BAB II DASAR TEORI. 2.1 Kestabilan Lereng Batuan

dokumen-dokumen yang mirip
BAB II DASAR TEORI. 2.1 Analisis Kestabilan Lereng Batuan

BAB V ANALISIS EMPIRIS KESTABILAN LERENG

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian

BAB IV ANALISIS KINEMATIK

Oleh : ARIS ENDARTYANTO SKRIPSI

Jl. Raya Palembang-Prabumulih Km.32 Inderalaya Sumatera Selatan, 30662, Indonesia Telp/fax. (0711) ;

BAB IV ANALISIS KINEMATIK

Scan Line dan RQD. 1. Pengertian Scan Line

BAB IV DATA DAN PENGOLAHAN DATA

Gambar 4.1 Kompas Geologi Brunton 5008

BAB V ANALISIS KESTABILAN LERENG BATUAN

BAB III TEORI DASAR. Longsoran Bidang (Hoek & Bray, 1981) Gambar 3.1

KATA PENGANTAR ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN BAB I PENDAHULUAN

ANGGUNING DIAH FAHMI NIM

BAB IV DATA DAN PENGOLAHAN DATA

Studi Kestabilan Lereng Menggunakan Metode Rock Mass Rating (RMR) pada Lereng Bekas Penambangan di Kecamatan Lhoong, Aceh Besar

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

5.1 ANALISIS PENGAMBILAN DATA CORE ORIENTING

ANALISIS KESTABILAN LERENG BATU DI JALAN RAYA LHOKNGA KM 17,8 KABUPATEN ACEH BESAR

ANALISIS KESTABILAN LERENG DI PIT PAJAJARAN PT. TAMBANG TONDANO NUSAJAYA SULAWESI UTARA

Jurnal Teknologi Pertambangan Volume. 1 Nomor. 2 Periode: Sept Feb. 2016

PAPER GEOLOGI TEKNIK

UNIVERSITAS DIPONEGORO

Oleh: Yasmina Amalia Program Studi Teknik Pertambangan UPN Veteran Yogyakarta

PENGARUH BIDANG DISKONTINU TERHADAP KESTABILAN LERENG TAMBANG STUDI KASUS LERENG PB9S4 TAMBANG TERBUKA GRASBERG

BAB III DASAR TEORI 3.1 UMUM

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Praktikum

ABSTRAK Kata Kunci : Nusa Penida, Tebing Pantai, Perda Klungkung, Kawasan Sempadan Jurang, RMR, Analisis Stabilias Tebing, Safety Factor

TUGAS PRAKTIKUM GEOLOGI TEKNIK ROCK QUALITY DESIGNATION (RQD) & SCANLINE

BAB IV DERAJAT PELAPUKAN ANDESIT DAN PERUBAHAN KEKUATAN BATUANNYA

UNIVERSITAS DIPONEGORO

BAB 3 LATAR BELAKANG TEORI. Masalah kestabilan lereng di dalam suatu pekerjaan yang melibatkan kegiatan

DAFTAR PUSTAKA. Bieniawski, Z. T., Rock Mechanics Design in Mining and Tunneling. A.A. Balkema, Amsterdam. 272 hal.

Metode Analisis kestabilan lereng

DAFTAR ISI HALAMAN JUDUL

BAB III DASAR TEORI. 3.1 Prinsip Pengeboran

BAB IV ANALISA BLASTING DESIGN & GROUND SUPPORT

BAB 4 PENGUMPULAN DATA LAPANGAN. Pemetaan geologi dilakukan untuk mengetahui kondisi geologi daerah penelitian

1) Geometri : Lebar, kekasaran dinding, sketsa lapangan

BAB V KARAKTERISTIK REKAHAN PADA BATUGAMPING

ANALISIS TIPE LONGSOR DAN KESTABILAN LERENG BERDASARKAN ORIENTASI STRUKTUR GEOLOGI DI DINDING UTARA TAMBANG BATU HIJAU, SUMBAWA BARAT

M VII KUAT TARIK TIDAK LANGSUNG (Indirect Brazillian Tensile Strength Test)

BAB V PEMBAHASAN 5.1. Data Lapangan Pemetaan Bidang Diskontinu

Bulletin of Scientific Contribution, Edisi Khusus, Desember 2005: Bulletin of Scientific Contribution, Edisi Khusus, Desember 2005: 18-28

