Analisis Harmonik Pada Lampu Hemat Energi

dokumen-dokumen yang mirip
Analisis Harmonik pada Lampu Light Emitting Diode

ANALISIS HARMONIK PADA LAMPU HEMAT ENERGI SKRIPSI

BAB II TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

Aplikasi Low Pass RC Filter Untuk Mengurangi Harmonisa Pada Lampu Hemat Energi

Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya

BAB I PENDAHULUAN. jarang diperhatikan yaitu permasalahan harmonik. harmonik berasal dari peralatan yang mempunyai karakteristik nonlinier

ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4.

ANALISIS PENGARUH PENGOPERASIAN BEBAN- BEBAN NON-LINIER TERHADAP DISTORSI HARMONISA PADA BLUE POINT BAY VILLA & SPA

ANALISIS HARMONISA TEGANGAN DAN ARUS LISTRIK DI GEDUNG DIREKTORAT TIK UNIVERSITAS PENDIDIKAN INDONESIA

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan

WATAK HARMONIK PADA INVERTER TIGA FASA TAK BERBEBAN

I Wayan Rinas. Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Kampus Bukit Jimbaran, Bali, *

BAB I PENDAHULUAN. tombak pemikulan beban pada konsumen. Gangguan-gangguan tersebut akan

Peredaman Harmonik Arus pada Personal Computer All In One Menggunakan Passive Single Tuned Filter

BAB 2 DASAR TEORI. Gambar 2.1. Bentuk Gelombang Hasil Distorsi Harmonik [2] 4 Universitas Indonesia

IDENTIFIKASI KUALITAS DAYA LISTRIK GEDUNG UNIVERSITAS PGRI SEMARANG

STUDI PENGURANGAN ARUS HARMONIK TRIPLEN DENGAN MENGGUNAKAN TAPIS SERI DAN TRANSFORMATOR ZERO PASSING

PERANCANGAN FILTER PASIF SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA PADA BEBAN NON LINIER

BAB I PENDAHULUAN. tegangan, disebabkan jarak sumber ke saluran yang sangat jauh ke beban

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter

APLIKASI TAPIS PELEWAT RENDAH LC (LOW PASS LC FILTER) UNTUK MEREDUKSI DISTORSI HARMONISA PADA LAMPU HEMAT ENERGI

NASKAH PUBLIKASI PERANCANGAN HIGH PASS DAMPED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 9 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 7.

PENGARUH ARUS NETRAL TERHADAP RUGI-RUGI BEBAN PADA TRANSFORMATOR DISTRIBUSI PLN RAYON JOHOR MEDAN

BAB I PENDAHULUAN 1.1. Latar Belakang

Kualitas Daya Listrik (Power Quality)

Simulasi Pengukuran Daya Listrik Sistem 1 Fasa menggunakan LabVIEW

ANALISIS HARMONIK DAN PERANCANGAN HIGH PASS DAMPED FILTER

BAB I PENDAHULUAN. yang disebabkan oleh gangguan pemutusan dari pemutus daya. Seringkali

RANCANG BANGUN SINGLE TUNED FILTER SEBAGAI ALAT PEREDUKSI DISTORSI HARMONIK UNTUK KARAKTERISTIK BEBAN RUMAH TANGGA 2200VA

SIMULASI KUALITAS DAYA SALURAN DISTRIBUSI SEKUNDER PERUMAHAN

Aplikasi Filter Pasif Rc Untuk Mereduksi Harmonik Pada Ac/Dc/Ac Konverter. Asnil*) *Staf Pengajar Jurusan Teknik Elektro, FT-UNP

PENGUKURAN TINGKAT HARMONISA PADA BEBERAPA MERK JUICER (DENGAN STANDAR IEC )

Perancangan Low Pass RC Filter untuk Mereduksi Harmonik pada Lampu Hemat Energi (LHE) 20W

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

ANALISIS HARMONISA YANG DIHASILKAN CYCLOCONVERTER DENGAN BERBAGAI PARAMETER

HARMONICS TESTING IN ENERGY SAVING LAMPS (ESL) ACCORDING TO IEC 61000, IEEE STANDARD AND PLN POWER FACTOR (CASE STUDY FOR 5 WATTS ESL)

