ANALISIS KESELAMATAN RADIASI PADA LABORATORIUM SINAR-X INDUSTRI STTN BATAN YOGYAKARTA

dokumen-dokumen yang mirip
ANALISIS KESELAMATAN PESAWAT SINAR-X DI INSTALASI RADIOLOGI RUMAH SAKIT UMUM DAERAH SLEMAN YOGYAKARTA

PERANCANGAN RUANGAN RADIOGRAFI MEDIK DI SEKOLAH TINGGI TEKNIK NUKLIR

Perancangan Keselamatan Ruangan Radiologi Pesawat Sinar-X Di PSTA BATAN Yogyakarta

ANALISIS PAPARAN RADIASI LINGKUNGAN RUANG RADIOLOGI DI RUMAH SAKIT DENGAN PROGRAM DELPHI

PERANCANGAN RUANG PENGUJIAN KEBOCORAN PESAWAT SINAR X RIGAKU 250 KV DI STTN BATAN YOGYAKARTA

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60

Desain Ulang Shielding Ruangan Linear Accelerator (Linac) untuk Keselamatan Radiasi Di Gedung 14 PSTA-BATAN Yogyakarta

PERANCANGAN KONSUL UNTUK OPERATOR PADA PEREKAYASAAN PESAWAT SINAR-X MAMOGRAFI

HUBUNGAN TEGANGAN DAN CITRA RADIOGRAFI REAL TIME PADA PESAWAT SINAR-X RIGAKU RADIOFLEX-250EGS3

EVALUASI TEBAL DINDING RUANGAN PESAWAT LINEAR ACCELERATOR (LINAC) SINAR-X DI INSTALASI RADIOTERAPI RUMAH SAKIT UNIVERSITAS HASANUDDIN

Analisa Kualitas Sinar-X Pada Variasi Ketebalan Filter Aluminium Terhadap Dosis Efektif

PENGARUH RADIASI HAMBUR TERHADAP KONTRAS RADIOGRAFI AKIBAT VARIASI KETEBALAN OBYEK DAN LUAS LAPANGAN PENYINARAN MUHAMMAD SYARIF BODDY

EVALUASI METODE PERHITUNGAN KETEBALAN PERISAI PADA RUANG DIGITAL RADIOGRAFI

Analisis Radiasi Hambur di Luar Ruangan Klinik Radiologi Medical Check Up (MCU)

RANCANGAN AWAL PERISAI RADIASI MESIN BERKAS ELEKTRON DUET

DAFTAR ISI. HALAMAN JUDUL... i. PERNYATAAN BEBAS PLAGIARISME... ii. HALAMAN PENGESAHAN... iii. HALAMAN TUGAS... iv. HALAMAN PERSEMBAHAN...

Suparno, Anda Sanusi - PENENTUAN WAKTU PENYINARAN RADlOGRAFllr-192 MENGGUNAKAN PERSAMAAN DOSIS RADIASI

PENGUKURAN DOSIS PAPARAN RADIASI DI AREA RUANG CT SCAN DAN FLUOROSKOPI RSUD DR. SAIFUL ANWAR MALANG. Novita Rosyida

PENGUKURAN LAJU DOSIS PAPARAN RADIASI EKSTERNAL DI AREA RADIOTERAPI RSUD DR. SAIFUL ANWAR MALANG. Diterima: 6 Juni 2016 Layak Terbit: 25 Juli 2016

Konversi Paparan pada Perubahan kv Pesawat Sinar- X Rigaku-RF-250EGM

Dhahryan 1, Much Azam 2 1) RSUD 2 )Laboratorium Fisika Atom dan Nuklir Jurusan Fisika UNDIP

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF

PENGARUH LINEARITAS DAN RESIPROSITAS mas TERHADAP INTENSITAS RADIASI PADA PESAWAT SINAR-X MERK SAMSUNG

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN

ANALISA PENGARUH GRID RASIO DAN FAKTOR EKSPOSI TERHADAP GAMBARAN RADIOGRAFI PHANTOM THORAX

BAB 1 PENDAHULUAN. pada gelombang listrik dari pada peralatan yang dimaksudkan ialah X-Ray (sinar-

PENGUKURAN DOSIS RADIASI RUANGAN RADIOLOGI II RUMAH SAKIT GIGI DAN MULUT (RSGM) BAITURRAHMAH PADANG MENGGUNAKAN SURVEYMETER UNFORS-XI

PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN DAN DOSIS RADIASI PADA VARIASI KOMBINASI KAYU DAN ALUMINIUM

BAB 2 TINJAUAN PUSTAKA

HUBUNGAN TEGANGAN DAN CITRA RADIOGRAFI REAL TIME PADA PESAWAT SINAR-X RIGAKU RADIOFLEX-250EGS3

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF

PENGUJIAN LINIERITAS KELUARAN PEMBANGKIT ARUS SINAR X MENGGUNAKAN STEPWEDGE SKRIPSI. Evi Yusita Nim

PENGARUH TEGANGAN TABUNG (KV) TERHADAP KUALITAS CITRA RADIOGRAFI PESAWAT SINAR-X DIGITAL RADIOGRAPHY (DR) PADA PHANTOM ABDOMEN