BAHAN AJAR. MEKANIKA BATUAN (Semester 6 / 2 SKS / TKS 1607)

BAB I PENDAHULUAN 1.1 Latar Belakang

Teguh Samudera Paramesywara1,Budhi Setiawan2

RANCANGAN GEOMETRI WEB PILAR DAN BARRIER PILAR PADA METODE PENAMBANGAN DENGAN SISTEM AUGER

STUDI KEKUATAN GESER TERHADAP PENGARUH KEKASARAN PERMUKAAN DIAKLAS BATU GAMPING

BAB I PENDAHULUAN. besar yang dibangun di atas suatu tempat yang luasnya terbatas dengan tujuan

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB IV PENGAMATAN DAN PENGOLAHAN DATA

BAB VI KARAKTERISTIK REKAHAN PADA BATUGAMPING

BAB 1 PENDAHULUAN. PT. Berau Coal merupakan salah satu tambang batubara dengan sistim penambangan

ANALISIS STABILITAS TEBING PANTAI DI NUSA PENIDA.

Prosiding Teknik Pertambangan ISSN:

ANALISIS KARAKTERISTIK MASSA BATUAN DI SEKTOR LEMAJUNG, KALAN, KALIMANTAN BARAT

Gambar 1 Hubungan antara Tegangan Utama Mayor dan Minor pada Kriteria Keruntuhan Hoek-Brown dan Kriteria Keruntuhan Mohr-Coulomb (Wyllie & Mah, 2005)

DAFTAR TABEL. Parameter sistem penelitian dan klasifikasi massa batuan (Bieniawski, 1989)... 13

DAFTAR ISI. KATA PENGANTAR...i. SARI...iv. ABSTRACT...v. DAFTAR ISI...vi. DAFTAR TABEL...ix. DAFTAR GAMBAR...x. DAFTAR LAMPIRAN...

EVALUASI TEKNIS SISTEM PENYANGGAAN MENGGUNAKAN METODE ROCK MASS RATING

PROGRAM STUDI TEKNIK PERTAMBANGAN FAKULTAS ILMU KEBUMIAN DAN TEKNOLOGI MINERAL INSTITUT TEKNOLOGI BANDUNG 2007

MEKANIKA TANAH (CIV -205)

BAB I PENDAHULUAN. menyebabkan batuan samping berpotensi jatuh. Keruntuhan (failure) pada batuan di

ANALISIS KINEMATIKA KESTABILAN LERENG BATUPASIR FORMASI BUTAK

BAB I PENDAHULUAN. Font Tulisan TNR 12, spasi 1,5 1.1 Latar Belakang

Studi Jarak Kekar Berdasarkan Pengukuran Singkapan Massa Batuan Sedimen di Lokasi Tambang Batubara

DAFTAR ISI. SARI... i. ABSTRACT... ii. KATA PENGANTAR... iii. DAFTAR ISI... vi. DAFTAR TABEL... x. DAFTAR GAMBAR... xii. DAFTAR LAMPIRAN...

BAB I PENDAHULUAN. terowongan, baik terowongan produksi maupun terowongan pengembangan.

BAB III LANDASAN TEORI

KAJIAN GEOTEKNIK TERHADAP FORMASI TANJUNG DI PIT SAYUNA, SATUI, KALIMANTAN SELATAN, DENGAN MENGGUNAKAN METODE SLOPE MASS RATING

MEKANIKA TANAH 2 KESTABILAN LERENG. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

PENENTUAN DESAIN LERENG FINAL PADA PIT DH DAERAH KONSESI PT. ARUTMIN INDONESIA TAMBANG ASAM ASAM

BAB V PEMBAHASAN. 5.1 Korelasi Laju Penembusan antara Dispatch dan Aktual. Tabel 5.1 Korelasi Laju Penembusan antara data Dispatch dan data Aktual

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian

Prosiding Teknik Pertambangan ISSN:

BAB I PENDAHULUAN. Menurut PT. Mettana (2015), Bendungan Jatigede mulai dibangun pada

ANALISIS KESTABILAN LUBANG BUKAAN DAN PILLAR DALAM RENCANA PEMBUATAN TAMBANG BAWAH TANAH BATUGAMPING DENGAN METODE ROOM AND PILLAR

Untuk mengetahui klasifikasi sesar, maka kita harus mengenal unsur-unsur struktur (Gambar 2.1) sebagai berikut :

