IDENTIFIKASI SOURCE-TERM REAKTOR SERBA GUNA-G.A. SIWABESSY UNTUK KESELAMATAN OPERASIONAL

dokumen-dokumen yang mirip
ANALISIS KUANTITATIF SOURCE-TERM RSG-GAS PADA OPERASI DAYA 15 MW. Jaja Sukmana, Jonnie Albert Korua, Sinisius Suwarto

PE E TUA SOURCE-TERM TAHU A DI REAKTOR GA. SIWABESSY

ANALISIS LIMBAH RESIN DI REAKTOR SERBA GUNA GA. SIWABESSY TAHUN 2008

KARAKTERISTIK BAHAN BAKAR BEKAS BERBAGAI TIPE REAKTOR. Kuat Heriyanto, Nurokhim, Suryantoro Pusat Teknologi Limbah Radioaktif

PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Kadarusmanto, Purwadi, Endang Susilowati

ANALISIS LEPASAN RADIOAKTIF DI RSG GAS

ANALISIS KONSENTRASI I-131 LEPASAN UDARA CEROBONG DI REAKTOR SERBA GUNA GA. SIWABESSY

RANCANGAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN 2012 TENTANG TINGKAT KLIERENS

PENENTUAN FAKTOR KOREKSI DOSIS RADIASI ELEMEN BAKAR BEKAS RSG-GAS Ardani *)

REFUNGSIONALISASI SISTEM PEMANTAU RADIASI BETA AEROSOL DAN ALPHA-BETA AEROSOL RSG-GA

PENGENDALIAN PAPARAN RADIASI NEUTRON DI KANAL HUBUNG PRSG PSTBM PADA SAAT REAKTOR RSG-GAS BEROPERASI

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

NUCLEAR CHEMISTRY & RADIOCHEMISTRY

KAJIAN BAKU TINGKAT RADIOAKTIVITAS DI LINGKUNGAN UNTUK CALON PLTN AP1000

PENGENDALIAN DAERAH KERJA PAPARAN RADIASI GAMMA DI RSG GAS

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA

BAB I PENDAHULUAN. umat manusia kepada tingkat kehidupan yang lebih baik dibandingkan dengan

PENGARUH IRADIASI BATU TOPAS TERHADAP KUALITAS AIR PENDINGIN PRIMER DAN KESELAMATAN RSG-GAS

REAKTOR PEMBIAK CEPAT

A ALISIS LIMBAH RESI PE UKAR IO SISTEM PEMUR IA AIR PE DI GI PRIMER RSG-GAS*

ANALISIS DETERMINISTIK DAMPAK KECELAKAAN REAKTOR KARTINI TERHADAP KONSENTRASI RADIONUKLIDA DI TANAH MENGGUNAKAN SOFTWARE PC-COSYMA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN OPERASI REAKTOR NONDAYA

PENENTUAN INTENSITAS SUMBER GAMMA DI TERAS REAKTOR RISET BERBAHAN BAKAR URANIUM MOLIBDENUM ABSTRAK

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2013 TENTANG NILAI BATAS RADIOAKTIVITAS LINGKUNGAN DENGAN RAHMAT TUHAN YANG MAHA ESA

STUDI TI GKAT RADIOAKTIVITAS DA PA AS PELURUHA BAHA BAKAR BEKAS REAKTOR AIR RI GA SEBAGAI FU GSI WAKTU

DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR,

BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2009 TENTANG DEKOMISIONING REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA

BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN

PRODUKSI IODIUM-125 MENGGUNAKAN TARGET XENON ALAM

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA DENGAN RAHMAT TUHAN YANG MAHA ESA

PENENTUAN WAKTU SAMPLING UDARA UNTUK MENGUKUR KONTAMINAN RADIOAKTIF BETA DI UDARA DALAM LABORATORIUM AKTIVITAS SEDANG

Hasil Penelitian dan Kegiatan PTLR Tahun 2012 ISSN

- 1 - PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR TAHUN 20 TENTANG NILAI BATAS RADIOAKTIVITAS LINGKUNGAN DENGAN RAHMAT TUHAN YANG MAHA ESA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 8 TAHUN 2016 TENTANG PENGOLAHAN LIMBAH RADIOAKTIF TINGKAT RENDAH DAN TINGKAT SEDANG

2011, No BAB I KETENTUAN UMUM Pasal 1 Dalam Peraturan Kepala Badan Pengawas Tenaga Nuklir ini, yang dimaksud dengan: 1. Reaktor nondaya adalah r

PENENTUANSOURCE-TEKMTAHUNAN DI REAKTOR GA. SIW ABESSY

PEMANTAUAN LINGKUNGAN DI SEKITAR PUSAT PENELITIAN TENAGA NUKLIR SERPONG DALAM RADIUS 5 KM TAHUN 2005

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION

KETENTUAN KESELAMATAN DEKOMISIONG REAKTOR NUKLIR 1

EVALUASI PELAKSANAAN PEMINDAHAN SPENT FUEL DARI INSTALASI RADIOMETALURGI KE KH-IPSB3 TAHUN 2010

PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLIR. Pusat Teknologi Akselerator dan Proses Bahan Yogyakarta, Rabu, 11 September 2013

Jurnal Radioisotop dan Radiofarmaka ISSN Journal of Radioisotope and Radiopharmaceuticals Vol 10, Oktober 2007

STUDI LIMBAH RADIOAKTIF YANG DITIMBULKAN DARI OPERASIONAL PLTN PWR 1000 MWe

EVALUASI LEGALISASI KEGIATAN PENGENDALIAN DAERAH KERJA RADIASI DI LINGKUNGAN RSG-GAS

PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL. Mochamad Imron, Ariyawan Sunardi

KAJI NUMERIK DAMPAK RADIOLOGIS LINGKUNGAN JANGKA PENDEK AKIBAT KECELAKAAN REAKTOR NUKLIR DENGAN PROGRAM PC COSYMA

EVALUASI KEGIATAN PROTEKSI RADIASI DALAM PROSES PEMINDAHAN BAHAN PASCA IRADIASI

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

STUDI PEMANTAUAN EMISI UDARA RADIOAKTIF DARI CEROBONG PLTN KE LINGKUNGAN DAN KAJIAN KENDALI KUALITASNYA

BADAN TENAGA NUKLIR NASIONAL 2012

PERTIMBANGAN DALAM PERANCANGAN PENYIMPANAN BAHAN BAKAR BEKAS SECARA KERING. Dewi Susilowati Pusat Teknologi Limbah Radioaktif