STUDI PENGGUNAAN RANGKAIAN FILTER UNTUK MENGURANGI EFEK HARMONISA PADA LAMPU HEMAT ENERGI

Aplikasi Filter Pasif Pada Beban Inverter Tiga Fase Berbeban

ANALISA PENANGGULANGAN THD DENGAN FILTER PASIF PADA SISTEM KELISTRIKAN DI RSUP SANGLAH

ANALISIS PENGARUH HARMONISA TERHADAP RUGI-RUGI DAYA PADA PENGHANTAR

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: B-91

APLIKASI FILTER PASIF SEBAGAI PEREDUKSI HARMONIK PADA INVERTER TIGA FASE

UNIVERSITAS INDONESIA ANALISIS PENGARUH HARMONISA TERHADAP PENYIMPANGAN PENGUKURAN ENERGI LISTRIK PADA KWH METER ANALOG DAN DIGITAL SKRIPSI

ANALISIS PENGARUH HARMONISA TERHADAP FAKTOR-K PADA TRANSFORMATOR

UNIVERSITAS INDONESIA

Watak Harmonik pada Inverter Berbeban

ANALISIS PENGARUH BEBAN NONLINIER TERHADAP KINERJA KWH METER INDUKSI SATU FASA

PENGARUH HARMONIK PADA TRANSFORMATOR DISTRIBUSI

BAB II TINJAUAN PUSTAKA. A. Sistem Pembangkit Listrik Tenaga Hibrid (Pembangkit Listrik Sistem

Mereduksi Harmonisa Arus Dan Rugi Daya Akibat Beban Non Linier Dengan Memanage Penggunaan Beban Listrik Rumah Tangga

MODUL III PENGUKURAN TAHANAN PENTANAHAN

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

BAB I PENDAHULUAN. industri, tegangan masukan pada peralatan tersebut seharusnya berbentuk

50 Frekuensi Fundamental 100 Harmonik Pertama 150 Harmonik Kedua 200 Harmonik Ketiga

ANALISIS HARMONISA PADA LAMPU HEMAT ENERGI DAN LAMPU PIJAR

Reduksi Harmonisa Arus Sumber Tiga-Fasa Dengan Transformator Penggeser Fasa

BAB 1 PENDAHULUAN. kelistrikan maka konsumsi daya semakin meningkat. Seperti halnya komputer,

ANALISIS DAN PERANCANGAN FILTER PASIF UNTUK MEREDUKSI PENGARUH HARMONISA PADA INVERTER 3-FASA MENGGUNAKAN MATLAB/SIMULINK

92 Teknologi Elektro, Vol. 16, No.03,September -Desember I Gusti Ngurah Dwipayana 1, I Wayan Rinas 2, I Made Suartika 3

PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

TINGKAT DISTORSI HARMONISA PADA LAMPU ESSENSIAL YANG BERBEDA MERK

PENGARUH HARMONISA TERHADAP ARUS NETRAL TRANSFORMATOR DISTRIBUSI (APLIKASI PADA R.S.U SARI MUTIARA MEDAN)

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya

PENGUJIAN HARMONISA DAN UPAYA PENGURANGAN GANGGUAN HARMONISA PADA LAMPU HEMAT ENERGI

STUDI PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

BAB 2 TINJAUAN PUSTAKA

FILTER AKTIF SHUNT 3 PHASE BERBASIS ARTIFICIAL NEURAL NETWORK (ANN) UNTUK MENGKOMPENSASI HARMONISA PADA SISTEM DISTRIBUSI 220/380 VOLT

ANALISIS HARMONIK LAMPU PENERANGAN JALAN UMUM BERBASIS LED DENGAN TEGANGAN BERVARIASI DAN DAYA KONSTAN Handoko Rusiana Iskandar 1, Nana Heryana 2

PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

Studi Pengaruh Beban Non Linear Terhadap Keberadaan Arus Netral Di Gedung Pusat Komputer Universitas Riau

PENGARUH KETIDAKSEIMBANGAN BEBAN TIGA FASA TERHADAP HASIL PENGUKURAN

BAB II SISTEM DAYA LISTRIK TIGA FASA

Desain Filter Pasif Pada Sistem Kelistrikan Industri Guna Mengurangi Distorsi Harmonisa

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN. Pemakaian daya listrik dengan beban tidak linier banyak digunakan pada

BAB 1 PENDAHULUAN. Peradaban manusia modern adalah salah satunya ditandaidengan kemajuan

BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik sangat di butuhkan pada zaman modern ini, karena saat ini kebutuhan manusia akan teknologi

Analisis Pengaruh Harmonik terhadap Arus Netral Transformator Pelanggan Industri, Bisnis, dan Rumah Tangga

SIMULASI KOMBINASI TRANSFORMATOR UNTUK MITIGASI HARMONIK MENGGUNAKAN PROGRAM EDSA TECHNICAL 2000

ABSTRAK Kata kunci : Beban non linier, Harmonisa, THD, filter aktif high-pass.

