DRAINASE PERKOTAAN SUMUR RESAPAN

dokumen-dokumen yang mirip
KEMAMPUAN SUMUR RESAPAN SELAMA EMPAT PULUH HARI PADA AWAL MUSIM HUJAN WILAYAH STUDI: KELURAHAN MALEBER KOTA BANDUNG

SISTEM DRAINASE PERKOTAAN YANG BERWAWASAN LINGKUNGAN

KAJIAN PENGEMBANGAN SUMUR RESAPAN AIR HUJAN

Pasal 6 Peraturan Menteri ini mulai berlaku pada tanggal ditetapkan.

TEKNOLOGI KONSERVASI AIR TANAH DENGAN SUMUR RESAPAN

SUMUR RESAPAN AIR HUJAN SEBAGAI WAHANA KONSERVASI AIR

KAJIAN EMPIRIS SUMUR RESAPAN PADA TANAH SILT

BAB II TINJAUAN PUSTAKA

Bab IV DRAINASE BERWAWASAN LINGKUNGAN

TATA CARA PEMANFAATAN AIR HUJAN

SOLUSI MENGATASI BANJIR DAN MENURUNNYA PERMUKAAN AIR TANAH PADA KAWASAN PERUMAHAN

BAB I PENDAHULUAN. 1.1.Latar Belakang Penelitian

STUDI PENERAPAN SUMUR RESAPAN DANGKAL PADA SISTEM TATA AIR DI KOMPLEK PERUMAHAN

BAB 2 KAJIAN PUSTAKA

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan

WALIKOTA PROBOLINGGO PROVINSI JAWA TIMUR

: 1. Pasal 18 ayat (6) Undang-Undang Dasar Negara Republik Indonesia Tahun 1945;

KONSEP PENGEMBANGAN SUMUR RESAPAN DI KAMPUNG HIJAU KELURAHAN TLOGOMAS KOTA MALANG

RANCANGAN DIMENSI SUMUR RESAPAN DI KELURAHAN MINOMARTANI, KECAMATAN NGAGLIK, KABUPATEN SLEMAN. Nur Wiryanti Sih Antomo

Berfungsi mengendalikan limpasan air di permukaan jalan dan dari daerah. - Membawa air dari permukaan ke pembuangan air.

Tersedia online di: Jurnal Teknik Lingkungan, Vol 4, No 4 (2015)

BAB I PENDAHULUAN. 1.1 Latar Belakang

Tabel 1.1: Persentase Rumah Tangga dengan Sumber Air Minum Bukan Leding menurut Provinsi untuk Wilayah Pedesaan. Perdesaan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan perumahan di perkotaan yang demikian pesatnya,

TUJUAN PEKERJAAN DRAINASE

ANALISIS REDUKSI LIMPASAN HUJAN MENGGUNAKAN METODE RASIONAL DI KAMPUS I UNVERSITAS MUHAMMADIYAH PURWOKERTO

INDOCEMENT AWARDS STR WRITING COMPETITION

SUMUR RESAPAN UNTUK OPTIMALISASI SUMBER DAYA AIR DI BOJONEGORO ABSORPTION WELLS TO WATER RESOURCE OPTIMALIZATION IN BOJONEGORO

Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir

Konservasi Airtanah. Sebuah Pemikiran Heru Hendrayana Doni Prakasa Eka Putra

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III LANDASAN TEORI

UCAPAN TERIMA KASIH. Denpasar, 26 Februari Penulis

BAB I PENDAHULUAN. cahaya matahari secara tetap setiap tahunnya hanya memiliki dua tipe musim

RANCANGAN SUMUR RESAPAN SEBAGAI UPAYA PENGENDALIAN ALIRAN LIMPASAN DI PERUMAHAN GRIYA TAMAN ASRI KABUPATEN SLEMAN

SISTEM SANITASI DAN DRAINASI

BAB III LANDASAN TEORI. A. Hidrologi

DRAINASE BAWAH PERMUKAAN (SUB SURFACE)