DISAIN KONSEPSUAL PROGRAM MANAGEMEN DEKOMISIONING REAKTOR RISET

PENGGUNAAN COMPUTER CODE ORIGEN 2 UNTUK ESTIMASI PERHITUNGAN RADIONUKLIDA PADA KOMPONEN REAKTOR RISET TRIGA MARK II *)

ANALISIS PERHITUNGAN IRADIASI TARGET PRASEODIMIUM DI REAKTOR SERBA GUNA -GA SIWABESSY

EVALUASI KINERJA SISTEM KESELAMATAN REAKTOR RSG-GAS SELAMA BEROPERASI 25 TAHUN

ANALISIS IRADIASI TARGET KALIUM BROMIDA DI REAKTOR SERBA GUNA-GA SIWABESSY

KAJIAN KESELAMATAN PADA PROSES PRODUKSI ELEMEN BAKAR NUKLIR UNTUK REAKTOR RISET

1BAB I PENDAHULUAN. sekaligus merupakan pembunuh nomor 2 setelah penyakit kardiovaskular. World

BAB V Ketentuan Proteksi Radiasi

2 instalasi nuklir adalah instalasi radiometalurgi. Instalasi nuklir didesain, dibangun, dan dioperasikan sedemikian rupa sehingga pemanfaatan tenaga

BAB I PENDAHULUAN. I. 1. Latar Belakang

RANCANGAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG ASPEK PROTEKSI RADIASI DALAM DESAIN REAKTOR DAYA

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

NILAI BATAS LEPASAN RADIOAKTIVITAS KE LINGKUNGAN

PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE

Kata kunci: sumber radiasi, material, pascairadiasi

ANALISIS AEROSOL RADIOAKTIF DI BALAI OPERASI RSG GAS

PERSYARATAN PENGANGKUTAN LIMBAH RADIOAKTIF

KEGIATAN PEMINDAHAN BAHAN BAKAR NUKLIR BEKAS DAN MATERIAL TERIRRADIASI DI KH-IPSB3 TH

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

KEPALA BADAN PENGAWAS TENAGA NUKLIR,

ASPEK KESELAMATAN RADIASI TEMPAT PENYIMPAN BAHAN BAKAR TERIRRADIASI DI BULKSHIELDING

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 10 TAHUN 2008 TENTANG IZIN BEKERJA PETUGAS INSTALASI DAN BAHAN NUKLIR

2011, No BAB I KETENTUAN UMUM Pasal 1 Dalam Peraturan Kepala Badan Pengawas Tenaga Nuklir ini, yang dimaksud dengan: 1. Reaktor nondaya adalah r

PEMANTAUAN RADIOAKTIVITAS UDARA BUANG INSTALASI RADIOMETALURGI TAHUN 2008

PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam. Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo

RADIOAKTIVITAS IODIUM-126 SEBAGAI RADIONUKLIDA PENGOTOR DI KAMAR IRADIASI PADA PRODUKSI IODIUM-125. Rohadi Awaludin

ANALISIS PERUBAHAN MASSA BAHAN FISIL DAN NON FISIL DALAM TERAS PWR

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

Jurnal Pendidikan Fisika Indonesia 6 (2010) 30-34

KAJIAN LAJU PAPARAN RADIASI PADA TITIK PENGUKURAN DI REAKTOR KARTINI SEBAGAI DASAR PENENTUAN KONDISI BATAS OPERASI (KBO)

ANALISIS AKTIVITAS ISOTOP MO-99 DI REAKTOR RSG-GAS. Sri Kuntjoro Pusat Teknologi dan Keselamatan Reaktor Nuklir BATAN

GANENDRA, Vol. V, No. 1 ISSN STUDI PRODUKSI RADIOISOTOP Mo-99 DENGAN BAHAN TARGET LARUTAN URANIL NITRAT PADA REAKTOR KARTINI ABSTRAK

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong

KOMPARASI HASIL PERHITUNGAN INVENTORI HASIL FISI TERAS PLTN PWR 1000 MWE ANTARA ORIGEN2.1 DENGAN ORIGEN-ARP ABSTRAK

KESELAMATAN REAKTOR NUKLIR REAKTOR SERBA GUNA G.A. SIWABESSY (RSG-GAS)

VERIFIKASI DISTRIBUSI FAKTOR PUNCAK DAYA RADIAL TERAS 60 BOC REAKTOR RSG-GAS

Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 2 TAHUN 2014 TENTANG PERIZINAN INSTALASI NUKLIR DAN PEMANFAATAN BAHAN NUKLIR

STUDI TINGKA T RADIOAKTIVIT AS DAN PANAS PELURUHAN BAHAN BAKAR BEKAS REAKTOR AIR RINGAN SEBAGAI FUNGSI W AKTU

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 2 TAHUN 2014 TENTANG PERIZINAN INSTALASI NUKLIR DAN PEMANFAATAN BAHAN NUKLIR

PEMBUATAN NANOPARTIKEL EMAS RADIOAKTIF DENGAN AKTIVASI NEUTRON

BAB I PENDAHULUAN. terutama dipenuhi dengan mengembangkan suplai batu bara, minyak dan gas alam.

KARAKTERISASI RADIONUKLIDA PADA TIAP SUB-SISTEM KESELAMATAN REAKTOR DAYA BERBAHAN BAKAR MOX

PENANGANAN LIMBAH DI RSG-GAS SELAMA LIMA TAHUN PERTAMA OPERASI

Transkripsi:

IDENTIFIKASI SOURCE-TERM REAKTOR SERBA GUNA-G.A. SIWABESSY UNTUK KESELAMATAN OPERASIONAL JAJA. SUKMANA, MASHUDI, JONNIE A. KORUA Pusat Reaktor Serba Guna-BATAN Kawasan Puspitek Serpong, Tangerang 15310, Banten lp. 021.7560908, Faks. 7560573 Abstrak IDENTIFIKASI SOURCE-TERM REAKTOR SERBA GUNA-G.A. SIWABESSY UNTUK KESELAMATAN OPERASIONAL. lah dilakukan identifikasi source-term reaktor nuklir jenis reaktor riset sebagai bagian dari analisis terhadap keselamatan industrialisasi nuklir. Source term di reaktor nuklir berasal dari teras reaktor aktif, elemen bakar bekas, pendingin reaktor, udara di reaktor, dan fasilitas percobaan. Source-term reaktor nuklir di lingkungan Batan berupa radionuklida hasil fisi dapat diperhitungkan menggunakan paket program ORIGEN-2. Sistem keselamatan nuklir yang menyangkut keselamatan instalasi, proteksi radiasi, lepasan radiasi ke lingkungan menjadi bagian yang penting diterapkan pada setiap fasilitas nuklir. Dan source-term serta pengendaliannya ini dapat dijadikan acuan untuk keselamatan fasilitas industrialisasi nuklir di masa sekarang. Kata kunci: source-term, radionuklida, keselamatan nuklir Abstract IDENTIFY SOURCE-TERM OF MULTIPURPOSE REACTOR-G.A. SIWABESSY FOR OPERATIONAL SAFETY. Has been identified source-term of nuclear reactor of research reactor type as part to analysis for safety of nuclear industrialization. Source rm in nuclear reactor come from core of active reactor, spent fuel, reactor cooling system, air in reactor, and the experiment facility. Source-rm of nuclear reactor at Batan in the form of radionuclide result of fissile can calculated of use packet ORIGEN-2 program. System of nuclear safety which is concerning installation safety, radiation of protection, radiation release to environment become important applied in each facility of nuclear. And Source-rm and also its control referable for the safety facility of nuclear industrialization in a period of now. Keywords : source-term, radionuclide, nuclear of safety PENDAHULUAN naga nuklir sebagai pengganti energi jenis lain semakin dibutuhkan, begitu pula aplikasi teknologi nuklir semakin banyak digunakan dan diperlukan untuk kemakmuran dan kemajuan bangsa. Pemanfaatan nuklir terbesar di Indonesia hingga saat ini ialah dengan berdirinya reaktor riset di Bandung, Yogyakarta, dan Serpong-Banten. Sebagai suatu reaktor riset dan untuk produksi radioisotop tentu saja reaktor Serba Guna G.A. Siwabessy (RSG-GAS) Serpong berupaya agar operasionalnya memenuhi keperluan pengguna. Namun demikian keselamatan harus menjadi prioritas utama seperti tertuang dalam kebijakan Kepala Batan tentang keselamatan fasilitas nuklir. Berkenaan dengan keselamatan radiologi operasional, setiap reaktor menuangkan Kebijakan Proteksi Radiasi dalam Safety Analisys Raport (SAR) yang mendukung tujuan proteksi radiasi seperti tercantum dalam Keputusan Kepala Bapeten N0.05/Ka- BAPETEN/V-99 tentang Ketentuan Keselamatan Desain Reaktor Penelitian dan 575 Sekolah Tinggi knologi Nuklir - BATAN

Keputusan Kepala Bapeten N0.01/Ka- BAPETEN/V-99 tentang Ketentuan Keselamatan Kerja rhadap Radiasi. Paparan radiasi yang ditimbulkan oleh operasi reaktor dijaga dan dikendalikan agar dosis yang diterima oleh personil pengoperasi atau masyarakat umum harus serendah mungkin (prinsip ALARA: As low as reasonable achievable). Untuk menjamin bahwa paparan operasional serendah mungkin, reaktor dilengkapi dengan prosedur administratif dan fasilitas/peralatan keselamatan diri. Desain peralatan sistem keselamatan ini membutuhkan data source-term (sumber radiasi) reaktor sebagai dasar untuk perhitungan. Sehubungan dengan itu dalam tulisan ini akan diuraikan source-term reaktor riset (RSG-GAS) sebagai pembanding dan antisipasi untuk perhitungan keselamatan dalam menyongsong era industrialisasi nuklir atau PLTN di Indonesia. TEORI Sumber radiasi di reaktor umumnya berawal dari reaksi fisi elemen bakar reaktor. Reaksi fisi yang seterusnya menjadi reaksi berantai terkendali, dua diantaranya menghasilkan neutron dan radiasi foton gamma. Neutron thermal dan epithermal serta foton gamma mengiradiasi radionuklida di sekitarnya sehingga menimbulkan zat radioaktif yang juga memancarkan radiasi atau meluruh sesuai karakterisasi radionuklida yang terbentuk. Skema reaksi fisi berantai, digambarkan secara umum sebagai berikut: ' 1 2 + X + n Y + Y + n ( 2,3) Ε ' X + n Y + Y + n ( 2,3) + Ε 1 2 " Keterangan: X : radionuklida (bahan) fisil Y : radionuklida hasil fisi n,n,n : neutron (pertama, kedua, dan seterusnya) E : energi nuklir (f. gamma, panas, cahaya dll) Reaksi fisi di teras reaktor mengakibatkan terjadi reaksi berantai dan iradiasi terhadap segala bahan yang berada dalam jangkauan neutron atau terjadinya radiasi primer dan radiasi sekunder di teras. Dari teriradiasinya struktur teras, bahan/sampel, pendingin reaktor, dan komponen lainnya maka radionuklida yang terbentuk harus dianalisis serta harus diantisipasi pengaruhnya terhadap lingkungan di reaktor ataupun ke luar gedung reaktor. Radiasi yang terpantau umumnya dihitung dan terukur dengan satuan laju dosis (mrem/jam), konsentrasi aktivitas (Ci/m 3 ) atau laju pelepasan (Ci/jam). Sedangkan aktivitas radionuklida hasil hitungan diperoleh dalam satuan Curie (Ci). Susunan material dan sistem reaktor riset yang perlu diperhitungkan pada RSG-GAS dapat dilihat pada Gambar 1. Aktivitas radionuklida yang timbul akibat operasional reaktor dihitung menggunakan program ORIGEN-2. Paket program komputer ini telah menjadi suatu kebutuhan pokok di reaktor nuklir di lingkungan Batan dan digunakan pula pada tipe reaktor konvensional seperti PWR, BWR, LMFBR, dan Candu [2]. Program ORIGEN-2 menghitung akumulasi radioaktif dan peluruhan sejumlah besar nuklida-nuklida. Bank data program ini, diantaranya meliputi umur paruh, skema peluruhan, penampang lintang serapan neutron, dan data jenis-jenis radionuklida. Gambar 1. Reaksi Fisi Berantai Sekolah Tinggi knologi Nuklir - BATAN 576