BAB 1 PENDAHULUAN. ini terlihat dengan semakin banyaknya penggunaan peralatan elektronik baik pada

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan

Variasi Tuning dan Quality Factor pada Perancangan Single-Tuned Passive Filter untuk Optimasi Reduksi Distorsi Harmonik

Analisa Konfigurasi Hubungan Primer dan Sekunder Transformator 3 Fasa 380/24 V Terhadap Beban Non Linier

METODA BARU PENGURANGAN ARUS HARMONISA PADA SISTEM DISTRIBUSI TENAGA LISTRIK

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. selalu berbanding lurus dengan tegangan setiap waktu [3]. Beban linear ini mematuhi

ABSTRAK. Kata kunci : Arus Transien, Ketahanan Transformator, Jenis Beban. ABSTRACT. Keywords : Transient Current, Transformer withstand, load type.

ABSTRAKSI ANALISIS DISTORSI HARMONIK PADA SISTEM DISTRIBUSI DAN REDUKSINYA MENGGUNAKAN TAPIS HARMONIK DENGAN BANTUAN ETAP POWER STATION 4.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. rendah banyak dibahas dalam forum-forum kelistrikan. Permasalahan kualitas daya

BAB 2 TINJAUAN PUSTAKA. Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3157

STUDI EFEK HARMONISA PADA LAMPU HEMAT ENERGI (LHE Ber SNI dan LHE tanpa SNI)

Kajian Harmonisa Arus Dan Tegangan Listrik di Gedung Administrasi Politeknik Negeri Pontianak

BAB IV PENGUJIAN DAN ANALISIS

Transkripsi:

Analisis Harmonik Pada Lampu Hemat Energi Abdul Azim, Amien Rahardjo Fakultas Teknik, Departemen Teknik Elektro, Universitas ndonesia e-mail: aziem_e03@yahoo.co.id, Abstrak Program Lampu Hemat Energi (LHE) yang dikampanyekan PLN ke rumah tangga kecil memberikan keuntungan dari sisi hemat energi, akan tetapi hal ini juga memiliki kerugian yaitu dari sisi harmonik yang ditimbulkannya. Karakteristik harmonik LHE dapat dilihat dari pengukuran THD (Total Harmonic Distortion) tegangan dan THD arus. Dari hasil pengukuran diperoleh harmonik tegangan dan arus pada LHE adalah harmonik orde ganjil dengan harmonik tegangan terbesar pada orde ke_5 dan harmonik arus terbesar pada orde ke_3. Dari hasil perhitungan juga diperoleh bahwa harmonik pada LHE memiliki pengaruh yang buruk yaitu menurunkan nilai PF. Abstract Energy Saving Lamp program announced by PLN to small residential customers gives advantage on energy saving side, but it has disadvantage on the harmonic produced. Harmonic characteristic of Energy Saving Lamp can be seen from THD (Total Harmonic Distortion) measurement of it s voltage and current. Measurement results shows the voltage and current harmonic of Energy Saving Lamp are odd order harmonics. The voltage is predominantly fifth harmonic but the current is predominantly third harmonic. The harmonic produced has a significant negative effect on power factor. t decreases true power factor.. Pendahuluan Program Lampu Hemat Energi (LHE) yang disosialisasikan PLN ke rumah tanggga kecil adalah untuk menekan kenaikan beban yang dipikul oleh jaringan distribusi terutama untuk beban penerangan. Program ini mensosialisasikan penggantian Lampu Pijar dengan Lampu Hemat Energi (LHE). Tujuan program ini adalah untuk mengalihkan beban (load shifting), mengurangi beban puncak (peak clipping), dan penghematan tenaga listrik (conservation)[]. Bagi PLN penghematan sebesar ini sangat besar dampaknya karena berarti bisa menghemat investasi di sisi pembangkitan. Di sisi lain, konsumen juga akan diuntungkan karena rekening listriknya akan turun[]. Selain keuntungan dari sisi hemat energi, Lampu Hemat Energi ini memiliki kerugian yaitu dari sisi harmonik yang ditimbulkannya. Masalah harmonik ini perlu dikaji karena Lampu Hemat Energi ini adalah salah satu sumber harmonik terbesar yang dapat menimbulkan gangguan baik pada sistem kelistrikan maupun pada sistem telekomunikasi.. Distorsi Harmonik Cacat atau distorsi harmonik disebabkan oleh peralatan yang tidak linier pada sistem tenaga listrik. Ketidaklinieran ini yaitu arusnya tidak sebanding dengan tegangan yang diberikan. Beban nonlinier merupakan sumber arus harmonik yang dapat dimodelkan dengan sumber arus yang terpasang paralel. Arus harmonik mengalir melalui impedansi sistem dan menyebabkan terjadi drop tegangan untuk tiap harmonik. Hal ini menghasilkan tegangan harmonik di beban. Besar distorsi tegangan tergantung pada impedansi dan arus[3]. Arus beban nonlinier mengalir terjadi karena kebanyakan peralatan-peralatan elektronika modern membutuhkan tenaga arus searah (DC) untuk operasinya. Karena tegangan yang disuplai ke pelangan adalah arus bolak-balik (AC), maka

