RANCANG BANGUN SUATU SISTEM PEMANFAATAN SUMBER ENERGI TENAGA SURYA SEBAGAI PENDUKUNG SUMBER PLN UNTUK RUMAH TANGGA BERBASIS MIKROKONTROLER.

dokumen-dokumen yang mirip
PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

RANCANG BANGUN BECAK LISTRIK TENAGA HYBRID DENGAN MENGGUNAKAN KONTROL PI-FUZZY (SUBJUDUL: HARDWARE) Abstrak

RANCANG BANGUN SUATU SISTEM PEMANFAATAN SUMBER ENERGI TENAGA SURYA SEBAGAI PENDUKUNG SUMBER PLN UNTUK RUMAH TANGGA BERBASIS MIKROKONTROLLER.

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL

RANCANG BANGUN UNINTERRUPTIBLE POWER SUPPLY (UPS) DENGAN ENERGI HYBRID (SUBJUDUL: HARDWARE) Abstrak

Perencanaan dan Pembuatan Modul Inverter 3 Phase Sebagai Suplai Motor Induksi Pada Pengembangan Modul Praktikum Pengemudi Listrik (Sub Judul Hardware)

Pengaturan Switching Boost Converter Menggunakan Logika Fuzzy pada Sistem Solar Cell Sebagai Tenaga Alternatif

PORTABLE SOLAR CHARGER

Rancang Bangun Sistem Pengaturan Lampu Taman Menggunakan Tenaga Surya Melalui Kontroler Logika Fuzzy

BAB I PENDAHULUAN. 1.1 Latar Belakang

1. BAB I PENDAHULUAN 1.1 Latar Belakang

Rancang Bangun Catu Daya Tenaga Surya Untuk Perangkat Audio Mobil

BAB I Pendahuluan. 1.1 Latar Belakang

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

Raharjo et al., Perancangan System Hibrid... 1

Andriani Parastiwi. Kata-kata kunci : Buck converter, Boost converter, Photovoltaic, Fuzzy Logic

PENERANGAN JALAN UMUM MENGGUNAKAN PHOTOVOLTAIC ( PV)

Rancang Bangun Charger Baterai dengan Buckboost Konverter

Rancang Bangun Inverter Tiga Phasa Back to Back Converter Pada Sistem Konversi Energi Angin

BAB I PENDAHULUAN 1.1 Latar Belakang Gambar 1.1 Sumber energi di Indonesia (Overview Industri Hulu Migas, 2015)

PERBANDINGAN KELUARAN PANEL SURYA DENGAN DAN TANPA SISTEM PENJEJAK

Perancangan Battery Control Unit (BCU) Dengan Menggunakan Topologi Cuk Converter Pada Instalasi Tenaga Surya

SEMINAR TUGAS AKHIR. Dosen Pembimbing: Imam Abadi, ST, MT Dr. Ir.Ali Musyafa MSc

PERANCANGAN DAN IMPLEMENTASI SISTEM PENYIMPANAN BATERAI PADA DC POWER HOUSE

BAB I Pendahuluan 1.1 Latar Belakang

RANCANG BANGUN SISTEM MONITORING BEBAN DAN INDIKATOR GANGGUAN PADA RUMAH MANDIRI BERBASIS MIKROKONTROLLER

ABSTRAK. Kata-kata kunci: Solar Cell, Media pembelajaran berbasis web, Intensitas Cahaya, Beban, Sensor Arus dan Tegangan

RANCANG BANGUN TENAGA LISTRIK HYBRID UNTUK SUPLAY BEBAN PNERANGAN UMUM TYPE LED

BAB I PENDAHULUAN. untuk pembangkitan energi listrik. Upaya-upaya eksplorasi untuk. mengatasi krisis energi listrik yang sedang melanda negara kita.