Gambar 2. Sistem dan Material Reaktor Riset (RSG-GAS) Keterangan: 1. teras reaktor 2. batang kendali 3. ruang tunda 4. pendingin sekunder 5. pendingin primer 6. penukar panas 7. katup isolasi 8. gedung reaktor sebagai pengungkung lepasan ZRA 9. kolam bahan bakar segar Source-term reaktor nukir harus dikendalikan, baik dengan secara desain material (sheilding) atau pengungkung dan secara teknis. Dari Gambar 1, terungkap bahwa timbulnya source-term dijaga dengan sistem keselamatan berlapis. Semua peralatanperalatan pengungkung reaktor, sistem ventilasi, dan perisai biologi yang mengelilingi teras reaktor serta sistem lapisan air hangat reaktor dan tangki tunda ditujukan agar paparan operasional serendah mungkin. METODOLOGI Metode dalam pelaksanaan identifikasi dan evaluasi source-term ini meliputi: 1. Penyusunan dan pemeriksaan data mengenai: a. komponen dan meterial reaktor. rutama data jenis bahan bakar reaktor, material-material sekitar teras reaktor termasuk sistem pendingin reaktor. b. Studi terhadap perangkat program ORIGEN2. Data inisial input untuk paket ini diantaranya: fluks neutron, waktu iradiasi, radionuklida target, dan decay (peluruhan). Sedangkan output yang dihasilkan dapat berupa: aktivitas, radioisotop, sisa bakar, thermal power, dsb [5]. Data hasil program ini telah menjadi dokumen yang diantaranya berada dalam LAK RSG-GAS. 2. Evaluasi dan pembandingan data dari: a. Laporan analisis keselamatan RSG- GAS. Data mengenai sumber radiasi potensial di reaktor, dalam LAK revisi 9 diuraikan dalam Bab XII. Untuk lebih memudahkan evaluasi data hasil perhitungan ORIGEN-2 dipilah-pilah sehingga diperoleh hasil yang lebih signifikan. b. Tinjauan pustaka dan evaluasi terhadap laporan sumber radiasi atau paparan radiasi lingkungan. 3. Menampilkan data-data penting sourceterm reaktor, memberikan evaluasi dan saran dari segi keselamatan serta memberikan kesimpulan yang mendukung perlu berkembangnya industrilisasi nuklir dengan mengutamakan keselamatan. HASIL Data source-term reaktor riset dari hasil perhitungan desain disajikan dalam bentuk tabel-tabel. Tabel 1: Rincian produk fisi dari elemen bakar reaktor. Tabel 2: Konsentrasi dan laju lepasan radionuklida penting di Balai Reaktor (perhitungan model untuk hasil fisi). Tabel 3: Laju lepasan pada cerobong (perhitungan model). 577 Sekolah Tinggi knologi Nuklir - BATAN

1,E+06 1,E+05 1,E+04 1,E+03 1,E+02 Ce As As As As SeSe Br Br BrBr Kr Kr Kr Kr Rb Sr Y Zr Sr ZrNb Nb Mo Sr Nb Tc RbRb Y Y Mo Tc Ru Rh Mo Sr Y Nb Nb Ru Rh Rh Ru Sn Ag Pd Sn Sn Sb Sb Sb Xe I I I I Xe Xe XeXe Xe Cs Cs Cs Cs Ba BaLa Ce Ce Ba La La Ce Ce Pr Pr Pr Pr Pr Pr Nd Nd Nd 1,E+01 Curie 1,E+00 Zn Ga Ce As Se 1,E-01 1,E-02 Se 1,E-03 1,E-04 1,E-05 Radionuklida Gambar 3. Unsur Hasil Fisi U-235 di Reaktor 1,6E+06 1,4E+06 1,2E+06 1,0E+06 aktivitas, Ci 8,0E+05 6,0E+05 4,0E+05 2,0E+05 0,0E+00 1 10 100 1000 10000 100000 1000000 10000000 100000000 Waktu, s Gambar 4. Jumlah Aktivitas Radionuklida Hasil Fisi U-235 di Reaktor Hasil perhitungan ORIGEN-2, yang ditunjukkan dengan kedua Gambar di atas sebagai hasil fisi elemen bakar Uranium-Oksida mengeluarkan radionuklida dengan aktivitas signifikan. Gambar 3 menunjukkan berbagai jenis radionuklida produk fisi dengan aktivitas totalnya masing-masing sedangkan pada Gambar 4 kondisi aktivitas dari radionuklida Sekolah Tinggi knologi Nuklir - BATAN 578