peralatan pealatan elektronik ini harus mengubah tegangan ini ke DC. Proses pengubahan ini disebut konversi dan peralatannya disebut konverter[4] 3. THD (Total Harmonic Distortion ) Untuk mengukur nilai efektif dari komponen-komponen harmonik dari gelombang cacat (terdistorsi) digunakan besaran THD (Total Harmonic Distortion) yaitu perbandingan antara nilai rms komponen harmonik sebuah besaran (arus atau tegangan) terhadap nilai rms arus atau tegangan tersebut pada frekuensi dasarnya misalkan untuk arus harmonik nilai THD nya : + 3... + n THD =...(.) dengan n adalah nilai arus rms harmonik ke_n nm atau n =.[3]. THD arus bervariasi dari beberapa persen sampai lebih dari 00%.THD tegangan biasanya lebih kecil dari 5%. Dibawah 5% umumnya dapat diterima tetapi jika diatas 0% maka ini tidak dapat diterima dan akan mengakibatkan masalah untuk beban-beban dan peralatan yang sensitif[5]. Tabel berikut adalah standar EEE 59-99 untuk harmonik tegangan : Tabel.Batasan harmonik tegangan untuk beban nonlinier Bus voltage at ndividual Total PCC voltage distortion (%) voltage distortion THD (%) 69 kv 3.0 5.0 69kV<v 6 kv.5.5 >6 kv.0.5 Sumber:[6] 4. Harmonik dan Faktor Daya[7] Tegangan dan arus harmonik yang diakibatkan oleh beban non-linier meningkatkan rugi-rugi daya yang berakibat negatif pada sistem tenaga listrik. Faktor daya dari sistem didefinisikan sebagai perbandingan antara daya aktif dengan daya kompleknya (persamaan.): P P avg avg pf true = =...(.) S V rm s rms Ada 3 jenis faktor daya pada sistem tenaga listrik yaitu :. Faktor daya displacement (pf disp ) adalah perbandingan antara daya aktif dan daya kompleks pada kondisi normal. Atau dapat dikatakan bahwa faktor daya displacement adalah selisih sudut antara arus dan tegangan pada kondisi normal.. Faktor daya distorsi (pf dist ) adalah faktor daya yang terjadi akibat adanya distorsi tegangan dan distorsi arus pada kondisi harmonik. 3. Faktor daya sebenarnya (pf true ) adalah perbandingan antara daya aktif dan daya kompleks. Pada kondisi sistem dengan beban linier hanya ada satu faktor daya karena faktor daya sebenarnya sama dengan faktor daya displacement. Ketika beban non linier terdapat pada sistem tenaga listrik maka akan timbul arus dan tegangan harmonik: v(t) = V sin(kω t + δ )...(.3) k = k 0 k i(t) = sin(kω t + θ ).... (.4) k = dengan nilai RMS: k 0 k V = V + (THD 00)...(.5) rms rms V ( ) = + THD 00...(.6) rms rms Sehingga akan diperoleh persamaan umum faktor daya sebenarnya (pf true ) baik untuk kondisi sinusoidal maupun nonsinusoidal yaitu:

p P avg f true = x V rms rms ( ) ( ) + THD V /00 + THD /00....(.7) karakteristik harmonik ketika di pasang paralel. Mengukur harmonik pada lampu pijar 00 Watt, hal ini untuk melihat perbandingan harmoniknya terhadap Lampu Hemat Energi. Dengan membuat asumsi sebagai. Dalam banyak kasus pengaruh harmonik terhadap daya rata-rata tidak terlalu besar. Oleh karena itu P avg P avg.. Oleh karena distorsi tegangan biasanya tidak melebihi 0% maka dari persamaan.5 bisa didapatkan V rms V rms. Akan didapatkan persamaan untuk faktor daya sebenarnya (pf true ) untuk kondisi sinusoidal maupun tidak. Pavg pf x true V rms rms + THD 00 disp dist ( ) pf x pf...(.8) 5. Metode Pengujian Pada pengukuran harmonik ini diambil 0 buah sampel Lampu Hemat Energi dari beberapa produsen LHE dengan besar Watt yang seragam yaitu 5 Watt dengan harga sebagai variabel pembanding. Pengukuran harmoniknya menggunakan HOK 369-0 POWER TESTER. Data yang diukur adalah tegangan (volt), arus (amper), daya aktif (watt), daya reaktif (var), daya semu (VA), faktor daya (PF), THD tegangan (%) dan THD arus (%), spektrum harmonik serta bentuk gelombang tegangan dan arusnya. Tiap pengukuran dilakukan selama menit dimulai saat lampu mulai dinyalakan. Semua data hasil pengukuran disimpan di PC Card. Ada pengukuran yang dilakukan yaitu: Mengukur harmonik pada tiap LHE dan pada semua LHE yang dipasang paralel. Pengukuran ini untuk mengetahui karakteristik harmonik tiap LHE dan Rangkain uji pada proses pengukuran harmonik ini ditunjukkan pada gambar SUMBER TEGANGAN HOK Gambar. Rangkain pengukuran harmonik Data hasil pengukuran untuk tiap LHE, untuk semua LHE dipasang paralel dan lampu pijar ditunjukkan pada tabel Tabel Hasil pengukuran harmonik LHE dan lampu pijar S P Q THD Lampu (VA) (WATT) (VAR) PF Tegangan LHE THD Arus (%) (%) LHE A 6. -5.4 3. 0.8695.65 66.8 LHE B 7.7-6.6 4 0.859.6 6.3 LHE C 5.4-4.8.3 0.9.6 70.8 LHE D 6.7-5.8 3.4 0.8636.59 64.64 LHE E 5-4.5.3 0.894.6 69.53 LHE F 5.5-4.9.5 0.888.7 69.6 LHE G 5.7-5.3. 0.933.69 77.9 LHE H 4.9-4.6.6 0.948.7 78.3 LHE 5. -4.6.3 0.893.6 7.07 LHE J 5. -4.6. 0.90.53 7.54

LHE PARALEL 59.7-53. 7. 0.8908.6 64.83 PJAR 88-88.6 0.9998.64.36 6. Perhitungan dan Analisis 6. Spektrum Tegangan Dari hasil pengukuran diperoleh spektrum harmonik tegangan yang hampir sama untuk semua LHE seperti diperlihatkan pada grafik spektrum harmonik tegangan untuk LHE A, B dan C. Dari hasil pengukuran diperoleh bahwa harmonik tegangan pada LHE terjadi pada orde ganjil dan harmonik tegangan yang terbesar adalah pada orde ke_5 yaitu 5 x 50 Hz = 50 Hz dengan rata-rata persentase tegangan harmonik pada frekuensi ini sebesar.66 %. Gambar 4 Spektrum harmonik tegangan LHE C Untuk semua LHE yang diparalel grafik harmonik tegangannya ditunjukkan pada gambar 5 Gambar 5. Spektrum harmonik tegangan0 LHE yang diparalel Gambar Spektrum harmonik tegangan LHE A Gambar 3 Spektrum harmonik tegangan LHE B Dari grafik harmoik tegangan untuk LHE yang diparalel di atas juga terlihat frekuensi harmonik tegangan yang terbesar adalah pada orde ke_5 yaitu 5 x 50 Hz = 50 Hz dengan persentase tegangan harmonik pada frekuensi orde ke _5 ini sebesar.5 %. Dari kedua nilai persentase tegangan harmonik pada frekuensi orde ke _5 ini (.66 % dan.5 %) terlihat perbedaannya hanya sebesar 0.06 %. Hal ini dikarenakan semua LHE disusun paralel dengan sumber sehingga tegangannya hampir sama dengan tegangan sumber. Jadi jumlah lampu sangat kecil pengaruhnya terhadap kenaikan persentase tegangan harmonik di sumber Jika dibandingkan dengan standar EEE 59-99 dimana batas maksimum tegangan harmonik untuk tegangan dibawah 69 KV adalah 3 % maka dari semua grafik harmonik