Suparno, Makmur Rangkuty-PEMBUATAN KURVA PENYINARAN RADIOGRAFI IR-I92 MENGGUNAKAN PERSAMAAN DOSIS

PENGARUH GRID(KISI) LINIER TERHADAP KETAJAMAN DAN DENSITAS GAMBAR FILM RONTGEN PADA PEMOTOAN SCHEDEL LATERAL

BAB 2 TINJAUAN PUSTAKA

SUMBER BELAJAR PENUNJANG PLPG

PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN PADA BESI, TEMBAGA DAN STAINLESS STEEL SEBAGAI BAHAN PERISAI RADIASI

PRIMA Volume 8, Nomor 1, Juni 2011 ISSN : DESAIN PINTU RUANG PESAWAT SINAR-X DARI BAHAN KOMPOSIT KARET ALAM TIMBAL OKSIDA

UJI KESESUAIAN PESAWAT CT-SCAN MEREK PHILIPS BRILIANCE 6 DENGAN PERATURAN KEPALA BAPETEN NOMOR 9 TAHUN 2011

Youngster Physics Journal ISSN : Vol. 2, No. 1, April 2013, Hal 27-34

PENENTUAN KOEFISIEN SERAPAN KAYU BANGKIRAI (SHOREA LAEVIFOLIA) DAN PERBANDINGANNYA TERHADAP TIMBAL (Pb) SEBAGAI DINDING RUANG RADIOLOGI DIAGNOSTIK

PEMBUATAN KURVA ISODOSIS PAPARAN RADIASI DI RUANG PEMERIKSAAN INSTALASI RADIOLOGI RSUD KABUPATEN KOLAKA - SULAWESI TENGGARA

BAB I PENDAHULUAN. Radiodiagnostik merupakan tindakan medis yang memanfaatkan radiasi

ANALISIS PENGARUH GRID TERHADAP PENYIMPANGAN BENTUK DAN UKURAN OBJEK (DISTORSI)

PENENTUAN KEMBALI KOMPOSISI KOMPOSIT KARET ALAM TIMBAL OKSIDA SEBAGAI PERISAI RADIASI SINAR-X SESUAI KETENTUAN BAPETEN

PERKIRAAN DOSIS PASIEN PADA PEMERIKSAAN DENGAN SINAR-X RADIOGRAFI UMUM. RUSMANTO

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN. Oleh : NANANG SURIANSYAH

Sinar x memiliki daya tembus dan biasa digunakan dalam dunia kedokteran. Untuk mendeteksi penyakit yang ada dalam tubuh.

BAB I PENDAHULUAN I.1. Latar Belakang

EVALUASI METODE PENENTUAN HALF VALUE LAYER (HVL) MENGGUNAKAN MULTI PURPOSE DETECTOR (MPD) BARRACUDA PADA PESAWAT SINAR-X MOBILE

OPTIMALISASI DOSIS RADIASI SINAR-X TERHADAP PROYEKSI PA (POSTERO-ANTERIOR) DAN LAT (LATERAL) PADA TEKNIK PEMERIKSAAN FOTO THORAX SKRIPSI

REFURBISHING PESAWAT SINAR-X DIAGNOSTIK EKS. LITBANG BATAN

BAB II LANDASAN TEORI

DAFTAR KELENGKAPAN DOKUMEN YANG HARUS DILAMPIRKAN


Vidya Ikawati. Keywords : sinar-x, FSA, single phasa, MA, HU

ANALISIS KUALITAS RADIOGRAFI PADA OBJEK BERGERAK DAN OBJEK TIDAK BERGERAK DENGAN MENGGUNAKAN VARIASI EKSPOSE SKRIPSI

Widyanuklida, Vol. 14 No. 1, November 2014: ISSN

ANALISA PENGARUH FAKTOR EKSPOSI TERHADAP ENTRANCE SURFACE AIR KERMA (ESAK)

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ).

BAB. I PENDAHULUAN. A.Latar Belakang Penelitian. bersinggungan dengan sinar gamma. Sinar-X (Roentgen) mempunyai kemampuan

ANALISIS LINEARITAS KELUARAN RADIASI PADA X-RAY MOBILE DENGAN MENGGUNAKAN PIRANHA

Buletin Fisika Vol. 8, Februari 2007 : 31-37

PRA RANCANGAN KONTAINER TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF SUMBER TERBUNGKUS 192 Ir

PENGARUH JARAK TABUNG SINAR-X DENGAN FILM TERHADAP KESESUAIAN BERKAS RADIASI PADA PESAWAT X-RAY SIMULATOR DI INSTALASI RADIOTERAPI RSUD DR

JImeD, Vol. 1, No. 1 ISSN X

BAB I PENDAHULUAN I.1. Latar Belakang

RENCANA PROGRAM KEGIATAN. Prasyarat : 1. Deteksi Dan Pengukuran Radiasi 2. Fisika Atom Dan Inti

Paparan radiasi dari pekerja radiasi sejak tahun berdasarkan kriteria dan lama kerja

ANALISIS PAPARAN RADIASI DI SEKITAR RUANG ROENTGEN PASIEN INSTALASI RUMAH SAKIT PARU JEMBER SKRIPSI. Oleh : Dewi Yuliana NIM

PERTEMUAN KE 2 (50 MENIT)