BAB IV SIMULASI PENGARUH PERCEPATAN GEMPABUMI TERHADAP KESTABILAN LERENG PADA TANAH RESIDUAL HASIL PELAPUKAN TUF LAPILI

EVALUASI MASSA BATUAN TEROWONGAN EKSPLORASI URANIUM EKO-REMAJA, KALAN, KALIMANTAN BARAT

BEBERAPA PENYELIDIKAN GEOMEKANIKA YANG MUDAH UNTUK MENDUKUNG RANCANGAN PELEDAKAN

Bab IV Identifikasi Kekuatan Andesit

GEOTEKNIK TAMBANG DASAR DASAR ANALISIS GEOTEKNIK. September 2011 SEKOLAH TINGGI TEKNOLOGI NASIONAL (STTNAS) YOGYAKARTA.

TOPIK BAHASAN 10 STABILITAS LERENG PERTEMUAN 21 23

MAKALAH PENGEBORAN DAN PENGGALIAN EKSPLORASI

BAB VI KARAKTERISASI REKAHAN PADA FASIES BATUGAMPING

PEMODELAN PARAMETER GEOTEKNIK DALAM MERESPON PERUBAHAN DESAIN TAMBANG BATUBARA DENGAN SISTEM TAMBANG TERBUKA

ANALISIS KERENTANAN GERAKAN TANAH (LONGSOR) DENGAN MENGGUNAKAN SIG

KAJIAN KLASIFIKASI MASSA BATUAN TERHADAP STABILITAS LERENG DAN PENENTUAN KEKUATAN JANGKA PANJANGNYA PADA OPERASI PENAMBANGAN BINUNGAN PT

Mahasiswa, Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Nasional 2

PHYSICAL PROPERTIES (Perilaku Fisik) AND ROCK CLASSIFICATION (Klasifikasi Batuan)

BAB II LANDASAN TEORI

BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian

ANALISA STABILITAS LERENG PADA CAMPURAN PASIR DAN TANAH LEMPUNG DENGAN MENGGUNAKAN PERMODELAN DI LABORATORIUM ABSTRAK

DAFTAR ISI. SARI... i. KATA PENGANTAR... iii. DAFTAR ISI... vi. DAFTAR TABEL... xi. DAFTAR GAMBAR... xii. DAFTAR LAMPIRAN... xiv

GEOLOGI STRUKTUR PRINSIP GAYA & DEFORMASI

DAFTAR ISI... RINGKASAN... ABSTRACT... KATA PENGANTAR... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN... BAB I. PENDAHULUAN

UNIVERSITAS DIPONEGORO ANALISIS KESTABILAN LERENG DI PIT SOUTH PINANG PANEL 1, PT. KALTIM PRIMA COAL, KABUPATEN KUTAI TIMUR, KALIMANTAN TIMUR

BAB I PENDAHULUAN. wisata Pantai Parangtritis yang merupakan pantai selatan Pulau Jawa masih menjadi

Transkripsi:

BAB II DASAR TEORI 2.1 Kestabilan Lereng Batuan Kestabilan lereng batuan banyak dikaitkan dengan tingkat pelapukan dan struktur geologi yang hadir pada massa batuan tersebut, seperti sesar, kekar, lipatan dan bidang perlapisan (Sulistianto, 2001). Struktur-struktur tersebut, selain lipatan, selanjutnya disebut sebagai bidang lemah. Disamping struktur geologi, kehadiran air dan karakteristik fisik-mekanik juga dapat mempengaruhi kestabilan lereng. Untuk mengetahui adanya potensi tipe keruntuhan pada suatu aktivitas pemotongan lereng batuan, perlu dilakukan pemetaan orientasi diskontinuitas yang dilakukan baik sebelum maupun sesudah lereng batuan tersebut tersingkap. Sementara itu, metode analitik untuk memprediksi potensi keruntuhan batuan dan cara penanggulangannya seringkali tidak efektif (Maerz, 2000). Oleh karena itu, penggunaan desain empiris berdasarkan klasifikasi massa batuan menjadi penting (Franklin dan Maerz, 1996). 2.1.1 Diskontinuitas Diskontinuitas adalah suatu istilah untuk gabungan semua struktur pada materialmaterial geologi yang biasanya memiliki kekuatan tarik dari 0 rendah, yang juga dapat ditanggulangi (Glossary of Geology, 1997 op cit. Hendarsin, 2003). Keberadaan diskontinuitas akan mempengaruhi kestabilan lereng oleh sifat-sifat diskontinuitas yang dimilikinya. Sifat-sifat geometri yang dimiliki diskontinuitas (Gambar 2.1), antara lain : Kemiringan (dip/dip direction) Jarak antar diskontinuitas (spacing) Deskripsi permukaan (roughness) Bukaan (aperture) 9