berdasar waktu. Radionuklida yang aktivitasnya cukup tinggi pada 10.000 s (2,8 jam) diantaranya: Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Rh,, I, Xe, Ba, La, Ce, Pr, dan Nd. Sedangkan yang terhitung masih beraktivitas signifikan pada 1e+8 s (3,2 tahun) adalah Kr-85, Sr-90, Y- 90, Ru-105, Rh-106, Sb-125, -125m, Cs-134, Cs-137, Ba-137m, Ce-144, dan Pr-144. Dari Tabel 2, radionuklida yang berada di Balai Reaktor terpantau jenis halogenida dan gas mulia dengan konsentrasi yang cukup rendah. Jumlah laju aktivitas halogenida berkisar 1e-10 Ci/m 3 dan jumlah laju aktivitas gas mulia sekitar 6e-6 Ci/m 3. Laju aktivitas radiasi lebih besar terhitung berada di bagian sistem ventingnya. Dari Tabel 3, zat radioaktif yang lepas ke cerobong terukur dalam laju aktivitas juga yaitu halogenida (Iodine, Brom) 1,5e-6 Ci/jam dan gas mulia (Kripton, Xenon) dalam jumlah 8,5e-2 Ci/jam sedangkan jenis unsur lainnya terhitung lebih rendah dalam jumlah 3,6e-9 Ci/jam. Menurut hasil penelitian tahun 1999 [4], radionuklida yang memberikan sumbangan terbesar pada radioaktivitas air kolam (hasil paket program CADRMOD1) adalah Argon-41 dan Na-24, sedangkan radionuklida yang terindikasi (hasil ukur saat itu) di udara di balai operasi adalah Ar-41 dan Xe-135. Konsentrasi Ar-41, di kolam reaktor terhitung 7,38e-3Ci/m 3. Sumber-sumber radiasi di reaktor menurut desain reaktor, dalam hal ini RSG- GAS berasal dari: elemen bakar (U 3 O 8 ), teras reaktor, air pendingin, ZRA terbawa udara, dan dari fasilitas percobaan. Dalam pendingin primer, terjadi aktivasi air kolam, aktivasi kandungan garam, pembentukan tritium, aktivasi gas dalam air (Ar-41), aktivasi C-14 di air, kontaminasi pelat elemen bakar, aktivasi struktur korosi [1]. Sedangkan dalam fasilitas percobaan dapat terjadi aktivasi gas mulia hasil fisi, halogenida, aerosol radioaktif. Sumber radiasi pada fasilitas ini bergantung pada perbedaan dan jumlah percobaan radiasi selama masa operasi. Misalnya di RSG-GAS tersedia fasilitas Hot cell, rabbit system, PRTF, dan radiografi neutron, serta bergantung pada posisi iradiasi di teras dan reflektor. PEMBAHASAN Sumber gamma yang timbul serentak dari fisi dan proses penangkapan neutron serta proses peluruhan produk fisi disebut sebagai gamma primer. Total kerapatan sumber gamma di daerah aktif teras [1] adalah 1,36e+14MeV/s.cm 3. Radiasi gamma ini diantisipasi dengan air kolam atau perisai biologis. Sedangkan nuklida produk fisi dan aktinida dari elemen bakar serta nuklida teraktivasi dari sistem pendingin diperpanjang waktu alirannya (45 s) dengan menempatkan tangki tunda sebelum pipa/pompa pendingin primer. Perbedaan tekanan antara sistem pendingin primer dan sekunder sedemikian hingga hanya ada kesempatan kecil pendingin primer yang dipindah ke pendingin sekunder dalam hal bocornya penukar panas. Selain itu, dekat alat penukar panas dipasang sensor konsentrasi aktivitas γ (gamma) sebagai pengendali operasi pendinginan. Gas radioaktif, gas mulia, halogenida, dan aerosol radioaktif sebelum dibuang ke cerobong terlebih dahulu mendapat hambatan, misalnya dengan sistem pemurnian air kolam, lapisan air hangat, dan filter-filter dalam sistem ventilasi. Sumber radiasi yang sangat potensial ini, ternyata terkendali. rbukti dengan hasil pelaksanaan pemantauan lingkungan di sekitar RSG-GAS sejak dioperasikan 1987 hingga sekarang. Hasil pemantauan berdasarkan evaluasi secara statistika, metode pembobotan dan pembandingan terhadap baku mutu radioaktivitas di lingkungan, menunjukkan bahwa [3] : 1. laju dosis dan dosis kumulatif di udara di sekitar RSG-GAS, dan lepas kawasan tidak menunjukkan adanya perubahan ataupun kecenderungan peningkatan. 2. tidak teramati adanya radionuklida hasil fisi ataupun aktivasi dalam komponen lingkungan di sekitar reaktor dan lepas kawasan, yang teramati umumnya adalah radionuklida alam dan radionuklida jatuhan dari percobaan bom nuklir di atmosfer yang konsentrasinya sangat rendah. 3. berdasar kedua data di atas menyatakan bahwa tidak terjadi peningkatan penerimaan dosis oleh anggota masyarakat yang berada di sekitar reaktor. Dengan demikian, maka dapat dikatakan bahwa paparan radiasi yang ditimbulkan oleh 579 Sekolah Tinggi knologi Nuklir - BATAN

operasional RSG-GAS terjadi dan dikendalikan hingga serendah mungkin, dengan: a. Pengungkung reaktor dan sistem ventilasi untuk menjaga lepasan radionuklida ke lingkungan selalu memenuhi ALARA. b. Sistem lapisan air hangat reaktor atau sejenisnya dalam mengurangi jumlah radionuklida yang lolos dari air kolam reaktor. c. Tangki tunda akan mengurangi aktivitas air pendingin primer sebelum memasuki pompa primer dan penukar panas. d. Perisai biologi yang mengelilingi teras reaktor terdiri dari beton berat untuk menjamin bahwa radiasi berada pada tingkat selamat bagi personil pengoperasi. KESIMPULAN Source-term di reaktor nuklir berasal dari elemen bakar, teras reaktor aktif, pendingin reaktor, udara di reaktor, dan fasilitas percobaan. Jenis radiasi gamma di sekitar kolam berasal dari gamma primer dan sekunder di teras aktif, elemen bakar bekas di kolam penyimpanan dan produk aktivasi air pendingin primer. Sedangkan kontaminasi material radioaktif di udara berasal dari aktivasi gas dan aerosol yang terlarut dalam air pendingin, kontaminasi elemen bakar dan material lain yang terlarut dalam air pendingin primer yang lepas ke udara. Source-term reaktor nuklir berupa radionuklida yang lepas keluar di antaranya gas mulia dan golongan halogenida, tetap terkendali. Source-term reaktor ditekan agar paparan operasionalnya serendah mungkin dengan perlengkapan keselamatan, seperti: pengungkung reaktor, sistem ventilasi, sistem lapisan air hangat reaktor, tangki tunda, dan perisai biologi yang mengelilingi teras reaktor. PUSTAKA 1. PRSG-BATAN, Laporan Analisis Keselamatan (LAK) RSG-GAS, Revisi 9. 2. M. DANDANG P, 1999, Metode Penyesuaian Pustaka ORIGEN-2 untuk RSG-GAS, Proseding P2TRR, Serpong. 3. ERWANSYAH LUBIS, 2003, Keselamatan Radiasi Lingkungan Dalam Pengelolaan Limbah Radioaktif di Indonesia, Jurnal TPL, P3LR-Batan. 4. SURYAWATI S, 1999, Evaluasi Paparan Radiasi di Atas dan Sekitar Kolam Balai Operasi RSG-GAS, Proseding PRSG, Serpong. 5. OAK RIDGE NATIONAL LABORATORY, 1996, Computer Code Collection Origen 2.1, nnessee,. Sekolah Tinggi knologi Nuklir - BATAN 580