BAB 1 PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

IV. HASIL DAN PEMBAHASAN

RANCANGAN SUMUR RESAPAN AIR HUJAN SEBAGAI SALAH SATU USAHA KONSERVASI AIR TANAH DI PERUMAHAN DAYU BARU KABUPATEN SLEMAN DAERAH ISTIMEWA YOGYAKARTA

Tata cara perencanaan sumur resapan air hujan untuk lahan pekarangan

PERENCANAAN SUMUR RESAPAN AIR HUJAN UNTUK KONSERVASI AIR TANAH DI DAERAH PERMUKIMAN (STUDI KASUS DI PERUMAHAN RT

BAB II TINJAUAN PUSTAKA

SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE

SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE

Pengendalian Air Hujan di bangunan

BAB III LANDASAN TEORI

PERILAKU MASYARAKAT TERHADAP PENGGUNAAN DAN PELESTARIAN AIR DI LINGKUNGANNYA (Studi kasus di Daerah Aliran Sungai Garang, Semarang) Purwadi Suhandini

TUGAS TUTORIAL IRIGASI DAN DRAINASE Perhitungan Jarak Pipa Drainase dengan Drain Spacing. Oleh :

EVALUASI SISTEM DRAINASE JALAN LINGKAR BOTER KABUPATEN ROKAN HULU

BAB V HASIL PENELITIAN DAN PEMBAHASAN

BAB V PEMBAHASAN. menentukan tingkat kemantapan suatu lereng dengan membuat model pada

Drainase Lapangan Olahraga

BAB I PENDAHULUAN. Permasalahan tentang genangan atau banjir sudah sangat umum terjadi di kawasan

MENGELOLA AIR AGAR TAK BANJIR (Dimuat di Harian JOGLOSEMAR, Kamis Kliwon 3 Nopember 2011)

PENDAHULUAN. Berdasarkan data Bappenas 2007, kota Jakarta dilanda banjir sejak tahun

DAFTAR ISI. ABSTRAK... i. KATA PENGANTAR... ii. DAFTAR ISI... iv. DAFTAR TABEL... vii. DAFTAR GAMBAR... ix. A Latar Belakang...1

V. HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. A. Latar Belakang. Perkotaan merupakan pusat segala kegiatan manusia, pusat produsen, pusat

BAB IV HASIL DAN PEMBAHASAN. hidrologi dengan panjang data minimal 10 tahun untuk masing-masing lokasi

125 permukaan dan perhitungan erosi berasal dari data pengukuran hujan sebanyak 9 kejadian hujan. Perbandingan pada data hasil tersebut dilakukan deng

Air Hujan. Siklus hidrologi

ANALISIS VOLUME GENANGAN TERHADAP PERUBAHAN PENGGUNAAN LAHAN DAN PENANGGULANGANNYA BERBASIS KONSERVASI LINGKUNGAN (Studi Kasus di Kecamatan Kepanjen)

BAB V KESIMPULAN DAN REKOMENDASI PENELITIAN. temuan dan analisis terhadap area rawa yang direklamasi menjadi kawasan

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya,

I Dewa Gede Jaya Negara*, Anid Supriyadi*, Salehudin*

RENCANA SISTEM DRAINASE KOTA PARAKAN

BAB III LANDASAN TEORI. A. Hidrologi

HIDROSFER I. Tujuan Pembelajaran

INFO TEKNIK Volume 3 No. 1, Desember 2002 (24-34) Analisa Drainase Sumur Resapan Pada Kampus UNLAM Banjarbaru

PERSYARATAN JARINGAN DRAINASE

PENGARUH ARTIFICIAL RECHARGE MELALUI LOBANG RESAP BIOPORI TERHADAP MUKA AIR TANAH. Oleh: Pungut *) dan Sri Widyastuti**) Abstrak

EFEKTIFITAS MODEL SISTEM RESAPAN HORIZONTAL DENGAN PARIT INFILTRASI DALAM MENGURANGI LIMPASAN PERMUKAAN

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan negara kepulauan yang memiliki banyak sungai,