PERANCANGAN DAN IMPLEMENTASI SISTEM CATU DAYA OTOMATIS MENGGUNAKAN SOLAR CELL PADA ROBOT BERODA PENGIKUT GARIS

IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) UNTUK OPTIMASI DAYA PADA PANEL SURYA BERBASIS ALGORITMA INCREMENTAL CONDUCTANCE

PENGONTROLAN DC CHOPPER UNTUK PEMBEBANAN BATERAI DENGAN METODE LOGIKA FUZZY MENGGUNAKAN MIKROKONTROLER ATMEGA 128 TUGAS AKHIR

DESAIN SISTIM ENERGI ALTERNATIF SEBAGAI SUMBER ENERGI LISTRIK LABORATORIUM LISTRIK DASAR

Perancangan Sistem Charger Otomatis pada Pembangkit Listrik Tenaga Surya

PENGGUNAAN TENAGA MATAHARI (SOLAR CELL) SEBAGAI SUMBER DAYA ALAT KOMPUTASI LAPORAN TUGAS AKHIR

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3122

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

PERANCANGAN MULTILEVEL BOOST CONVERTER TIGA TINGKAT UNTUK APLIKASI SEL SURYA

BAB I PENDAHULUAN. adalah lebih hemat energi. Untuk menghidupkan lampu LED tersebut dapat

BAB I PENDAHULUAN. 1.1 Latar Belakang

Auto Charger System Berbasis Solar Cell pada Robot Management Sampah

ANALISIS STEP-UP CHOPPER SEBAGAI TRANSFORMASI R SEBAGAI INTERFACE PHOTOVOLTAIC DAN BEBAN

Desain dan Implementasi Tapped Inductor Buck Converter dengan Metode Kontrol PI pada Rumah Mandiri

Kendali Sistem Pengisi Baterai Tenaga Surya Metode Incremental Conductance Berbasis Mikrokontrol

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt

Rancang Bangun Inverter Multipulsa untuk Beban Penerangan Rumah Tangga Jenis Lampu Pijar

Pengaruh Bentuk Gelombang Pembawa Terhadap Harmonisa pada Inverter Satu Fasa

RANCANG BANGUN MAXIMUM POWER POINT TRACKER (MPPT) PADA PANEL SURYA DENGAN MENGGUNAKAN METODE FUZZY

PERANCANGAN DAN REALISASI INVERTER MENGGUNAKAN MIKROKONTROLER ATMEGA168

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN

DESAIN DAN IMPLEMENTASI INVERTER SATU PHASA 500 V.A. Habibullah 1 Ari Rizki Ramadani 2 ABSTRACT

BAB I PENDAHULUAN A. Latar Belakang

Materi 5: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

RANCANG BANGUN KONVERTER PHOTOVOLTAIC DAN PENTAKSIRAN DAYA PHOTOVOLTAIC UNTUK DC POWER HOUSE

DESAIN DAN ANALISIS PROPORSIONAL KONTROL BUCK-BOOST CONVERTER PADA SISTEM PHOTOVOLTAIK

Rancang Bangun Modul DC DC Converter Dengan Pengendali PI

Kata Kunci : Solar Cell, Modul Surya, Baterai Charger, Controller, Lampu LED, Lampu Penerangan Jalan Umum. 1. Pendahuluan. 2.

Pengaturan Pergerakan Solar Cell Berdasarkan Intensitas Cahaya Matahari (Mikrokontroler, Mekanik dan Transceiver)

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman

ENERGY SUPPLY SOLAR CELL PADA SISTEM PENGENDALI PORTAL PARKIR OTOMATIS BERBASIS MIKROKONTROLER AT89S52

RANCANG BANGUN MODUL BOOST CHOPPER VOLT DC 200 WATT BERBASIS MIKROKONTROLLER ATMEGA 16 ABSTRAK

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

Tujuan dari proyek akhir ini adalah merencanakan, membuat dan menganalisa hasil alat sebagai pengembangan sistem kontrol suhu yang

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

UNJUK KERJA PEMBANGKIT ENERGI LISTRIK TENAGA MATAHARI PADA JARINGAN LISTRIK MIKRO ARUS SEARAH Itmi Hidayat Kurniawan 1*, Latiful Hayat 2 1,2

RANCANG BANGUN SISTEM PENGENDALI MOTOR DC PENGGERAK SOLAR CELL MENGIKUTI ARAH CAHAYA MATAHARI BERBASIS MIKROKONTROLER

Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP

APLIKASI SEL SURYA SEBAGAI ENERGI LAMPU SUAR TANDA PELABUHAN

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) MIKROKONTROLLER AVR. Dosen Pembimbing

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

PERANCANGAN SUMBER ENERGI HYBRID PADA ALAT MESIN PENGERING IKAN

PERANCANGAN KONVERTER ARUS SEARAH TIPE CUK YANG DIOPERASIKAN UNTUK PENCARIAN TITIK DAYA MAKSIMUM PANEL SURYA BERBASIS PERTURB AND OBSERVE