Kemenerusan (persistence) Set diskontinuitas Gambar 2.1 Sketsa karakteristik geometri dari diskontinuitas batuan (Priest, 1993) Beberapa parameter dari suatu diskontinuitas yang digunakan dalam analisis kestabilan lereng antara lain : Joint Roughness Coefficient (JRC) JRC merupakan suatu nilai yang diperkirakan dari perbandingan antara kenampakan permukaan diskontinuitas dengan profil standar yang dipublikasikan oleh Barton dan Choubey (1977) (Gambar 2.2). Cara lain untuk menentukan nilai JRC adalah dengan pengeplotan panjang profil dan lebar bukaan dari diskontinuitas (Gambar 2.3). 10

Joint Compressive Strength (JCS) JCS dapat ditentukan dari pengeplotan schmidt rebound hammer dan densitas batuan, seperti yang dikemukakan oleh Deere dan Miller (1966) (Gambar 2.4). 11

Gambar 2.4 Penentuan nilai JCS dari Schmidt hardness (Deere dan Miller, 1966) Sudut Geser Dalam Sudut geser dalam suatu batuan merupakan sudut dimana batuan dapat menggelincir dengan bebas karena gaya beratnya sendiri. Sudut geser dalam berbanding lurus dengan kuat geser batuan. Sudut geser dalam dapat ditentukan dari rumus : τ JCS π JRC 2 = tan JRC log + φ tan b JRC log10 σ n σ n 180ln10 JCS + φ + 1 σ n 10 b 12

τ φ i = arctan σ n dengan : Φ i JRC JCS Φ b σ n = Sudut geser dalam efektif = Joint Roughness Coefficient = Joint Compressive Strength = Sudut geser dalam basic = Normal stress Kohesi Kohesi merupakan kekuatan tarik-menarik antar material sejenis. Semakin besar nilai kohesi batuan, kuat geser batuan tersebut juga akan semakin besar. Kohesi dapat ditentukan dari rumus : = σ n tan φb + JRC log τ 10 JCS σ n ci = τ σ n tanφ i dengan : c i = kohesi efektif τ = kuat geser 2.1.2 Metode Kinematik Dalam penelitian ini, metode kinematik yang digunakan untuk mengetahui potensi keruntuhan lereng batuan adalah dengan teknik stereografis. Teknik stereografis merupakan metode grafis yang digunakan untuk menunjukkan jurus dan kemiringan dari suatu bidang. Teknik stereografis banyak digunakan untuk membantu mengidentifikasi jenis keruntuhan yang mungkin terjadi. Pengeplotan secara bersamaan antara jurus dan kemiringan, baik muka lereng maupun bidang lemah pada suatu stereonet akan segera dapat diketahui jenis dan arah keruntuhannya (Gambar 2.5). 13

Gambar 2.5 Tipe keruntuhan batuan (Hoek dan Bray, 1981) Secara umum perpaduan orientasi diskontinuitas batuan akan membentuk empat tipe keruntuhan utama pada batuan (lihat Gambar 2.5), yaitu : Keruntuhan geser melengkung (circular sliding failure) Keruntuhan geser planar (planar sliding failure) Keruntuhan geser baji (wedge sliding failure) Keruntuhan jungkiran (toppling failure) 14