ABSTRAK PENDAHULUAN. Latar Belakang

PETUNJUK TEKNIS TATA CARA PEMBANGUNAN IPLT SISTEM KOLAM

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian

PENGARUH PERUBAHAN TATA GUNA LAHAN TERHADAP BESARNYA DEBIT(Q) PADA SUATU KAWASAN (STUDI KASUS PASAR FLAMBOYAN)

11/26/2015. Pengendalian Banjir. 1. Fenomena Banjir

Dosen Program Studi Teknik Sipil, Fakultas Teknik UNIB, Bengkulu

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB IV ANALISA DATA. = reduced mean yang besarnya tergantung pada jumlah tahun pengamatan. = Standard deviation dari data pengamatan σ =

BAB I: PENDAHULUAN 1.1 Latar Belakang

PETUNJUK TEKNIS TATA CARA PERENCANAAN IPLT SISTEM KOLAM

ASSALAMU'ALAIKUM WR. WB.

-1- KETENTUAN TEKNIS SPAM BJP

MEMAKSIMALKAN FUNGSI TAMAN SEBAGAI MEDIA RESAPAN AIR HUJAN

BAB I PENDAHULUAN. musim hujan, mengingat hampir semua kota di Indonesia mengalami banjir.

SUMUR RESAPAN UNTUK MENGURANGI GENANGAN AIR DAN BANJIR

III. METODE PENELITIAN. Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung

Manfaat Penelitian. Ruang Lingkup Penelitian

I. PENDAHULUAN. rendah. Studi mengenai aliran air melalui pori-pori tanah diperlukan dan

BAB III METODE PENELITIAN

Surface Runoff Flow Kuliah -3

PERENCANAAN DESAIN TANGKI SEPTIK KOMUNAL DI KAMPUNG CIHIRIS, DESA CISARUA KECAMATAN NANGGUNG, BOGOR

1. Alur Siklus Geohidrologi. dari struktur bahasa Inggris, maka tulisan hydrogeology dapat diurai menjadi

Perancangan Saluran Berdasarkan Konsep Aliran Seragam

Transkripsi:

DAINASE PEKOTAAN SUMU ESAPAN Novitasari,ST.,MT. TIK Mampu merancang sistem drainase sumur resapan

P E N G G A N T A Konsep dasar sumur resapan pada hakekatnya adalah memberikan kesempatan dan jalan pada air hujan yang jatuh diatap atau lahan yang kedap air untuk meresap ke dalam tanah dengan jalan menampung air tersebut pada suatu sistem resapan. Dengan adanya tampungan, maka air hujan mempunyai cukup waktu untuk meresap ke dalam tanah, sehingga pengisian tanah menjadi optimal. Manfaat Sumur esapan. Mengurangi air limpasan, sehingga jaringan drainase akan dapat diperkecil.. Mencegah adanya genangan air dan banjir. 3. Mempertahankan tinggi muka air tanah yang semakin hari semakin menurun, akibat defisit penggunaan air. 4. Mengurangi/menahan intrusi air laut bagi daerah yang berdekatan dengan wilayah pantai. 5. Mencegah penurunan/amblesan tanah (land subsidence), akibat pengambilan air tanah yang berlebihan. 6. Mengurangi pencemaran air tanah. 7. Menyediakan cadangan air untuk usaha tani bagi lahan di sekitarnya.

Komponen Bangunan Sumur esapan Saluran irigasi sebagai sumber air yang akan dimasukkan ke dalam sumur. Bak kontrol yang berfungsi untuk menyaring air sebelum masuk sumur resapan. Pipa pemasukan Sumur resapan Pipa pembuangan yang berfungsi sebagai saluran pembuangan jika air dalam sumur resapan sudah penuh. Komponen Bangunan Sumur esapan 3