DESAIN DAN IMPLEMENTASI MULTI-INPUT KONVERTER DC-DC PADA SISTEM TENAGA LISTRIK HIBRIDA PV/WIND

BAB I PENDAHULUAN 1.1 Latar Belakang

PENGATURAN KECEPATAN KIPAS ANGIN DENGAN TEKNOLOGI INVERTER FAN CONTROLLING BASED ON INVERTER TECHNOLOGY

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) SOLAR PV BERBASIS FUZZY LOGIC MENGGUNAKAN MIKROKONTROLLER AVR

I. PENDAHULUAN. minyak bumi memaksa manusia untuk mencari sumber-sumber energi alternatif.

ISSN : e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 1375

PEMBUATAN SUMBER TENAGA LISTRIK CADANGAN MENGGUNAKAN SOLAR CELL, BATERAI DAN INVERTER UNTUK KEPERLUAN RUMAH TANGGA. Skripsi.

BAB IV PENGUJIAN DAN ANALISA

MAXIMUM POWER POINT TRACKER PADA SOLAR CELL/PHOTOVOLTAIC MODULE DENGAN MENGGUNAKAN FUZZY LOGIC CONTROLLER

Perancangan dan Realisasi Solar Charge Controller Maximum Power Point Tracker dengan Topologi Buck Converter untuk Charger Handphone

PERENCANAAN INVERTER PWM SATU FASA UNTUK PENGATURAN TEGANGAN OUTPUT PEMBANGKIT TENAGA ANGIN

RANCANG BANGUN MINIATUR SISTEM KENDALI MOTOR PADA PEMBANGKIT LISTRIK TENAGA HYBRID BERBASIS MIKROKONTROLER ATMEGA 16

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PEDESAAN

PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING

PENGEMBANGAN TEKNOLOGI TEPAT GUNA : STUDI PARAMETER TEKNOLOGI HYBRID KOLEKTOR SEL SURYA SEBAGAI TEKNOLOGI PENGERING HASIL PANEN ABSTRAK

BAB I PENDAHULUAN. Teknologi konverter elektronika daya telah banyak digunakan pada. kehidupan sehari-hari. Salah satunya yaitu dc dc konverter.

PERANCANGAN SINGLE ENDED PRIMARY INDUCTOR CONVERTER UNTUK PENYETABIL TEGANGAN PADA PEMBANGKIT LISTRIK TENAGA SURYA

BAB 3 METODOLOGI PENELITIAN

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull

ABSTRACT. Keyword ; Rectifier and filter C, Buck Converter,inverter. vii

MEMAKSIMALKAN DAYA PHOTOVOLTAIC SEBAGAI CHARGER CONTROLLER

Politeknik Elektronika Negeri Surabaya ITS Kampus ITS Sukolilo Surabaya

INVERTER JEMBATAN PENUH DENGAN RANGKAIAN RESONANSI PARALEL UNTUK FREKUENSI RENDAH BERBASIS IC SG3524

PENGEMBANGAN TEGANGAN PANEL SURYA PORTABLE BERBASIS CLOSE LOOP BOOST CONVERTER

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2

Transkripsi:

RANCANG BANGUN SUATU SISTEM PEMANFAATAN SUMBER ENERGI TENAGA SURYA SEBAGAI PENDUKUNG SUMBER PLN UNTUK RUMAH TANGGA BERBASIS MIKROKONTROLER. Pitvande Yanuar Hidayat 1, Endro Wahjono, S.ST, MT 2, Ainur Rofiq Nansur, ST, MT 3 Mahasiswa Teknik Elektro Industri 1, Dosen Elektro Industri PENS-ITS 2, Dosen Elektro Industri PENS-ITS 3 Teknik Elektro Industri, Politeknik Elektronika Negeri Surabaya Institut Teknologi Sepuluh Nopember Surabaya Kampus ITS Sukolilo Surabaya 60111 Telp (+62) 031-59447280.Fax (+62) 031-5946114 Email: vande_sukses@yahoo.com ABSTRAK Energi cahaya dari matahari dapat berubah menjadi energi listrik menggunakan panel surya. Tegangan yang dihasilkan oleh panel surya 50 watt-peak sebanyak 4 (empat) 17,6V-8V.Panel surya dipasang secara paralel dengan maksud membesarkan arus keluar. Tegangan keluar panel surya perlu diturunkan atau dinaikkan sehingga tegangan keluar mencapai 14.5 volt. Naik atau turun tegangan keluar dari panel surya akan diatur oleh buck boost converter.. Pengaturan tegangan keluar buck-boost converter menggunakan mikrokontroler dengan pengaturan penyulutan duty cycle MOSFET IRFP460. Kemudian tegangan keluar buck boost akan difungsikan untuk pengisian arus 45AH. Tegangan yang semula DC dijadikan AC oleh inverter dengan tegangan keluar 220Volt digunakan untuk memikul beban rumah tangga. Beban rumah tangga akan disupply energi listrik oleh PLN pada pagi hari hingga sore hari dan akan diisi arus oleh panel surya. Saat tegangan panel surya dibawah tegangan yang tidak dapat dinaikkan buck boost converter maka proses pengisian arus pada berhenti dan akan memberi tegangan masuk pada inverter. Tegangan keluar inverter akan memikul sebagian beban rumah tangga. Perpindahan PLN menuju inverter akan diatur oleh pembacaan tegangan panel surya oleh sensor tegangan yang akan dikirim menuju mikrokontroler. Pembacaan tegangan tersebut akan dijadikan nilai dimana mikrokontroler akan memindahkan saklar dari PLN menuju inverter. Daya yang dapat dipikul inverter dalam satu hari sebesar 308WH. Kata kunci: panel surya, buck-boost converter,, Inverter, sensor tegangan ABSTRACT Light energy from the sun can be transformed into electrical energy using solar panels. The voltage generated by the solar panel 50 watt-peak 4 (four) 17.6 V-8V. The solar panels installed in parallel with the intention of increased out current. Output Voltage of solar panels need to be lowered or raised so that the voltage reaches 14.5 volts output. Up or down the voltage out of the solar panels will be governed by the buck boost converter. Arrangement output voltage the buck-boost converter using a microcontroller with ignition settings IRFP460 MOSFET duty cycle. Then the buck boost the output voltage will be enabled to 45AH charging currents. Which was originally used as a DC voltage of the AC by the inverter with the output voltage 220 Volt used to carry the burden of the household. The burden of household electrical energy will be supplied by PLN in the morning until late afternoon and will be filled by current solar panels. When a voltage below the voltage solar panels that can not be raised buck boost converter is current at the charging process stops and the will give a voltage into the inverter. The voltage inverter will shoulder most of the burden of the household. PLN displacement toward the inverter will be governed by the solar panel voltage readings by the sensor voltage to be sent to the microcontroller. The voltage readings will be the value at which the microcontroller will move the switch from electricity to the inverter. Power inverter that can be carried in a one day of 308WH. Key words: solar panels, buck-boost converters, s, Inverters, voltage senso 1

