infiltrasi minimum lahan yang terukur seperti yang ditunjukkan pada Tabel 2, dan porousitas optimum beton serta pola hujan setempat maka volume injection infiltrate tank sebagai berikut, memasang dimensi tangki bujur sangar panjang 1 meter dan lebar 1 meter, tinggi 2 meter maka tinggi run off yang diretensi = 3,425 meter. Dengan demikian diperlukan tinggi beton porous 1,425 meter. 5. KESIMPULAN Beton porous bisa digunakan untuk resapan air dengan penekanan (infiltrasi injeksi). Kebutuhan fasilitas infiltrasi injeksi untuk pengendalian genangan tergantung dari kondisi kepadatan perkampungan dan tingkat daya retensi perkempungan. Kapsitas volume inviltrasi injeksi tergantung dari kondisi : pola hujan harian, kapasitas infiltrasi lahan ( hydraulic condukctifity) dan porousitas beton. Untuk lokasi Kampung Klampis dan untuk ukuran kapling standar diperlukan ukuran tangki lebar 1meter, panjang 1 meter dan tinggi 1,425 meter. DAFTAR PUSTAKA 1. Davit Keith Todd, Groundwater Hydrology, John Wiley & Sons, New York 1980 2. Jawa Pos koran harian, Kondisi Banjir Surabaya, 3 Januari 2005 3. Jawa Pos koran harian, Banjir dan Genangan Kota Surabaya, 8 Maret 2005 4. Kuntjoro, Pengaruh Permitable Retarding Duration Terhadap Debit Banjir Surabaya Timur, Lemlit ITS, 2001 5. Kuntjoro, Analisis Pengaruh Pertumbuhan Perumahan Terhadap Run- Off dan Kapasitas Infiltrasi Lahan di Pesisir Timur Surabaya, Lemlit ITS, 1998. 6. Kuntjoro, Pengaruh Permitable Retarding Duration Terhadap Debit Banjir Surabaya Timur, Lemlit ITS, 2003 7. Mott Mac Donald Cambridge, Surabaya Drainage Master Plan 2018, Laporan Akhir, 1999 8. Suharjoko, Kajian kapasitas drainase pada wilayah rawan banjir di kota Surabaya, Lemlit ITS, 2002. 9. Suharjoko, Perilaku Banjir pada Kota Padat Bangunan dan manakan Hidrograf adalah cara efektif pengendaliannya, Seminar Nasional Penanganan Banjir, 29 September 2004. 10. Linsly, Hidrologi Untuk Insinyur, Penerbit Erlangga 1996. 11. Sosrodarsono Suyono, Hidrologi Untuk Pengairan, PT. Pradnya Paramita, Jakarta, 1987. 12. Ven Te Chow & David R. M, Applied Hydrology, Mc. Graw Hill Book Company,1988. A-440 Seminar Nasional Aplikasi Teknologi Prasarana Wilayah 2009