Sumur esapan dengan Dinding Porous Sumur esapan dengan Dinding Kedap Air 4

Beberapa Ketentuan Konstruksi Sumur esapan. Sebaiknya letak berada diatas atau di arah hulu dari sumur-sumur gali yang akan dipelihara/ditingkatkan muka air tanahnya.. Untuk menjaga pencemaran air di aquifer kedalaman sumur resapan diatas kedalaman muka air tanah tidak tertekan (unconfined aquifer). 3. Pada daerah berkapur/karst perbukitan kapur dengan kedalaman tanah yang dangkal, kedalaman air tanah pada umumnya sangatlah dalam sehingga pembuatan sumur resapan sangatlah tidak direkomendasikan. Demikian pula sebaliknya di lahan pertanian pasang surut yang berair tanah sangat dangkal. 4. Untuk mendapatkan jumlah air yang memadai, sumur resapan harus memiliki tangkapan air hujan berupa suatu bentang lahan baik berupa lahan pertanian atau atap rumah. Beberapa Ketentuan Konstruksi Sumur esapan 5. Sebelum air hujan yang berupa aliran permukaan masuk kedalam sumur melalui sebuah parit, sebaiknya dilakukan penyaringan air di bak kontrol terlebih dahulu. 6. Bak kontrol terdiri-dari beberapa lapisan berturut-turut adalah lapisan gravel (kerikil), pasir kasar, pasir dan ijuk. 7. Penyaringan ini dimaksudkan agar partikel-partikel debu hasil erosi dari daerah tangkapan air tidak terbawa masuk ke sumur sehingga tidak menyumbat pori-pori lapisan aquifer yang ada. 8. Untuk menahan tenaga kinetis air yang masuk melalui pipa pemasukan, dasar sumur yang berada di lapisan kedap air dapat diisi dengan batu belah atau ijuk. 5

Beberapa Ketentuan Konstruksi Sumur esapan 9. Pada dinding sumur tepat di depan pipa pemasukan, dipasang pipa pengeluaran yang letaknya lebih rendah dari pada pipa pemasukan untuk antisipasi terjadi luapan air di dalam sumur. 0Diameter sumur bervariasi tergantung besarnya curah hujan, luas tangkapan air, konduktifitas hidrolika, tebal dan daya tampung lapisan aquifer. Umumnya berkisar antara,5m. Tergantung pada tingkat kondisi lapisan tanah dan ketersediaan dana yang ada, dinding sumur dapat dilapis. ebih baik bila dibuat lubang air dapat meresap juga secara horizontal.. Untuk menghindari terjadinya gangguan maka bibir sumur dapat dipertinggi atau ditutup dengan papan/plesteran. aktor yang menentukan Dimensi Sumur esapan luas permukaan penutup lahan, yaitu lahan yang airnya akan ditampung dalam sumur resapan meliputi luas atap, lapangan parkir dan perkerasan-perkerasan lainnya. Karakteristik hujan, meliputi intensitas hujan, lama hujan, salang waktu hujan. Makin tinggi hujan dan makin lama berlangsungnya hujan memerlukan volume sumur resapan makin besar. 6

Cont. Koefisien permeabilitas tanah, yaitu kemampuan tanah dalam melewatkan air persatuan waktu. Tanah berpasir mempunyai koefisien yang lebih tinggi dibandingkan tanah berlempung. Tinggi muka air tanah. Pada kondisi muka air tanah yang dalam, sumur resapan perlu dibuat secara besar-besaran karena tanah benar-benar memerlukan pengisian air melalui sumur-sumur resapan, sebaliknya pada lahan dengan muka air dangkal, pembuatan sumur resapan kurang efektif, terutama pada daerah pasang surut atau daerah rawa dimana air tanahnya sangat dangkal. Bila muka air tanah kurang dari 5 m, maka konstruksi yang dipakai adalah parit peresapan air hujan. S. E S A P A N 7

Dimensi Sumur esapan :. itbang Pemukiman PU (990). MT-ITB (990) 3. Sunjoto (988) itbang Pemukiman PU (990) Pusat penelitian dan Pengembangan Permukiman PU (990) telah menyusun standar tata cara perencanaan teknis sumur resapan air hujan untuk lahan pekarangan yang dituangkan dalam SK SNI T-06-990. ormula ini dibangun berasaskan keseimbangan statik, sbb: At IT As KT A PKT = kedalaman/tinggi air dalam sumur (m) I = intensitas hujan (m/jam) At = uas tadah, berupa luas bidang atap atau permukaan yang diperkeras (m) As = luas tampungan sumur (m) P = keliling sumur (m) K = koefisien permeabilitas tanah (m/jam) T = durasi hujan (jam) : adius sumur (m) s 8