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

PENGUKURAN DAN EVALUASI KESELAMATAN TERHADAP BAHAYA RADIASI EKSTERNA DI PTAPB-BATAN YOGYAKARTA

PENGENDALIAN PAPARAN RADIASI NEUTRON DI KANAL HUBUNG PRSG PSTBM PADA SAAT REAKTOR RSG-GAS BEROPERASI

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR FORMULIR PERMOHONAN SURAT IZIN BEKERJA PETUGAS TERTENTU

STANDAR NASIONAL INDONESIA (SNI) BIDANG NUKLIR

OPERASI MESIN BERKAS ELEKTRON (MBE) PTAPB BATAN TIPE BA 350 kev / 10 ma

BAB I PENDAHULUAN 1.1 Latar Belakang

RANCANG BANGUN TEGANGAN TINGGI DC DAN PEMBALIK PULSA PADA SISTEM PENCACAH NUKLIR DELAPAN DETEKTOR

PENENTUAN TEBAL PERISAI RADIASI PERANGKAT RADIOTERAPI EKSTERNAL Co-60 UNTUK POSISI PENYINARAN

ANALISIS PERHITUNGAN BERAT KONTAINER SUMBER Ir-192 AKTIVITAS 10 Ci UNTUK BRAKITERAPI HDR

Pengaruh Kecepatan Penguatan Lembar Penguat Terhadap Densitas Radiograf

Uji Kesesuaian Pesawat Fluoroskopi Intervensional merek Philips Allura FC menggunakan Detektor Unfors Raysafe X2 di Rumah Sakit Universitas Andalas

ANALISIS PENGUKURAN LINIERITAS KELUARAN PADA PESAWAT SINAR-X RADIOGRAFI UMUM DI RSUD LANGSA. Hadi SAPUTRA NIM :

ANALISIS PERHITUNGAN KETEBALAN KONTAINER PERALATAN BRAKITERAPI MDR UNTUK TERAPI KANKER LEHER RAHIM

SISTEM MANAJEMEN DOSIS PADA PENGANGKUTAN ZAT RADIOAKTIF DENGAN KENDARAAN DARAT

OPTIMASI SHIELDING NEUTRON PADA THERMALIZING COLUMN REAKTOR KARTINI

PERBANDINGAN DOSIS RADIASI DI UDARA TERHADAP DOSIS RADIASI DI PERMUKAAN PHANTOM PADA PESAWAT CT-SCAN

PERANCANGAN DAN PEMBUATAN ALAT UJI PINHOLE DAN MULTIHOLE UNTUK PENGUKURAN DIMENSI FOCAL SPOT PESAWAT SINAR-X

Penentuan Entrance Skin Exposure (ESE) pada Pesawat Mammografi Mammomat 1000 dengan Filter Molybdenum (Mo) dan Rhodium (Rh)

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN

PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co

BAB II TINJAUAN PUSTAKA

PANDUAN UJI KESESUAIAN PESAWAT SINAR-X RADIOGRAFI UMUM

Antiremed Kelas 12 Fisika

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

RANCANGAN SISTEM CATU DAYA DAN RUMAH PENANGKAP CITRA PADA PESAWAT SINAR-X FLUOROSCOPY

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Upaya keselamatan dan kesehatan kerja dimaksudkan untuk memberikan

Transkripsi:

ANALISIS KESELAMATAN RADIASI PADA LABORATORIUM SINAR-X INDUSTRI STTN BATAN YOGYAKARTA MUHAMMAD KHOIRI SEKOLAH TINGGI TEKNOLOGI NUKLIR-BADAN TENAGA NUKLIR NASIONAL Jl. Babarsari P.O.Box 6101 YKBB Yogyakarta 55281 Corresponding author,telp. 0274)48085,489716 ; Fax: (0274)489715; email: mkhoiri@sttn-batan.ac.id Abstrak ANALISIS KESELAMATAN RADIASI PADA LABORATORIUM SINAR-X INDUSTRI STTN BATAN YOGYAKARTA. Telah dilakukan penelitian dengan tujuan untuk mengevaluasi desain gedung Laboratorium Sinar-X Industri di STTN BATAN Yogyakarta, berdasarkan analisis keselamatan radiasi terhadap nilai batas dosis yang dipersyaratkan, sehingga aman bagi pekerja radiasi, pekerja non radiasi serta masyarakat umum. Penelitian dilakukan dengan menggunakan data gedung laboratorium, kemudian dibandingkan dengan hasil perhitungan tebal dinding secara teori. Hasil yang diperoleh menunjukkan bahwa dinding pembatas antara pesawat yang ada dengan Ruang Kontrol (dinding A), dengan masyarakat (dinding B), dan pintu masuk Ruang Tembak Uji Sinar-X masing-masing perlu ditambah tebal setara Pb 0,2 mm, 1,8 mm, dan 6,5 mm. Sedang dinding C dan D pembatas antara pesawat dengan ruang penyimpanan limbah dan tempat umum yang jarang ditempati sudah cukup aman. Kata kunci : Sinar-X, penahan radiasi, nilai batas dosis Abstract THE ANALYSIS OF RADIATION SAFETY AT LABORATORY OF X RAYS FOR INDUSTRY STTN BATAN YOGYAKARTA. The research has been done with the purpose to evaluated the design of Laboratory of X-rays for Industry SSTN BATAN Yogyakarta with the term of maximum permissible dose so that safe for radiation worker, non radiation worker, and community. Method of the research with analysis by calculating of dose after shielding, then compare the value with theory. The result show that X-rays shielding of wall A (Control Room), wall B (community), and the door of X-ray Room need to be added Pb 0,2 mm, 1,8 mm, and 6,5 mm respectively. But shielding of wall C and wall, D in safe. Keywords: X-rays, shielding, maximum permissible dose PENDAHULUAN Gedung Laboratorium Sinar-X Industri STTN BATAN Yogyakarta telah selesai dibangun tetapi belum dioperasionalkan. Penggunaan gedung laboratorium ini terutama adalah untuk praktikum mahasiswa dan penelitian yang dilakukan oleh dosen maupun mahasiswa. Gedung laboratorium sinar-x yang baik adalah yang memenuhi syarat proteksi radiasi, diantaranya dengan dinding ruang yang harus dapat dipertanggungjawabkan untuk menjamin keselamatan pekerja radiasi, mahasiswa/dosen, dan masyarakat pada umumnya. Oleh karena itu perlu analisis keselamatan radiasi pada Laboratorium Sinar-X Industri STTN sebelum dioperasionalkan, agar dapat diantisipasi kemungkinan adanya bahaya terhadap keselamatan radiasi. 423