tegangan LHE di atas terlihat tegangan harmonik terbesar pada orde ke_5 masih dibawah batas standar EEE. Jadi penggunaan LHE pada konsumen listrik masih dalam batas aman untuk sistem tenaga listrik. Untuk lampu pijar spektrum harmonik tegangannya ditunjukkan pada gambar 6 Gambar 7. Spektrum harmonik arus LHE A Gambar 6 Spektrum harmonik tegangan lampu pijar Dari spektrum harmonik tegangan lampu pijar ini terlihat frekuensi harmonik tegangan yang terbesar adalah pada orde ke_3 yaitu 3 x 50 Hz = 50 Hz. Jika dibandingkan antara grafik harmonik tegangan LHE dengan lampu pijar terlihat kedua jenis lampu ini memiliki harmonik tegangan yang sangat kecil. Gambar 8. Spektrum harmonik arus LHE B 6. Spektrum Arus Untuk spektrum harmonik arus dari hasil pengukuran diperoleh spektrum harmonik arus yang hampir sama untuk semua LHE seperti diperlihatkan pada grafik spektrum harmonik arus untuk LHE A, B dan C. Dari semua grafik harmonik arus ini terlihat harmonik juga terjadi pada orde ganjil dan harmonik arus yang terbesar adalah pada orde ke_3 yaitu 3 x 50 Hz = 50 Hz dengan rata-rata persentase arus harmonik dari 0 LHE pada frekuensi orde ke _3 ini adalah 7.55%. Gambar 9. Spektrum harmonik arus LHE C

Untuk semua LHE yang diparalel grafik harmonik arusnya ditunjukkan pada gambar 0 memiliki harmonik yang sangat kecil dibandingkan harmonik pada LHE. Gambar 0. Spektrum harmonik arus untuk 0 LHE yang diparalel Dari grafik harmonik arus untuk 0 LHE yang diparalel di atas terlihat pula frekuensi harmonik arus yang terbesar adalah pada orde ke_3 yaitu 3 x 50 Hz = 50 Hz dengan persentase arus harmonik pada frekuensi orde ke _3 ini sebesar 70.3 %. Dari kedua nilai persentase arus harmonik pada frekuensi orde ke _3 ini (7.55 % dan 70.3 %) terlihat perbedaannya sebesar.3 %. Hal ini dikarenakan tiap lampu mesuplai arus harmonik ke sumber. Jadi jumlah lampu mempengaruhi kenaikan persentase arus harmonik di sumber. Dari spektrum harmonik arus LHE diatas yang perlu sangat diperhatikan adalah persentase harmonik kelipatan ganjil orde 3 (triplen harmonic) yaitu orde 3, 9, 5, dan seterusnya. Contohnya adalah triplen orde ke_3, arus harmonik orde ini dapat mengalir di kawat netral untuk sistem bintang yang ditanahkan dengan besar hampir 3 kali arus orde ke tiga dari arus kawat fasanya (untuk sistem seimbang) sehingga kawat mengalami pemanasan berlebih (overload). Untuk lampu pijar spektrum harmonik arusnya ditunjukkan pada gambar. Dari spektrum harmonik arus lampu pijar ini terlihat frekuensi harmonik arus yang terbesar adalah pada orde ke_5 yaitu 5 x 50 Hz = 50 Hz. Jika dibandingkan antara grafik harmonik arus LHE dengan lampu pijar terlihat jelas lampu pijar Gambar. Spektrum harmonik arus untuk lampu pijar 6.3 Pengaruh Harmonik Terhadap Faktor Daya Untuk melihat perbedaan antara Faktor daya sebenarnya (PF true ), Faktor daya distorsi (PF dist ) dan Faktor daya displacement (PF disp ) dari setiap LHE dan lampu pijar dapat dihitung menggunakan persamaan.8 yaitu: Pavg pf x true V rms rms + THD 00 disp dist ( ) pf x pf...(.8) Berdasarkan data hasil pengukuran diperoleh nilai daya rata-rata (P avg ) untuk setiap LHE mendekati daya rata-ratanya pada frekuensi dasar (P avg ) dan nilai THD tegangan setiap LHE masih dibawah % sehingga persamaan.8 di atas dapat digunakan untuk perhitungan nilai PF. Pada persamaan.8 di atas nilai P avg, V rms, rms, dan THD diperoleh dari data pengukuran. Dari data ini dapat dihitung Faktor daya distorsi (PF dist ), Faktor daya displacement (PF disp ) dan Faktor daya sebenarnya (PF true ). Grafik perbandingan PF pengukuran dengan PF displacement diperlihatkan pada grafik