1. PENDAHULUAN Pertumbuhan penduduk yang terus meningkat mengakibatkan kebutuhan energi pun terus bertambah. Hal ini bertolak belakang dengan ketersediaan energi fosil yang selama ini menjadi bahan bakar utama yang semakin menipis, energi fosil ini sendiri adalah energi yang tidak dapat diperbaharui karena membutukan waktu yang sangat lama dalam pembentukkannya. Untuk memenuhi kebutuhan energi yang terus meningkat, pemerintah terus mengembangkan berbagai energi alternatif, di antaranya energi terbarukan. Potensi energi terbarukan, seperti biomassa, panas bumi, energi surya, energi air, dan energi angin sampai saat ini belum banyak dimanfaatkan, padahal potensi energi terbarukan di Indonesia sangat besar. Terkait dengan energi surya, sebagai negara tropis Indonesia mempunyai potensi energi surya yang cukup besar. Berdasarkan data penyinaran matahari yang dihimpun dari 18 lokasi di Indonesia, radiasi surya di Indonesia dapat diklasifikasikan berturut-turut sebagai berikut: untuk kawasan barat dan timur Indonesia dengan distribusi penyinaran di Kawasan Barat Indonesia (KBI) sekitar 4,5 kwh/m 2 /hari dengan variasi bulanan sekitar 10%; dan di Kawasan Timur Indonesia (KTI) sekitar 5,1 kwh/m 2 /hari dengan variasi bulanan sekitar 9%. Pemanfaatan tenaga surya ini tentunya akan lebih efektif jika dalam pengaplikasiannya disertai dengan sitem kontrol yang efektif pula, dalam perencanaan tugas akhir ini menggunakan solar sel sebagai sumber pendukung dari PLN untuk beban rumah tangga. Tegangan yang dihasilkan solar sel dapat maksimal ketika dalam keadaan cuaca yang terik. Ketika keadaan mendung tegangan solar sel semakin kecil, saat nilai tegangan solar sel diturunkan ataupun dinaikkan dengan rangkaian buck-boost converter. Dengan tegangan keluar dari buck-boost converter dapat digunakan untuk mengisi battery. Tegangan keluar battery akan diubah menjadi tegangan AC melalui rangkaian inverter. Tegangan keluar dari inverter dapat digunakan untuk mensupply beban. Saat tegangan output battery tidak mampu untuk men-supply beban maka ATS akan berpindah ke sumber PLN melalui perintah mikrokontroller. Pemanfaatan panas energi matahari merupakan salah satu sumber energi yang dapat dimanfaatkan untuk membangkitkan energi listrik. Selain tersedia secara gratis pemanfaatan matahari sebagai salah satu upaya untuk mengurangi ketergantungan manusia terhadap energi batubara, minyak bumi dan gas alam yang pada kenyataan sulit untuk diperbaharui. 1.1. Tujuan Tujuan alat ini adalah untuk memanfaatkan tenaga surya sebagai energi alternatif untuk mengurangi pemakaian listrik dari PLN untuk mensupply beban rumah tangga. 1.2. Batasan Masalah 1. Empat buah Solar cell 50 watt-peak digunakan sebagai sumber utama untuk membangkitkan tegangan 17,6 Vdc. Tegangan keluarannya disimpan pada Accumulator 12 V 45 AH. 2. Rangkaian DC-DC converter ini digunakan untuk menurunkan dan menaikaan tegangan keluaran dari solar cell sebesar 8 volt sampai 17,6 volt menuju 14,5 volt dengan penyulutan PWM (Pulse Width Modulation) yang dibangkitkan oleh mikrokontroler ATMEGA16. 3. Waktu solar cell untuk men-supply rumah tangga tidak ditentukan, hal ini tergantung dengan keadaan cuaca dan kondisi 4. Inverter yang digunakan pada Proyek Akhir ini berdaya maksimal 200 Watt 2. PERENCANAAN DAN PEMBUATAN PERANGKAT LUNAK Dalam membangun sistem pemanfaatan sumber energi tenaga surya sebagai pendukung sumber PLN untuk rumah tangga berbasis mikrokontroller dibutuhkan beberapa bagian pendukung seperti yang terlihat pada Gambar 2.1. Solar cell Sensor tegangan (voltage divider) Buck-boost converter Sensor tegangan (voltage divider) Rangkaian battery charger Battery Inverter LCD Mikrokontroller Driver 2.1 Perancangan Perangkat Keras PLN ATS Beban Pada tahap ini, dilakukan pengujian analisa terhadap rangkaian buck-boost converter, rangkaian battery charger, dan rangkaian beban. Selanjutnya dimulai pembuatan hardware system yang pada akhirnya juga akan diuji. Tegangan keluar solar sel dinaikan atau diturunkan dengan rangkaian buck- 2