Sinar-X Sinar-X adalah pancaran gelombang elektromagnetik yang sejenis dengan gelombang radio, panas, cahaya, dan sinar ultraviolet, dengan panjang gelombang yang sangat pendek [7]. Sinar-X dikatagorikan sebagai salah satu radiasi pengion yang dapat berinteraksi sel biologi dan dapat menimbulkan efek buruk terhadap sel tersebut. Dengan kata lain, Sinar-x dapat menimbulkan efek buruk terhadap manusia. Sinar-X dihasilkan oleh suatu generator yang disebut tabung Sinar-X. Tabung Sinar-X adalah suatu alat untuk menghasilkan, mempercepat, dan akhirnya menumbukkan elektron bebas pada suatu target. Pada produksi Sinar-X diperlukan tiga syarat dasar yaitu sumber elektron, catu daya tegangan tinggi dan target[4]. Tabung Sinar-X seperti pada Gambar 1. Gambar 1. Skema Tabung Sinar-X [5] Pada peristiwa tumbukan elektron dengan target, terjadi dua interaksi yang menghasilkan dua tipe sinar-x yaitu : 1. Sinar-x bremsstrahlung, yaitu Sinar-X yang dihasilkan oleh elektron dengan kecepatan tinggi menabrak bahan (dengan tiba-tiba dihentikan). Radiasi sinar-x bremsstrahlung mempunyai spektrum kontinyu, yang memiliki berbagai energi, karena elektron projektil diperlambat secara bertahap pada berbagai tingkat. Sinar-X jenis ini dipakai di bidang radiologi untuk pemotretan pasien. 2. Sinar-X karakteristik, yaitu Sinar-X yang dihasilkan oleh transisi elektron. Elektron orbit dapat berpindah ke orbit lainnya. Bila transisi berasal dari elektron pada lintasan luar ke lintasan yang lebih dalam, maka dipancarkan energi tertentu. Energi ini dikenal dengan radiasi Sinar-X karakteristik. Sinar-X karakteristik digunakan untuk analisis bahan. Mengingat radiasi pengion yang mempunyai potensi merugikan terhadap kesehatan, maka dalam penggunaan radiasi tersebut diperlukan langkah proteksi radiasi. Proteksi radiasi yang dimaksudkan adalah untuk melindungi para pekerja radiasi dan masyarakat umum dari bahaya radiasi yang berasal dari sumber radiasi, dengan tujuan mencegah terjadinya efek non stokastik (deterministik) dan membatasi peluang terjadinya efek stokastik. Efek non stokastik adalah efek biologi yang timbul akibat paparan radiasi jika dosis ambang terlampaui, seperti erythema, kemandulan permanen, katarak dan sebagainya. Efek stokastik adalah efek biologi yang timbul akibat paparan radiasi tanpa adanya dosis ambang, seperti kanker dan efek pewarisan keturunan [3]. Dalam suatu instalasi untuk penggunaan sumber radiasi, konstruksi gedung yang digunakan mempunyai fungsi sebagai penahan radiasi, sehingga harus diperhatikan dalam perencanaan arsitektur instalasi. Persyaratan penahan radiasi bagi ruangan pesawat sinar-x tergantung pada jenis peralatan dan energi radiasi yang dipakai. Penahan radiasi untuk instalasi Sinar-X dapat dibedakan menjadi 2 jenis [2,4,5] yaitu : 1. Penahan Radiasi Primer yang memberikan perlindungan terhadap sinar guna yaitu berkas sinar yang langsung berasal dari focal spot. Penahan rumah tabung radiasi harus memenuhi persyaratan laju kebocoran sesuai dengan rekomendasi NCRP yaitu Tipe Diagnostik Laju kebocoran pada jarak 1 meter dari fokus tidak melebihi 0,1R/jam, dioperasikan pada arus dan tegangan maksimum. 2. Penahan Radiasi Sekunder memberikan perlindungan terhadap radiasi bocor dan radiasi hambur. Penahan radiasi sekunder yang disinari secara terus menerus dianggap sebagai penahan radiasi primer. Untuk menghitung tebal dinding penahan struktural dari ruangan (dinding dan pintu), faktor-faktor yang mempengaruhi harus diketahui terlebih dahulu. Faktor-faktor tersebut meliputi : 424