PF.05 0.95 0.9 0.85 0.8 0.75 PFpengukuran PFdisp Lam pu Gambar. Grafik perbandingan PF hasil pengukuran dengan PF displacement. Dari grafik di atas terlihat nilai PF pengukuran hampir sama dengan PF displacement. Hal ini menunjukkan bahwa nilai PF yang diukur menggunakan HOK 369-0 POWER TESTER adalah nilai PF displacement yang bukan nilai PF yang sebenarnya (hanya PF pada frekuensi dasar (50 HZ)). Dari grafik di atas juga terlihat tiap LHE memiliki nilai PF yang berbeda. Sampel LHE yang diambil untuk pengukuran ini adalah berdasarkan harga dari yang murah (LHE A) sampai yang mahal (LHE J). Dari sini dapat dilihat bahwa harga tidak memiliki hubungan terhadap nilai PF dan tiap produsen LHE memiliki standar nilai PF yang berbeda, hampir semuanya memiliki nilai PF diatas 0.85 baik PF pengukuran maupun PF displacement. Dari grafik juga terlihat lampu pijar memiliki PF pengukuran dan PF displacement sama dengan hal ini sesuai dengan jenis beban dari lampu pijar ini yaitu mendekati resistif murni sehingga tegangan dan arusnya sefasa. Pada kondisi sinusoidal faktor daya berhubungan dengan daya reaktif. Faktor daya mendekati satu maka daya reaktif yang dikonsumsi beban mendekati nol artinya beban hanya menyerap daya aktif saja. Untuk membandingkan PF sebenarnya (PF true) dengan PF pada frekuensi dasar (PF displacement) dapat dilihat pada grafik 3 PF. 0.8 0.6 0.4 0. 0 A PFdisp PFtrue B C D E F G Lampu H J LHE paralel PJAR Gambar 3. Grafik perbandingan PF true (PF sebenarnya) dengan PF displacement. Dari grafik 3 diatas terlihat nilai PF displacement lebih besar dibandingkan dengan PF true (PF sebenarnya) untuk setiap LHE dan LHE yang diparalel. Grafik ini menunjukkan bahwa nilai PF yang sebenarnya untuk semua LHE adalah dibawah 0.8 (sekitar 0.73). Dari sini dapat disimpulkan bahwa harmonik memiliki pengaruh yang jelek yaitu menurunkan nilai PF. Nilai PF yang sebenarnya sekitar 0.73 ini menunjukan hanya sekitar 73 % energi yang diubah menjadi cahaya. Untuk lampu pijar nilai PF sebenarnya (PF true) dengan PF pada frekuensi dasar (PF displacement) nya terlihat sama. Hal ini disebabkan beban linier nilai THD arusnya mendekati nol sehingga PF distorsinya bernilai satu dan dari persamaan.8 didapatkan nilai PF true_nya akan sama dengan PF displacement. Perbandingan PF sebenarnya (PF true) dengan PF distorsi dapat dilihat pada grafik 4 PF. 0.8 0.6 0.4 0. 0 PFdist PFtrue Lampu A B C D E F G H J LHE paralel PJAR Gambar 4. Grafik perbandingan PF distorsi dengan PF true (PF sebenarnya)