LAMPIRAN Tabel 1. Rincian Produk Fisi Elemen Bakar Reaktor [1] POWER=.76000E+00 MW BURNUP=.12000E+03 MWD FLUX=.12050E+15 1/(CM2'S) NUCLIDE RADIOACTIVITY, CURIES discharge 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,80E+04 1,00E+05 1,00E+06 1 Zn 72 1,82E-01 1,82E-01 1,82E-01 1,81E-01 1,75E-01 1,69E-01 1,20E-01 2,89E-03 1 Ga 73 6,83E-01 6,83E-01 6,81E-01 6,38E-01 4,61E-01 3,36E-01 1,32E-02 5,03E-18 Ce 73 m 6,84E-01 6,83E-01 4,81E-01 4,38E-01 4,61E-01 3,34E-01 1,32E-02 5,03E-18 Ce 78 1,01E+02 1,01E+02 9,95E+01 8,83E+01 2,67E+01 9,24E+00 1,73E-04 0,00E+00 As 76 1,34E-01 1,34E-01 1,34E-01 1,33E-01 1,24E-01 1,17E-01 6,34E-02 8,84E-05 As 77 4,96E+01 4,96E+01 4,96E+01 4,94E+01 4,80E+01 4,66E+01 3,33E+01 3,98E-01 1 As 81 1,20E+03 1,08E+03 1,81E+02 6,18E-07 0 0 0 0 As 83 2,44E+03 1,51E+03 1,49E+01 1,27E-19 0 0 0 0 As 84 1,79E+03 5,48E+02 1,17E-02 0 0 0 0 0 Se 77 m 1,51E-01 1,50E-01 1,49E-01 1,48E-01 1,44E-01 1,40E-01 9,99E-02 1,19E-03 4 Se 79 1,47E-03 1,47E-03 1,47E-03 1,47E-03 1,47E-03 1,47E-03 1,47E-03 1,47E-03 1 Se 81 m 1,24E+03 1,24E+03 1,22E+03 7,16E+02 1,10E+01 1,73E+00 1,13E-07 0 Se 83 1,16E+03 1,16E+03 1,11E+03 6,99E+02 6,88E+00 1,13E-01 5,88E-20 0 Br 82 2,84E+01 2,84E+01 2,84E+01 2,83E+01 2,70E+01 2,58E+01 1,65E+01 1,23E-01 6 Br 83 3,14E+03 3,14E+03 3,13E+03 2,98E+03 1,51E+03 2,96E+02 1,11E+00 0 Br 84 3,68E+03 3,68E+03 3,65E+03 4,38E+03 1,67E+02 9,15E+00 1,06E-12 0 Br 87 1,28E+04 1,17E+04 3,89E+03 3,42E-02 0 0 0 0 Kr 81 7,62E-10 7,62E-10 7,62E-10 7,62E-10 7,62E-10 7,62E-10 7,62E-10 7,62E-10 7 Kr 85 4,78E+01 4,78E+01 4,78E+01 4,78E+01 4,79E+01 4,79E+01 4,79E+01 4,78E+01 4 Kr 85 m 7,67E+03 7,67E+03 7,66E+03 7,43E+03 5,05E+03 3,58E+03 1,04E+02 1,69E-15 Kr 87 1,48E+04 1,48E+04 1,47E+04 1,29E+04 3,28E+03 9,71E+02 3,75E-03 0 Kr 88 2,09E+04 2,09E+04 2,08E+04 1,96E+04 1,05E+04 6,08E+03 2,16E+01 0 Rb 86 9,84E+00 9,84E+00 9,84E+00 9,84E+00 9,80E+00 9,76E+00 9,43E+00 6,40E+00 1 Rb 87 1,01E-07 1,01E-07 1,01E-07 1,01E-07 1,01E-07 1,01E-07 1,01E-07 1,01E-07 1 Rb 88 2,11E+04 2,11E+04 2,11E+04 2,07E+04 1,18E+04 6,79E+03 2,42E+01 0 Rb 89 2,82E+04 2,82E+04 2,78E+04 1,64E+04 1,77E+01 4,05E-02 0 0 Sr 89 2,61E+04 2,61E+04 2,61E+04 2,61E+04 2,60E+04 2,60E+04 2,37E+04 2,23E+04 5 Sr 90 3,90E+02 3,90E+02 3,90E+02 3,90E+02 3,90E+02 3,90E+02 3,90E+02 3,90E+02 3 Sr 91 3,47E+04 3,47E+04 3,47E+04 3,41E+04 2,84E+04 2,41E+04 4,56E+03 5,26E-05 Sr 92 3,50E+04 3,50E+04 3,48E+04 3,26E+04 1,72E+04 9,75E+03 2,88E+01 0,00E+00 Y 90 4,28E+02 4,28E+02 4,28E+02 4,28E+02 4,27E+02 4,26E+02 4,18E+02 3,92E+02 3 Y 91 3,07E+04 3,07E+04 3,07E+04 3,07E+04 3,07E+04 3,07E+04 3,05E+04 2,70E+04 7 Y 91 m 2,00E+04 2,00E+04 2,00E+04 2,00E+04 1,77E+04 1,32E+04 2,88E+03 3,32E-05 Y 94 3,82E+04 3,81E+04 3,73E+04 2,22E+04 9,32E+01 7,19E-01 1,60E-22 0 Zr 95 3,28E+04 3,28E+04 3,28E+04 3,28E+04 3,28E+04 3,27E+04 3,24E+04 2,90E+04 9 Zr 97 3,60E+04 3,60E+04 3,60E+04 3,56E+04 3,21E+04 2,94E+04 1,14E+04 3,79E-01 Nb 95 2,64E+04 2,64E+04 2,64E+04 2,64E+04 2,64E+04 2,64E+04 2,65E+04 2,73E+04 1 Nb 95 m 3,91E+02 3,91E+02 3,91E+02 3,91E+02 3,91E+02 3,91E+02 3,91E+02 3,66E+02 1 Nb 97 3,61E+04 3,61E+04 3,61E+04 3,61E+04 3,40E+04 3,13E+04 1,16E+04 4,10E-01 Nb 97 m 3,11E+04 3,11E+04 3,10E+04 3,07E+04 2,77E+04 2,53E+04 9,88E+03 3,27E-01 Nb 102 2,36E+04 1,07E+04 1,08E+03 3,68E-07 0 0 0 0 Mo 99 3,82E+04 3,82E+04 3,82E+04 3,81E+04 3,71E+04 3,62E+04 2,85E+04 2,07E+03 8 Mo 101 3,12E+04 3,12E+04 2,92E+04 1,43E+04 1,16E+01 2,06E-02 0 0 Mo 102 2,64E+04 2,63E+04 2,43E+04 9,54E+03 8,16E-01 1,98E-04 0 0 Tc 99 m 3,30E+04 3,30E+04 3,30E+04 3,30E+04 3,29E+04 3,26E+04 2,69E+04 1,96E+03 7 Tc 101 3,12E+04 3,12E+04 3,12E+04 2,54E+04 9,34E+01 2,62E-01 0 0 Ru 103 1,97E+04 1,97E+04 1,97E+04 1,97E+04 1,96E+04 1,96E+04 1,93E+04 1,61E+04 2 Ru 105 8,08E+03 8,08E+03 8,08E+03 7,93E+03 5,41E+00 3,83E+03 1,09E+02 1,21E-15 Ru 106 8,52E+02 8,52E+02 8,52E+02 8,52E+02 8,51E+02 8,51E+02 8,50E+02 8,33E+02 6 discharge 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,80E+04 1,00E+05 1,00E+06 1,0 Rh 103 m 1,97E+04 1,97E+04 1,97E+04 1,97E+04 1,96E+04 1,96E+04 1,93E+04 1,61E+04 2,5 Rh 105 4,02E+03 4,02E+03 4,02E+03 4,04E+03 4,17E+03 4,18E+03 3,02E+03 2,03E+01 1, Rh 106 3,65E+03 3,07E+03 1,13E+03 8,52E+02 8,51E+02 8,51E+02 8,50E+02 8,33E+02 6,8 Pd 112 1,14E+02 1,14E+02 1,14E+02 1,13E+02 1,04E+02 9,60E+01 4,30E+01 7,89E-03 Ag 111 2,11E+02 2,11E+02 2,11E+02 2,11E+02 2,09E+02 2,08E+02 1,90E+02 7,23E+01 4, Sn 123 3,42E+01 3,42E+01 3,42E+01 3,42E+01 3,42E+01 3,41E+01 3,40E+01 3,21E+01 1,8 Sn 127 5,79E+02 5,79E+02 5,74E+02 5,29E+02 2,34E+02 1,13E+02 6,39E-02 0 Sn 128 2,15E+03 2,15E+03 2,11E+03 1,77E+03 3,04E+02 6,33E+01 6,75E-06 0 Sb 127 9,29E+02 9,29E+02 9,29E+02 9,28E+02 9,17E+02 9,05E+02 7,63E+02 1,14E+02 6, Sb 129 4,20E+03 4,20E+03 4,19E+03 4,06E+03 2,73E+03 1,92E+03 5,01E+01 2,28E-16 Sb 131 1,55E+04 1,55E+04 1,49E+04 9,57E+03 1,04E+02 1,87E+00 2,43E-18 0 125 m 2,56E+00 2,56E+00 2,56E+00 2,56E+00 2,57E+00 2,57E+00 2,59E+00 2,85E+00 4, 127 8,75E+02 8,75E+02 8,75E+02 8,75E+02 8,72E+02 8,69E+02 7,89E+02 1,92E+02 4,4 129 3,94E+03 3,94E+03 3,94E+03 3,92E+03 3,28E+03 2,59E+03 7,04E+02 5,25E+02 6,0 129 m 1,05E+03 1,05E+03 1,05E+03 1,05E+03 1,04E+03 1,04E+03 1,03E+03 8,27E+02 9,5 132 2,67E+04 2,67E+04 2,67E+04 2,66E+04 2,61E+04 2,55E+04 2,09E+04 2,26E+03 5, 133 m 1,81E+04 1,81E+04 1,78E+04 1,47E+04 2,26E+03 4,25E+02 1,59E-05 0 134 4,02E+04 4,01E+04 3,91E+04 3,05E+04 2,57E+03 2,84E+02 4,56E-08 0 I 131 1,77E+04 1,77E+04 1,77E+04 1,77E+04 1,77E+04 1,75E+04 1,63E+04 6,73E+03 8, I 132 2,69E+04 2,69E+04 2,69E+04 2,69E+04 2,66E+04 2,62E+04 2,15E+04 2,33E+03 5, I 134 4,62E+04 4,62E+04 4,61E+04 4,42E+04 1,27E+04 2,82E+03 5,94E-05 0 I 135 3,87E+04 3,87E+04 3,86E+04 3,76E+04 2,89E+04 2,29E+04 2,08E+03 7,78E-09 Xe 131 m 1,25E+02 1,25E+02 1,25E+02 1,25E+02 1,25E+02 1,25E+02 1,25E+02 1,01E+02 4, Xe 133 3,94E+04 3,94E+04 3,94E+04 3,94E+04 3,94E+04 3,94E+04 3,77E+04 1,07E+04 1, Xe 133 m 1,15E+03 1,15E+03 1,15E+03 1,15E+03 1,15E+03 1,14E+03 1,04E+03 5,27E+01 4, Xe 135 1,60E+03 1,61E+03 1,68E+03 2,38E+03 7,68E+03 1,05E+04 7,00E+03 7,65E-05 Xe 135 m 6,87E+03 6,86E+03 6,79E+03 6,20E+03 4,42E+03 3,50E+03 3,18E+02 1,19E-09 Xe 138 3,75E+04 3,73E+04 3,47E+04 1,67E+04 1,10E+01 1,64E-02 0 0 Cs 134 3,28E+02 3,28E+02 3,28E+02 3,28E+02 3,28E+02 3,28E+02 3,28E+02 3,25E+02 2,9 Cs 137 3,96E+02 3,96E+02 3,96E+02 3,96E+02 3,96E+02 3,96E+02 3,96E+02 3,95E+02 3,9 Cs 138 3,94E+04 3,94E+04 3,93E+04 3,51E+04 1,93E+03 1,08E+02 1,81E-11 0 Cs 139 3,86E+04 3,85E+04 3,38E+04 1,19E+04 1,65E+01 7,99E-06 0 0 Ba 137 m 3,76E+02 3,76E+02 3,75E+02 3,74E+02 3,74E+02 3,74E+02 3,74E+02 3,74E+02 3,7 Ba 139 3,92E+04 3,92E+04 3,92E+04 3,71E+04 1,11E+04 3,65E+03 4,20E-02 0 Ba 140 3,88E+04 3,88E+04 3,88E+04 3,88E+04 3,86E+04 3,84E+04 3,65E+04 2,07E+04 7,3 La 140 3,96E+04 3,96E+04 3,96E+04 3,96E+04 3,96E+04 3,95E+04 3,88E+04 2,38E+04 8,4 La 141 3,57E+04 3,57E+04 3,57E+04 3,53E+04 2,36E+04 1,58E+04 2,68E+02 9,52E-18 La 142 3,56E+04 3,56E+04 3,56E+04 3,39E+04 1,15E+04 4,24E+03 1,49E-01 0 Ce 141 3,51E+04 3,51E+04 3,51E+04 3,51E+04 3,51E+04 3,50E+04 3,44E+04 2,76E+04 3,0 Ce 143 3,63E+04 3,63E+04 3,63E+04 3,62E+04 3,45E+04 3,29E+04 2,04E+04 1,07E+02 Ce 144 1,09E+04 1,09E+04 1,09E+04 1,09E+04 1,09E+04 1,09E+04 1,09E+04 1,06E+04 8,2 Ce 146 1,80E+04 1,80E+04 1,68E+04 8,06E+03 5,32E+00 7,94E-03 0 0 Pr 142 6,91E+02 6,91E+02 6,90E+02 6,84E+02 6,25E+02 5,77E+02 2,53E+02 2,99E-02 1, Pr 143 3,51E+04 3,51E+04 3,51E+04 3,51E+04 3,51E+04 3,51E+04 3,46E+04 2,17E+04 1,0 Pr 144 1,19E+04 1,19E+04 1,18E+04 1,14E+04 1,09E+04 1,09E+04 1,09E+04 1,06E+04 8,2 Pr 144 m 1,31E+02 1,31E+02 1,31E+02 1,31E+02 1,31E+02 1,31E+02 1,31E+02 1,28E+02 9,9 Pr 145 2,37E+04 2,37E+04 2,37E+04 2,32E+04 1,74E+04 1,34E+04 9,58E+02 2,50E-10 Pr 146 1,81E+04 1,81E+04 1,81E+04 1,58E+04 3,63E+02 8,13E+00 8,13E-17 0 Nd 147 1,45E+04 1,45E+04 1,45E+04 1,45E+04 1,44E+04 1,43E+04 1,35E+04 6,98E+03 9,7 Nd 149 6,85E+03 6,85E+03 6,83E+03 6,27E+03 2,30E+03 9,45E+02 1,03E-01 0 Nd 154 3,92E+02 3,92E+02 3,92E+02 3,92E+02 3,86E+02 3,85E+02 3,53E+02 1,39E+02 1, 581 Sekolah Tinggi knologi Nuklir - BATAN