1. Kemampuan tabung, yaitu tegangan dan arus pada operasi maksi-mum. Tebal dinding ruangan dihitung agar dapat menahan radiasi dengan energi yang paling kuat (pada tegangan operasi maksimum) dan intensitas yang paling besar (pada arus operasi maksimum). 2. Jarak sumber radiasi terhadap titik pengamatan. Radiasi bocor yang keluar dari tabung pesawat Sinar-X merupakan salah satu faktor yang perlu diperhatikan dalam desain penahan karena intensitas paparan sangat bergantung dari jarak. Oleh karena itu, posisi pesawat Sinar-X dari dinding harus diketahui, untuk perhitungan tebal dinding penahan. 3. Jarak sumber radiasi terhadap bidang penghambur. Radiasi yang mengenai suatu materi, akan dihamburkan, yang bergantung dari jarak sumber ke bidang penghambur 4. Daerah terkontrol atau daerah tidak terkontrol. Daerah terkontrol adalah daerah yang penghuninya hanya personil yang pekerjaannya terkena radiasi, sedangkan daerah tidak terkontrol adalah daerah yang dihuni masyarakat. Klasifikasi daerah ini menentukan laju paparan radiasi desain mingguan (weekly design exposure rate, R). 5. - 0,1 R/minggu untuk daerah pengawasan (R=100 mr/minggu) 6. - 0,01 R/minggu untuk daerah bukan pengawasan (R=10 mr/minggu) 7. Faktor guna (use factor, U). Faktor guna adalah merupakan faktor yang ditentukan oleh prosentase suatu dinding terkena berkas radiasi selama pemanfaatan pesawat Sinar-X. Besarnya nilai U adalah: U = 1 pesawat Sinar-X diarahkan terus menerus ke suatu dinding (tidak berubah arah berkas utamanya) U = ¼ direncanakan arahnya berubah secara periodik untuk semua dinding atau tidak ada informasi mengenai arah. Bila tidak ada informasi, faktor guna untuk dinding nilainya ¼ dan lantai nilainya 1. Faktor penghunian (occupancy factor, T). Faktor penghunian ditentukan oleh tingkat keseringan seseorang berada di balik dinding ruang pesawat Sinar-X. Nilai T ditentukan berdasarkan informasi atau pengamatan langsung, keberadaan orang dibalik dinding dan nilainya: T = 1 seseorang yang terus menerus berada di balik dinding, T = ¼ keberadaannya tidak terus menerus, tetapi relatif sering, T = 1/16 keberadaannya hanya sesekali berada di balik dinding, Untuk pekerja radiasi, maka nilai T dianggap 1, tidak tergantung tingkat keberadaannya. 2. Beban kerja mingguan (weekly workload, W). Beban kerja menyatakan tingkat pemakaian pesawat Sinar-X dalam 1 minggu (ma menit/minggu). Nilai W ditentukan berdasarkan: Waktu operasi pesawat dalam 1 minggu (menit/ minggu) Arus tabung pada saat pesawat dioperasikan (ma) Perhitungan Dinding Penahan Radiasi [1] Seperti telah dijelaskan sebelumnya tentang pengertian penahan radiasi primer dan penahan radiasi sekunder, maka untuk lebih jelas dapat dilihat pada Gambar 2. Gambar 2. Pengertian Penahan Primer dan Sekunder [1] Penahan Radiasi Primer Faktor Transmisi(K), dirumuskan, K = P d 2 W U T R / ma - men (1) dengan, K = Faktor transmisi (R/mA-men). P = Penyinaran maksimum mingguan yang diperbolehkan (0,1 R/minggu untuk 425