MT-ITB (990) Model ini berdasarkan pada asas keseimbangan statis yang dibangun berdasarkan formulasi empiris yang menghitung dimensi sumur resapan yang mendasarkan konsep V. Breen bahwa hujan terkonsentrasi adalah 90% dan konsep orton bahwa air yang meresap alami adalah sebesar 30% jadi yang harus diresapkan adalah sebesar 70% maka formula: p 4 j At.0,7.0,9. / 4. d.79 / dengan: / 4. d.000 = tinggi air dalam sumur (m) At = luas bidang atap (m) d = dimensi sumur (0,80,40 m) p = aktor perkolasi (menit/cm) 4j = curah hujan terbesar dalam 4 jam (mm/hr) 0,7 = air hujan yang diresapkan sebesar 70% (orton) 0,9 = hujan terkonsentrasi sebesar 90% (V.Breen) /6 = faktor konversi dari 4 jam ke 4 jam (V.Breen) / 6 S U N J O T O 9 8 8 Secara teoritis, volume dan efisiensi sumur resapan dapat dihitung berdasarkan keseimbangan air yang masuk kedalam sumur dan air yang meresap kedalam tanah dan dapat ditulis sebagai berikut: Q KT exp K dengan, : tinggi muka air dalam sumur (m) Q : debit air masuk (m3/j) : faktor geometrik (m) K : koefisien permeabilitas tanah (m/j) T : Durasi Dominan ujan (j) : adius sumur (m) 9

aktor Geometrik Sumur aktor geometrik yang pertama diperkenalkan oleh orchheimer (930) untuk menghitung permeabilitas tanah adalah besaran yang mewakili keliling serta luas tampang sumur, gradien hidraulik, keadaan perlapisan tanah serta kedudukan sumur terhadap perlapisan tersebut serta porositas dinding sumur yang dinyatakan dalam besaran radius sumuran. Berbentuk bola, seluruh lapisan tanah porus (Samsioe, 93; Dachler, 936; Aravin, 965) 4. Dasar setengah bola, lapisan tanah bawah porus atas kedap air (Samsioe, 93; Dachler, 936; Aravin, 965) 3. Dasar ata, lapisan tanah bawah porus atas kedap air (orchheimer, 930; Dachler, 936; Aravin, 965) 4 Cont. 4. Dasar setengah bola, seluruh lapisan tanah porus (Sunjoto, 996) 5. Dasar rata, seluruh lapisan tanah porus, arza (935) memberikan = 4,8 s/d 5,6, Taylor (948) menghasilkan = 5,7 dan vorslev (95) memberikan kesepakatan = 5,5. Sedangkan menurut Sunjoto (989) 6. Dasar setengah bola, dinding bawah sumur porus, lapisan tanah bawah porus dan atas kedap air (Sunjoto, 996) ln n 7. Dasar rata, dinding bawah sumur porus pada lapisan tanah bawah porus dan atas kedap air menurut Dachler (936) ln Sedangkan menurut Sunjoto (996) ln ln 0

8. Dasar setengah bola, dinding bawah sumur porus dan seluruh lapisan tanah porus menurut Sunjoto (996) 9. Dasar rata, dinding bawah sumur porus dan seluruh lapisan tanah porus menurut Dachler (936) Sedangkan menurut Sunjoto (996) 0. Dasar setengah bola, seluruh dinding sumur porus dan seluruh lapisan tanah porus menurut Sunjoto (996). Dasar rata, seluruh dinding sumur porus dan seluruh lapisan tanah porus menurut Sunjoto (996) ln ln ln ln ln ) ( 5 5 ) ( ln ln 5 5 ) ( ln ln ) (