Tabel 2. Konsentrasi dan Laju Lepasan Radionuklida Di Balai Reaktor (Perhitungan Model Untuk Hasil Fisi) [1] Nuklida Balai Reaktor Venting kolam Venting tangki tunda / Ci/m 3 / / Ci/jam / / Ci/m 3 / I-131 3,33E-12 3,11E-08 1,46E-05 I-132 7,67E-12 7,16E-08 7,60E-08 I-133 4,51E-11 4,21E-07 1,70E-06 I-134 --- 1,15E-09 1,05E-10 I-135 4,76E-11 4,44E-07 1,27E-06 Br-82 --- --- 7,83E-12 Br-83 --- 1,00E-09 1,13E-08 Jumlah 1,04E-10 9,70E-07 1,77E-05 Sr-89 ---* 8,40E-10 --- Sr- 90 --- 5,17E-12 --- Y 90 --- 1,67E-08 --- Y 91 --- 9,03E-10 --- Zr- 95 --- 8,52E-10 --- Nb- 95 --- 1,67E-09 --- Ru-103 --- 2,33E-08 --- Rh-103 m --- 8,73E-11 --- Ru-106 --- 9,94E-12 --- Rh-106 --- 5,94E-10 --- Sn-125 --- 1,17E-11 --- Sb-125 --- --- --- -127 m --- 1,41E-11 --- -129 m --- 3,55E-10 --- -131 m --- 1,60E-08 --- -132 --- 1,01E-08 --- Cs-137 --- 5,15E-12 --- Ba-140 --- 4,32E-08 --- La-140 --- 2,63E-08 --- Ce-141 --- 1,68E-09 --- Ce-144 --- 1,72E-10 --- Pr-144 --- 9,71E-18 --- Nd-147 --- 1,74E-09 --- Jumlah 1,55E-11 1,45E-07 0,00E±00 Kr-83 m 1,46E-07 1,30E-03 1,17E-07 Kr-85 8,42E-07 1,06E-08 2,93E-07 Kr-85 m 2,09E-06 6,66E-03 1,51E-06 Kr-88 4,45E-07 1,88E-02 4,43E-06 Xe-131 m 1,16E-05 1,37E-03 1,11E-04 Xe-133 1,39E-07 7,86E-03 3,03E-04 Xe-133 m 1,14E-02 1,95E-02 2,82E-04 Xe-135 7,13E-07 4,15E-03 2,62E-04 Xe-135 m 2,01E-06 1,08E-11 --- Xe-138 --- --- --- Jumlah 6,39E-06 5,97E-02 9,64E-04 *) < 10-12 Ci/m 3 Sekolah Tinggi knologi Nuklir - BATAN 582