daerah terkontrol dan 0,01 R/minggu untuk daerah tak terkontrol). d = Jarak dari sumber ke shielding yang akan dirancang (meter). W = Beban kerja (Workload) (ma. menit/minggu). U = Faktor penggunaan (Use factor). T = Faktor hunian (Occupancy factor). Dengan menggunakan grafik pada Lampiran 1 untuk nilai faktor transmisi (K) ini, maka akan didapat tebal dinding beton penahan primer. Penahan Radiasi Sekunder A. Radiasi Hambur, dirumuskan: 2 d d 2 P sca sec 400 ma- menit K = ( R/ ) (2) ux a W T F f minggu dengan, K ux = Perbandingan nilai paparan dengan beban kerja (sekunder). P = Paparan radiasi yang diperbolehkan. A = Rasio radiasi hambur terhadap radiasi yang membahayakan F = Ukuran medan sebaran (cm 2 ). d sec = Jarak penyebar ke titik tertentu (m). d sca = Jarak sumber ke target (m). T = Faktor hunian. F = Faktor Kompensasi tegangan. W = Beban kerja (Workload) (ma. menit/minggu). Dengan menggunakan grafik pada Lampiran 1 untuk nilai K ux ini, maka akan didapat tebal dinding beton penahan radiasi hambur (X h ). B. Radiasi Bocor, dirumuskan: d 2 P 60 I BLx = W T..... log B X Lx bt HVL log 1 2 dengan, B LX = Paparan radiasi bocor. P = Penyinaran maksimum mingguan yang diperbolehkan (0,1R/minggu untuk daerah terkontrol dan 0,01R/minggu untuk daerah tak terkontrol). d = Jarak dari sumber ke shielding yang akan dirancang (meter). W = Beban kerja (Workload) (ma.menit/minggu). T = Faktor hunian (Occupancy factor). I = Arus maksimum pesawat. X bt = tebal beton untuk radiasi bocor HVL = tebal setengah nilai untuk beton pada tegangan puncak Dinding pembatas antara Ruang Tembak Uji Sinar-x terbuat dari bata plesteran, sedang dalam perhitungan menggunakan beton. Hal ini dapat dengan rumus konversi sebagai berikut:. x a. x b xa xb HVLa HVLb (4) dimana, ρ a = densitas material a ρ b = densitas material b x a = tebal material a x b = tebal material b HVL a = tebal paro material a HVL b = tebal paro material b METODE PENELITIAN Penelitian ini dilakukan di Laboratorium Sinar-X STTN BATAN Yogyakarta. Jenis penelitian adalah pengamatan lapangan dengan metode observasi, menggunakan data sekunder maupun data primer (pengambilan data desain gedung), dan interview. Dalam penelitian ini sebagai variabel bebas adalah spesifikasi pesawat, arah penyinaran, dan beban pesawat, sedang variabel terikat tebal dinding pembatas ruang tembak uji sinar-x. Alur penelitian 426

HASIL DAN ANALISA DATA Dalam mengoperasikan pesawat sinar-x ini arah penyinarannya menghadap ke bawah, sehingga penahan primernya adalah lantai. Oleh karena itu tebal penahan primer tidak perlu dihitung. Dalam melakukan penghitungan dosis radiasi yang melewati dinding pembatas antara pesawat sinar-x berdasarkan beban kerja pesawat sinar-x yang ada. Dinding pembatas Ruang Tembak Uji Sinar-X di Laboratorium Sinar-X Industri STTN berupa dinding bata berplester setebal 26 cm (20 cm bata dan 6 cm plesteran). Denah ruang pesawat sinar-x seperti Gambar 3, sebagai berikut: Keterangan: Dinding A: pembatas R. Tembak dengan R. Kontrol. Dinding B: pembatas R. Tembak dengan halaman depan. Dinding C: pembatas R. Tembak dengan R. Limbah. Dinding D: pembatas R. Tembak dengan halaman belakang. Gambar 3 Denah ruang pesawat sinar-x di Laboratorium Aktif STTN [6] 1. Data ruangan pesawat sinar -X 2. Luas ruang keseluruhan : 4,25 m Χ 4,15 m = 17,64 m 2 = 17.640.000 cm 2. Tinggi ruang 3,05 m = 305 cm. 3. Dinding pembatas terbuat dari batu bata berplester dengan tebal 26 cm dan pintu pembatas terbuat kayu multiplek. 4. Jarak antara pesawat dengan dindingjarak antara pesawat dengan dinding terlihat dalam Tabel 1, yang diperoleh dari data sekunder dan hasil pengukuran. Dalam dosis yang melewati dinding pembatas primer maupun sekunder diperlukan penghitungan beban kerja (workload). Untuk menghitung beban kerja pesawat sinar-x yang dioperasikan dengan tegangan 250 kv dan arus 5 ma dilakukan berdasarkan asumsi bahwa dalam sehari pesawat dioperasikan dalam waktu 2 jam dan satu minggu sebanyak 5 hari, dengan rincian sebagai berikut (hasil wawancara dengan Kepala Laboratorium UTR dan Radiografi Industri STTN): Tabel 1. Jarak antara pesawat dengan dinding. Jenis pesawat Dinding Jarak (cm) Rigaku International Corporation RF-250EG-S3 A 212 B 207 C 212 D 207 1. Dalam 1 hari 20 orang mahasiswa melakukan praktikum pesawat sinar-x 2. Tiap mahasiswa melakukan 1 kali shoot 3. Tiap shoot 5 menit 4. Untuk kegiatan yang lain dibutuhkan shoot selama 20 menit perhari 427