boost converter. Pada buck-boost converter ini menggunakan pengaturan duty cycle melalui mikrokontroller. Tegangan keluar buck-boost converter disensor dengan voltage divider untuk mengetahui tegangan keluar dari buck-boost converter agar dapat mengisi. Tegangan keluar berupa tegangan DC kemudian diubah menjadi tegangan AC melalui rangkaian inverter. Tegangan keluar panel surya disensor dengan sensor tegangan untuk mengetahui apakah tegangan keluar panel surya dapat mengisi. tegangan keluar panel surya akan dijadikan dasar perpindahan dari PLN menuju inverter. Tegangan keluar inverter digunakan untuk men-supply beban. 14:50 18,32 18,30 18,31 18,28 18,29 15:20 18,12 18,05 18,09 17,95 18,06 15:50 17,78 17,56 17,68 17,47 17,57 16:20 16,54 16,34 16,48 16,21 16,35 16:50 15,63 15,23 15,53 15,12 15,43 17:00 13,00 12,86 12,97 12,76 12,84 3. Pengujian dan Analisa 3.1 Pengujian panel surya Pengujian panel surya dilakukan untuk mengetahui karakteristik dari panel surya terhadap cahaya yang jatuh pada permukaan panel surya. Panel surya yang akan diuji coba berjumlah 4 buah. 4 buah panel surya ini akan dihubungkan secara paralel. Hal ini dilakukan dengan tujuan agar arus yang dihasilkan panel surya merupakan akumulasi dari keempat panel surya tersebut. Panel surya merupakan sumber arus yang kemampuan menghasilkan arusnya sebanding dengan intensitas cahaya yang jatuh di permukaanya. Gambar 4.1.Rangkaian ekuivalen sel surya Setelah dilakukan pengujian, didapatkan data tegangan tiap panel surya dan tegangan paralel 4 panel surya. Berikut tabel data dan kurva tegangan 4 panel surya : Tabel 4.1 tegangan 4 panel surya Jam pengujian SC1 SC2 paralel 7:50 18,36 17,95 18,70 17,33 17,99 8:20 18,13 17,87 18,43 17,01 17,94 8:50 17,90 17,94 17,84 17,82 17,85 9:20 17,95 17,91 17,85 17,80 17,83 9:50 18,13 18,05 18,05 18,05 18,07 10:20 19,29 19,20 19,20 19,13 19,11 10:50 19,00 18,92 18,94 18,87 18,85 11:20 18,82 18,73 18,71 18,73 18,62 11:50 18,61 18,51 18,51 18,55 18,42 12:20 18,57 18,48 18,49 18,51 18,52 12:50 18,52 18,44 18,46 18,42 18,41 13:20 18,67 18,52 18,56 18,75 18,51 13:50 18,72 18,77 18,87 18,43 18,65 14:20 18,49 18,45 18,43 18,41 18,44 Gambar 4.3 kurva tegangan 4 panel surya Tegangan panel surya saat terbebani mengalami penurunan tegangan. Hal ini terjadi saat panel surya digunakan untuk pengisian. Berikut data solar cell saat pengisian : Tabel 4.2 tegangan panel surya saat pengisian Jam Pengujian SC1 SC2 SC4 paralel 7:50 14,46 14,42 14,37 14,32 14,35 8:20 15,43 15,14 14,71 14,71 14,86 8:50 14,47 14,44 14,13 14,13 13,93 9:20 15,58 15,46 15,34 15,31 15,07 9:50 16,24 16,50 15,64 15,64 15,80 10:20 18,47 18,08 17,83 17,03 15,26 10:50 18,20 17,95 17,03 17,06 15,28 11:20 18,21 17,89 17,06 17,17 15,40 11:50 17,89 17,47 17,17 16,94 14,08 12:20 17,80 17,36 17,11 16,85 14,03 12:50 17,84 17,59 16,93 16,92 15,32 13:20 17,81 17,50 17,02 16,91 15,44 13:50 18,05 17,72 17,12 16,98 15,09 14:20 17,78 17,66 16,98 16,88 15,42 14:50 17,87 17,48 17,02 16,92 15,43 15:20 17,47 17,15 16,69 16,46 15,36 15:50 16,02 15,87 15,68 15,13 15,11 16:20 13,44 13,26 13,11 12,11 12,77 16:50 10,40 10,12 10,25 10,03 10,14 17:00 8,46 8,76 8,23 8,14 8,35 3