Tabel 3. Laju Lepasan ZRA Pada Cerobong (Perhitungan Model) [1] Nuklida Cerobong Ci/jam Ci/tahun I-131 1,64E-07* 1,44E-03 I-132 1,04E-07 9,11E-04 I-133 6,16E-07 5,40E-03 I-134 4,02E-09 3,53E-05 I-135 6,46E-07 5,66E-03 Br-82 1,35E-10 1,19E-06 Br-83 1,85E-09 1,62E-05 Jumlah 1,54E-06 1,35E-02 Sr-89 1,83E-11 1,61E-07 Sr- 90 1,13E-13 9,88E-10 Y 90 3,79E-10 3,32E-06 Y 91 1,97E-11 1,73E-07 Zr- 95 1,86E-11 1,63E-07 Nb- 95 3,66E-11 3,20E-07 Ru-103 6,95E-10 6,09E-06 Rh-103 m 9,90E-11 8,68E-07 Ru-106 2,17E-13 1,90E-09 Rh-106 8,58E-12 7,52E-08 Sn-125 1,69E-13 1,48E-09 Sb-125 1,10E-13 9,62E-10-127 m 2,89E-12 2,53E-08-129 m 1,56E-10 1,37E-06-131 m 3,12E-10 2,73E-06-132 1,45E-10 1,27E-06 Cs-137 3,32E-10 2,91E-06 Ba-140 8,53E-10 7,47E-06 La-140 3,88E-10 3,40E-06 Ce-141 2,54E-11 2,22E-07 Ce-144 2,28E-11 1,99E-07 Pr-144 1,34E-11 1,17E-07 Nd-147 2,49E-11 2,18E-07 Sm 151 1,76E-15 1,54E-11 Jumlah 3,55E-09 3,11E-05 Kr-83 m 1,85E-03 1,62E01 Kr-85 1,76E-08 1,54E-04 Kr-85 m 9,51E-03 8,33E01 Kr-88 2,68E-02 2,35E02 Xe-131 m 1,95E-03 1,71E01 Xe-133 1,12E-02 9,83E01 Xe-133 m 2,80E-02 2,45E02 Xe-135 5,94E-03 5,20E01 Xe-135 m 4,97E-08 4,36E-04 Xe-138 4,75E-08 4,16E-04 Jumlah 8,53E-02 7,47E02 583 Sekolah Tinggi knologi Nuklir - BATAN

Sekolah Tinggi knologi Nuklir - BATAN 584