Dari data tersebut, maka beban kerja pesawat (W) = 2 jam x 60 menit x 5 ma = 3000 ma-menit/minggu. Harga-harga parameter untuk menghitung tebal dinding pembatas diperoleh dengan menggunakan data sekunder, observasi, pengukuran, interview dengan Kepala Laboratorium UTR dan Radiografi Industri, dan perhitungan, yang dapat dilihat pada Tabel 2. Tabel 2 Harga-harga parameter untuk menghitung dinding pembatas Dinding Dinding A Dinding B Dinding C Dinding D Asal data Keterangan P (R/minggu) 0,1 0,01 0,1 0,01 Pustaka 0,1 untuk pekerja radiasi, 0,01 untuk masyarakat d(sca) (meter) 0,25 0,25 0,25 0,25 interview d(sec) (meter) 2,38 2,33 2,38 2,33 pengukuran dan data sekunder a 0,0019 0,0019 0,0019 0,0019 Pustaka W (ma menit/minggu) 3000 3000 3000 3000 Perhitungan T 1 0,25 0,25 0,0625 Interview, observasi, pustaka F (cm 2 ) 260 260 260 260 Spesifikasi alat dan perhitungan f 1 1 1 1 Pustaka K 0,009544 0,003663 0,038218 0,014652 Perhitungan Sudut hambur 90 0 Perhitungan Tebal Dinding Pembatas Berdasarkan rumus 1, 2, 3, dan 4 diperoleh tebal beton untuk radiasi hambur dan radiasi bocor seperti dalam Tabel 3. Penentuan tebal akhir dari dinding sekunder ditentukan penerapan kriteria sebagai berikut [1] : 1. Bila nilai X h - X bt < 1 TVL, maka harga penahan sekunder yang digunakan adalah yang terbesar (X h atau X bt ) ditambah dengan ketebalan 1 HVL. 2. Bila nilai X h - X bt 1 TVL, maka harga penahan sekunder yang digunakan adalah cukup dipilih yang terbesar antara X h atau X bt. Berdasarkan kriteria di atas diperoleh tebal dinding pembatas (shielding) pesawat Sinar-X seperti dalam Tabel 4. Untuk pintu antara Ruang Tembak Uji Sinar-X dan Ruang Kontrol sekarang masih menggunakan kayu atau triplek. Oleh karena itu pintu perlu dilapisi Pb yang setara dengan tebal dinding A hasil perhitungan (20,58 cm beton), yaitu 6,5 mm Pb. Tabel 3. Tebal beton untuk radiasi hambur dan radiasi bocor Dinding Dinding A Dinding B Dinding C Dinding D Asal data Keterangan Xh (inch) 7 9 5,5 6 Grafik atenuasi (cm) 17,78 22,86 13,97 15,24 beton Xbt (cm) 10,36 13,81 5,36 8,81 Perhitungan Xh - Xbt (cm) 7,42 9,05 8,61 6,43 TVL beton untuk 250 kv adalah 9,40 cm 428

Dinding Tebal dinding yang ada (setara beton) Tabel 4. Tebal Dinding Pembatas Tebal dinding yang seharusnya (setara beton) Keterangan A 20,1cm 20,58 cm Tembok perlu dilapisi Pb 0,2 mm B 20,1 cm 25,66 cm Tembok perlu dilapisi Pb 1,8 mm C 20,1 cm 16,77 cm Tidak perlu Pb D 20,1 cm 18,04 cm Tidak perlu Pb Keterangan: Massa jenis bata = 1,9 gr/cm 3 Massa jenis plesteran = 1,54 gr/cm 3 Massa jenis beton = 2,35 gr/cm 3 Massa jenis timbal = 11,34 gr/cm 3 HVL timbal = 0,88 mm HVL beton = 2,80 mm KESIMPULAN Untuk memenuhi kriteria keselamatan radiasi maka perlu perbaikan dinding penahan radiasi sekunder, sebagai berikut: 1. Dinding A, yaitu pembatas antara Ruang Tembak Uji Sinar-X dengan Ruang Kontrol perlu dilapisi Pb minimal setebal 0,2 mm. 2. Dinding B, yaitu pembatas antara Ruang Tembak Uji Sinar-X dengan lingkungan bagian depan perlu dilapisi Pb minimal setebal 1,8 mm. 3. Dinding C dan D, masing-masing sebagai pembatas dengan ruang penyimpanan limbah dan tempat umum yang jarang ditempati sudah cukup aman. 4. Pintu antara Ruang Tembak Uji Sinar-X dan Ruang Kontrol perlu dilapisi Pb minimal setebal 6,5 mm. SARAN Selama dinding pembatas belum diperbaiki, maka pada waktu mengoperasikan pesawat sinar-x, sebaiknya jarak obyek penghambur (d sca ) diperbesar dan pekerja radiasi serta masyarakat agak menjauh dari dinding pembatas. UCAPAN TERIMAKASIH Saya mengucapkan terimakasih yang setulus-tulusnya kepada Bapak Drs. Djoko Maryanto, selaku kepala Laboratorium UTR dan Radiografi dan Bapak Suryo Rancono, SST, selaku Kepala Pengawas pembangunan Gedung Laboratorium Aktif STTN BATAN, yang keduanya telah banyak membantu dalam penyediaan dan pencarian data untuk penelitian ini. DAFTAR PUSTAKA 1. BATAN, 2005, Desain Penahan Ruang Sinar-X, Pelatihan Petugas Proteksi Radiasi, Pusat Pendidikan Dan Pelatihan Badan Tanaga Nuklir Nasional, Jakarta. 2. BATAN, 2006, Proteksi Radiasi,Radiografi Level I, Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional, Jakarta 3. BUSHONG, S. C, 1997, Radiologic Science For Technologist. Four Edition. Mosby Company, Missouri,USA 4. CEMBER, H, 1992, Introduction to Health Physics. Second Edition. Northwestern University, USA. 5. JOSEPH R. BITTENGLE, M.ED., R.T.(R), Principle of Radiographic Imaging, University of Arkansas 6. STTN BATAN, 2009, Buku Pedoman Pembangunan Laboratorium Aktif STTN BATAN, Yogyakarta 7. TOTO TRIKASJONO DKK, 2009, Analisis Keselamatan Pesawat Sinar-X di Instalasi Radiologi Rumah Sakit Umum Daerah Sleman Yogyakarta, PNBR Bandung 429