Pada grafik 4 di atas terlihat nilai PF sebenarnya (PF true) lebih kecil dibandingkan PF distorsi untuk setiap LHE begitu pula untuk semua LHE yang diparalel. Untuk memperbaiki faktor daya sebenarnya ini tidak bisa hanya dengan memasang kapasitor pada rangkaian ballastnya seperti menggunakan PFC (Power Factor Correction). Hanya faktor daya pada frekuensi dasar (PF displacement ) yang dapat dikompensasi dengan pemasangan kapasitor. Untuk mengkompensasi faktor daya sebenarnya (PF true), maka faktor daya distorsi harus dikompensasi terlebih dahulu. Untuk mengkompensasi faktor daya distorsi harus menggunakan filter baik aktif maupun pasif sehingga dapat dihasilkan faktor daya distorsi yang mendekati. Dari grafik 4 juga terlihat untuk lampu pijar PF distorsi dengan PF true (PF sebenarnya) sama dengan hal ini karena nilai THD arus hasil pengukuran lampu pijar ini sangat kecil (hanya.36 %). Untuk melihat hubungan THD arus terhadap PF pengukuran dapat dilihat pada grafik 5.05 0.95 0.9 0.85 0.8 0.75 PF A BC D E F PFpengukuran THD Lampu G H J LHE paralel PJAR 90 80 70 60 50 40 30 0 0 0 THD Gambar 5. Grafik THD arus terhadap PF pengukuran Dari grafik 5 di atas terlihat LHE yang memiliki THD arus yang besar nilai PF hasil pengukurannya juga besar dan sebaliknya LHE yang memiliki THD arus yang kecil nilai PF hasil pengukurannya juga kecil. Hal ini sesuai dengan persamaan.8 dengan asumsi PF true (PF sebenarnya) seragam untuk semua LHE yaitu 0.73 dan PF displacement nya adalah PF pengukuran maka PF pengukuran akan sebanding dengan akar dari THD arus yang dikuadratkan. Dari grafik 5 juga terlihat untuk lampu pijar nilai PF pengukurannya mendekati satu dengan THD arusnya mendekati nol. Hal ini karena lampu pijar ini adalah beban linier sehingga harmoniknya hamper tidak ada dan karena lampu pijar ini hamper resistif murni maka PF_nya mendekati satu. 7. Kesimpulan Harmonik tegangan pada LHE didominasi oleh harmonik orde ganjil dengan harmonik tegangan yang terbesar adalah pada orde ke_5 yaitu 5 x 50 Hz = 50 Hz. Rata-rata harmonik tegangan pada frekuensi ini sebesar.66 % dan masih dibawah batas maksimum standar EEE 59-99 (3% untuk tegangan dibawah 69 KV). Harmonik arus pada LHE juga didominasi oleh harmonik orde ganjil dengan harmonik arus yang terbesar adalah pada orde ke_3 yaitu 3 x 50 Hz = 50 Hz. Rata-rata harmonik arus pada frekuensi ini sebesar 7.55 % Harmonik pada LHE memiliki pengaruh yang buruk yaitu menurunkan nilai PF. Selain itu nilai PF sebenarnya (PF true) pada LHE lebih kecil dibandingkan PF distorsinya. Daftar Acuan [] Lampu Hemat Energi Menghemat Tenaga Listrik. Diakses 0 September 007, dari Kompas. http://kompas.com/kompas-cetak/0307/8/metro /45606.htm [] A Susana Kurniasih. Kampanye Hemat Energi, Efektifkah?. Diakses 0 September 007, dari LP. http://www.energi.lipi.go.id/utama.cgi?artikel&&7 [3] Roger C.Dugan, Mark F.McGranaghan, H.Wayne Beaty, Electrical Power System Quality (New York: McGraw-Hill,996), hal 7-30. [4] Coleman W. Smith, Jr, Power systems & harmonic factors causes, effects and remedies, EEE

Potensials, 078-6648/0, (Desember 00/Januari 00),hal 0. [5] W. Mack Grady, Surya Santoso, Understanding Power System Harmonics, EEE Power Engineering Review, 07-74/0, ( November 00), hal 8-0. [6] EEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, EEE 59-99, (5 Juni 004), hal 7,78. [7] W. Mack Grady, Robert J. Gilleskie, Harmonics and how they relate to power factor, Proc. of the EPR Power Quality ssues & Opportunities Conference (PQA 93),( November 993), hal -5.