2.1.3 Tipe Keruntuhan Berikut akan dibahas syarat-syarat umum terjadinya keruntuhan utama pada batuan. Keruntuhan geser melengkung (circular sliding failure) Keruntuhan jenis ini akan banyak terjadi pada lereng batuan lapuk atau sangat terkekarkan dan di lereng-lereng timbunan. Keruntuhan geser planar (planar sliding failure) Untuk kasus keruntuhan geser planar dengan bidang gelincir tunggal, syarat umum terjadinya keruntuhan : Bidang gelincir memiliki jurus sejajar atau hampir sejajar (maksimal 20 0 ) dengan jurus lereng Kemiringan bidang gelincir lebih kecil dari kemiringan lereng Kemiringan bidang gelincir lebih besar daripada sudut geser dalamnya Keruntuhan geser baji (wedge sliding failure) Syarat umum terjadinya keruntuhan geser baji adalah Terdapat dua bidang lemah atau lebih yang berpotongan sedemikian rupa sehingga membentuk baji terhadap lereng Sudut lereng lebih besar daripada sudut garis potong kedua bidang lemah Sudut garis potong kedua bidang lemah lebih besar daripada sudut geser dalamnya Keruntuhan jungkiran (toppling failure) Keruntuhan jungkiran dapat terjadi apabila bidang-bidang lemah yang hadir di lereng memiliki kemiringan yang berlawanan dengan kemiringan lereng. Namun demikian, seringkali tipe keruntuhan yang ada merupakan gabungan dari beberapa keruntuhan utama sehingga seakan-akan membentuk suatu tipe keruntuhan yang tidak beraturan (raveling failure) atau seringkali disebut sebagai tipe keruntuhan kompleks. Tipe keruntuhan tak beraturan antara lain overhanging failure, undercutting failure, rolling block failure,dan bouncing rock failure. 15

2.2 Klasifikasi Massa Batuan Massa batuan (rock mass) merupakan tubuh atau massa batuan yang dipisahkan oleh diskontinuitas. Massa batuan ini terdiri dari material geologi seperti tekstur, komposisi mineral dan diskontinuitas. Sementara itu dalam kaitannya dengan rekayasa batuan, klasifikasi massa batuan (rock mass classification) berarti mengumpulkan data dan mengklasifikasikan singkapan batuan berdasarkan parameter-parameter yang telah diyakini dapat mencerminkan perilaku massa batuan tersebut. Kegunaan utama dari sistem klasifikasi massa batuan adalah untuk menilai berbagai properti teknik dari atau yang berhubungan dengan massa batuan (rock mass). Metode klasifikasi massa batuan terus berkembang dari waktu ke waktu. Klasifikasi massa batuan dapat dikelompokkan berdasarkan bentuk dan tipe dari massa batuan tersebut. Metode klasifikasi yang umum dipakai untuk mengevaluasi kestabilan lereng akan dibahas dalam sub-subbab berikut ini. 2.2.1 Rock Mass Rating (RMR) Metode ini sudah diakui dan sering digunakan dalam kegiatan geologi teknik. Metode RMR diperkenalkan oleh Bieniawski (1989). Metode RMR ini memasukkan 5 parameter utama (Tabel 2.1), yaitu : Kekuatan batuan utuh (intact rock) Kekuatan batuan utuh (intact rock) dalam RMR dinyatakan dengan Uniaxial Compressive Strength (UCS). UCS merupakan kekuatan dari batuan utuh yang diperoleh dari hasil uji kuat tekan uniaksial. Pengujian ini dilakukan dengan menggunakan mesin tekan untuk menekan sampel batuan pada permukaan sampel dari satu arah. Menurut Deere dan Miller (1966), nilai UCS juga dapat ditentukan dari JCS dapat ditentukan dari pengeplotan schmidt rebound hammer dan densitas batuan (lihat Gambar 2.4). 16

RQD (rock quality designation) Deere dan Miller (1966) menganjurkan untuk menggunakan kualitas batuan berdasarkan % inti bor pada pemboran dengan diameter 57,15 mm atau lebih. Dipilih diameter 57,15 mm (NX core) karena ukuran ini merupakan ukuran standar dalam suatu pemboran. Bila pemboran dalam kondisi standar (normal) maka inti yang didapat tergantung pada kekuatan batuan serta frekuensi bidang diskontinu yang terdapat pada batuan tersebut. Parameter RQD diperoleh melalui pengamatan inti bor yang terambil, dengan mengabaikan inti bor yang memiliki panjang kurang dari 10 cm dan menunjukkan sisanya sebagai persentase terhadap panjang pemboran (Gambar 2.6). Gambar 2.6 Cara menghitung nilai RQD Namun jika menggunakan sistem scanline, nilai RQD tidak dapat langsung ditentukan dari rumus di atas. Terlebih dahulu harus ditentukan frekuensi diskontinuitas. Frekunsi diskontinuitas merupakan perbandingan antara jumlah diskontinuitas dalam satu scanline dengan panjang scanline. Jumlah diskontinuitas Frekuensi = Panjang scanline 17