Gambar 4.4 kurva tegangan panel surya saat pengisian Pengujian buck boost converter Buck-boost converter merupakan step up dan step down DC-DC converter. Nilai tegangan keluar bedasarkan tegangan masuk buck-boost converter dan besar duty cycle sinyal PWM yang berasal dari mikrokontroler yang men-drive bagian switching MOSFET IRFP460. Dalam pengujiannya, buck-boost converter diberi tegangan masuk sebesar 17 volt hingga 7 volt dan diberi sinyal drive dengan duty cycle 20% hingga 80% dan tegangan keluar dijaga stabil sebesar 14 volt. Berikut data yang telah didapatkan : Tabel 4.3 nilai seting duty cycle buck-boost no Vin Iin Iout Duty Cycle ( % ) 1 17,6 0,45 14,49 0,43 45,1 2 16 0,495 14,49 0,43 47,7 3 15 0,531 14,53 0,43 49,1 4 14 0,564 14,51 0,436 51,6 5 13 0,605 14,52 0,436 60,2 6 12 0,668 14,52 0,436 63,1 7 11 0,746 14,51 0,436 66,51 8 10 0,845 14,52 0,43 69,1 9 9 0,975 14,51 0,43 72,1 10 8 1,15 14,49 0,43 76 Berikut merupakan data nilai kesalahan dari buck boost converter dengan membandingkan tegangan teori dengan tegangan praktek : Vin Tabel 4.4 nilai error buck boost converter Iin (A) Iout prak (A) DC (%) prak teori Error 14 0,045 0,1 20 3,585 3,5 0,024 14 0,096 0,164 25 5,64 4,66 0,2 14 0,13 0,2 30 6,73 6 0,12 14 0,22 0,26 35 8,88 7,5 0,184 14 0,297 0,314 40 10,47 9,37 0,117 14 0,34 0,336 45 11,24 11,45 0,02 14 0,523 0,418 50 13,99 14 0,0007 14 0,599 0,445 55 15,87 17,11 0,07 14 0,653 0,47 60 19,29 21 0,08 14 0,922 0,55 65 22,52 26 0,133 14 1,346 0,65 70 27,22 32 0,149 14 1,952 0,76 75 33,4 42 0,204 Pengujian charging accu berbeban Pada pengujian pengisian 45Ah dengan sumber empat panel surya 50 WP telah menggunakan buck boost converter sebagai pengontrol tegangan charging agar tetap stabil 14,5 volt. Mosfet telah di drive dengan sudut penyulutan PWM menggunakan program mikrokontroler. Accumulator 12 volt dc akan memberi tegangan masuk inverter, kemudian inverter akan merubah 12 volt dc menjadi 220 volt AC. Beban yang dipakai dalam uji coba ini adalah lampu 220 volt AC 5 watt dan lampu 220 volt AC 100 watt. Berikut data pengisian : Tabel 4.6 pengisian berbeban beban tegangan masuk panel surya tegangan keluar buck boost Lampu 5 watt 12 volt 14.5 volt lampu 100watt 11,2 volt 14.5 volt PENGUJIAN INVERTER DENGAN BEBAN Pada pengujian ini inverter dengan sumber listrik dari 12 V 45 Ah dibebani beberapa macam beban untuk melihat konsumsi arus dari. Berikut data pengujian inverter dengan beban. Tabel 4.8 pengujian inverter berbeban Beban daya beban (W) I out arus masuk panel surya 2,8 2,8 inverter Blender 180 16 216 Kipas angin 45 6 220 2 Lampu pijar Kipas angin 170 17 219 arus pengisian 0,85 0,9 4

2 Lampu pijar Kipas angin 185 18,5 216 1 Lampu pijar 1 Lampu CFL Kipas angin 124 12,5 219 1 Lampu CFL 14 2,25 220 6. Malvino, Prinsip-prinsip Elektronik, Penerbit Erlangga, Jakarta, 1984 4 PENUTUP 4.1 KESIMPULAN Setelah melalui beberapa proses perencanaan, pembuatan dan pengujian alat serta dari data yang didapat dari perencanaan dan pembuatan sistem pemanfaatan tenaga matahari untuk sumber listrik beban rumah tangga, maka dapat disimpulkan: 1. Arus pengisian yang dapat masuk ke pada sistem maksimal 2,3 A. 2. Tegangan keluar pada buck boost saat pengisian dapat stabil 14V- 14,5V. Saat terbebani nilai tegangan keluar buck boost menjadi menurun hingga 11,9V namun beberapa saat akan kembali 14.5V. 3. Arus pengisian saat tidak menggunakan converter mencapai 5,23A. 4. Daya yang dapat dihasilkan inverter dalam satu hari sebesar 308W. 5. Daftar Pustaka 1. Datasheet of Mikrokontroller AT Mega 16 2. Fandi Budiawan, RANCANG BANGUN ALAT PENYIRAM TAMAN DENGAN MENGGUNAKAN MATAHARI SEBAGAI ENERGI ALTERNATIF, Proyek Akhir 2009 3. Fikri Amrullah, RANCANG BANGUN SISTEM PENGISIAN BATTERRY CHARGER PADA PEMBANGKIT LISTRIK TENAGA ANGIN, Proyek Akhir 2007. 4. Mukund R. Patel, Wind and Solar Power System, 1999, US Merchant Marine Academy Kings Point, New York, 19999 5. Muhammad H Rashid, Power Electronics Circuits, Devices, and Application 2 nd Ed, PT Prenhallindo, Jakarta, 1999 5