LAMPIRAN Lampiran 1. Kurva pelemahan sinar-x yang ditimbulkan oleh 50-200 kvp pada Timbal (Cember, 1992) Timbal/Pb (mm) 430

Lampiran 2 X-Ray Specifications Produced by Rigaku International Corporation 3-9-2, Matsubaracho, Akishima-shi, Tokyo 196-8666, Japan Phone : 81-42-545-8189 Fax: 81-42-545-7985 e-mail: rinttyo@rigaku.co.jp Model number X-ray tube RF-250EG-S3 Beryllium-window-incorporated ceramic X-ray tube (beryllium window thickness : 1 mm) X-ray filter Aluminum, 2 mm X-ray tube voltage Variable in 5 kv steps from 1 10 to 250 kv (in 10 kv steps from 1 10 to 130 kv) X-ray current Effective focus (nominal value) Penetration Film density D = 1,5 5 -minute exposure 5mA 2 mm x 2 mm High resolution film + Pb 0,03 (Fujifilm # 100) approx. 42 mm Automatic aging voltage Automatic aging time Approx. 1 10 kv or higher Approx. 7 min. Tube voltage stability Within ± 2% Tube current stability Within ± 5% Power consumption X-ray generator dimensions and weight Controller dimensions and weight 3,6 kva 632x320 ± 5 mm, 29.5 kg 335 W x 240 H x 345 mm D, 1 6.5 kg (handled included) Accessory weight Input power source Operating ambient temperature X-ray generation insulation method Cooling system X-ray irradiation area Approx. 13.5 kg 190 to 240 V, single-phase, 50/60 Hz -10 u Cto+40 C SF6 gas insulation Anode grounded, forced air cooling system with radiator 19 cm or more when the focus to film distance is 600 mm (area where at least 80% of the radiated field center film density is obtained) 431 Sekolah Tinggi Teknologi Nuklir - BATAN

Lampiran 3 Harga a, Perbandingan Antara Radiasi Hambur Terhadap Radiasi yang Datang b (dari NCRP 49). S UMBER SUDUT HAM3URAN (DARI SINAR PUSAT) 30 45 60 90 120 135 Sinar-X 50 kv 0,0005 0,0002 0,00025 0,00035 0,0008 0.0010 70 kv 0,00065 0,00065 0,00035 0,0005 0,0010 0.0013 100 Kv 0,0015 0,0012 0,0012 0,0013 0,0020 0,0022 125 kv 0,0018 0,0015 0,0015 0,0015 0,0023 0,0025 150kV 0,0020 0,0016 0,0016 0,0016 0,0024 0.0026 200 kv 0,0020 0,0020 0,0019 0,0019 0.0027 0,0028 250 kv 0,0025 0,0021 0.0019 0,0019 0,0027 0,0028 300 kv 0,0026 0,0022 0,0020 0,0020 0,0019 0,0028 4MV - 0,0027 - - - - 6MV 0,007 0,0018 0,0011 0,0006-00004 Sinar-y Cs 137 0,0065 0,0050 0,0041 0,0028-0,0019 Co 611 0,0060 0,0036 0,0023 0,0009-0.0006 b scattered radiation measured at one meter from phantom when field area is 400 cm2 at the phantom surface; itiddent exposure measured at center of field one meter from the source but without phantom 432

Lampiran 4 Tebal Setengah Nilai Dan Persepuluh Nilai (HVLdanTVL) BAHAN PERISAI TEGANGAN PUNCAK (KV) TIMBAL (mm) BETON (Cm) Besi (Cm) HVL TVL HVL TVL HVL TVL 50 0,06 0,17 0,43 1,50 - - 70 0,17 0,52 0,84 2,80 - - 100 0,27 0,88 1,60 5;30 - - 125 0,28 0,93 2,00 6,60 - - 150 0,30 0,99 2,24 7,40 - - 200 0,52 1,70 2,50 8,40 - - 250 0,88 2,90 2,80 9,40 - - 300 1,47 4,80 3,10 10,40 - - 400 2,50 8,30 3,30 10,90 - - 500 3,60 11,90 3,60 11,70 1.000 7,90 26,00 4,40 14,70 - - 2.000 12,50 42,00 6,40 21,00 - - 3.000 14,50 48,50 7,40 24,50 - - 4.000 16,00 53,00 8,80 29,20 2,70 9,10 6.000 16,90 56,00 10,40 34,50 3,00 9,90 8.000 16,90 56,00 11,40 37,80 3,10 10,30 - - 10.000 16,90 55,00 11,90 39,60 3,20 10,50 Cs-137 6,50 21,60 4,80 15,70 1,60 5,30 Co-60 12,00 40,00 6,20 20,60 2,10 6,90 Ra-226 16,60 55,00 6,90 23,40 2,20 7,40 433 Sekolah Tinggi Teknologi Nuklir - BATAN

434