Setelah diketahui nilai frekuensi diskontinuitas, nilai tersebut langsung dapat diplot pada grafik di bawah ini (Gambar 2.7). Gambar 2.7 Grafik hubungan antara RQD dengan frekuensi (Hudson dan Harrison, 1997) Spasi diskontinuitas (spacing of discontinuities) Spasi diskontinuitas merupakan jarak antara dua diskontinuitas yang berdekatan dalam satu scanline. Spasi diskontinuitas rata rata = Panjang scanline Jumlah diskontinuitas Kondisi diskontinuitas (condition of discontinuities) Kondisi diskontinuitas ditentukan dari deskripsi tiap bidang diskontinuitas, berupa tingkat pelapukan, kekasaran permukaan bidang diskontinuitas, kemenerusan bidang diskontinuitas, lebar bukaan, dan material pengisi bidang diskontinuitas. Kondisi airtanah (groundwater condition) Air biasanya mengisi rongga antara permukaan diskontinuitas. Keberadaan air ini akan mengurangi kuat geser antara kedua permukaan diskontinuitas. Bobot parameter airtanah dapat ditentukan dengan beberapa cara yaitu pengamatan 18

langsung di lapangan dan menentukan kondisi umum air, melakukan pengukuran debit air atau mengukur tekanan air. Tabel 2.1 Parameter klasifikasi RMR dan nilai pembobotannya (Bieniawski, 1989) 2.2.2 Slope Mass Rating (SMR) Slope mass rating (SMR) merupakan sistem klasifikasi massa batuan yang dirancang khusus untuk lereng. Metode ini dikemukakan oleh Romana (1985). Sistem ini mendasarkan pada hasil RMR dengan memberikan beberapa penyelarasan (Tabel 2.2). Parameter yang dibutuhkan untuk klasifikasi slope mass rating (SMR) : Arah kemiringan (dip direction) dari permukaan lereng (α s ) Arah kemiringan (dip direction) diskontinuitas (α j ), sudut kemiringan diskontinuitas (β j ). dengan: F1 = (1-sin ( α s - α j )) 2 F2 = tan βj ( F1 F2 F3) F4 SMR= RMRbasic + + F3 adalah rating antara 0 dan -60 berdasarkan hubungan antara permukaan lereng dengan kemiringan diskontinuitas. 19

F4 merupakan faktor penyelarasan yang berkaitan dengan metode ekskavasi (Tabel 2.3). Case P T αj - αs αj - αs - 180 0 Tabel 2.2 Nilai pembobotan untuk kekar (Romana, 1985) Very Favourable Favourable Fair Unfavourable Very Unfavourable > 30 0 30 0-20 0 20 0-10 0 10 0-5 0 < 5 0 P / T F1=(1-sin αj - αs ) 2 0.15 0.4 0.7 0.85 1 P β j < 20 0 20 0-30 0 30 0-35 0 35 0-45 0 > 45 0 P F2 = tan 2 βj 0.15 0.4 0.7 0.85 1 T F2 1 1 1 1 1 P βj - βs > 10 0 10 0-0 0 0 0 0 0 -(-10 0 ) < -10 0 T βj - βs < 110 0 110 0-120 0 > 120 0 - - P / T F3 0-6 -25-50 -60 P = keruntuhan bidang (plane failure) α j = joint dip direction β j = joint dip T = keruntuhan jungkiran (toppling failure) α s = slope dip direction β s = slope dip Tabel 2.3 Nilai pembobotan untuk metode ekskavasi lereng (Romana, 1985) Smooth Blasting or Defficient Method Natural Presplitting Blasting Mechanical Blasting F4 15 10 8 0-8 Setelah niai SMR diperoleh, maka nilai tersebut akan berada dalam salah satu kelas dengan nilai bobot tertentu. Tabel 2.4 mendeskripsikan setiap kelas pada sistem klasifikasi SMR. Tabel 2.4 Deskripsi untuk setiap kelas SMR (Romana, 1985) SMR 0-20 21-40 41-60 61-80 81-100 Class V IV III II I Description Very Bad Bad Normal Good Very Good Stability Completely Partially Completely Unstable Stable Unstable Stable Stable Failures Support Big Planar Planar or Some Joints Big or Many or Soil Like Wedges Wedges Reexcavation Important Corrective Some Blocks None Systematic Occasional None 20