EVALUASI KAPASITAS BORED PILE DENGAN MEYERHOF METHOD DAN CHIN S METHOD

dokumen-dokumen yang mirip
VERIFIKASI KAPASITAS BORED PILE DENGAN DYNAMIC LOAD TESTING. Yohannes Lulie

HUBUNGAN DIMENSI, WORKING LOAD DAN SETTLEMENT FONDASI DRIVEN PILE DI LAPISAN PASIR

KAPASITAS FONDASI TIANG DARI METODE LANGSUNG CONE PENETROMETER TEST

Angel Refanie NRP : Pembimbing: Andrias Suhendra Nugraha, S.T., M.T. ABSTRAK

KEHANDALAN DAYA DUKUNGAKSIAL TIANG PANCANG BETON SEGI EMPAT BERDASARKAN HASIL SPT DAN PDA. Yusti Yudiawati

BAB III DATA DAN TINJAUAN DESAIN AWAL

BAB I PENDAHULUAN Latar Belakang. Pondasi tiang adalah salah satu bagian dari struktur yang digunakan untuk

Daya Dukung Pondasi Tiang

BAB 4 ANALISA DATA DAN HASIL

BAB III DATA PERENCANAAN

TAHANAN GESEKAN SELIMUT PADA TIANG BOR PANJANG

Korelasi Nilai N-SPT dengan Unit EndBearing dan Skin Friction untuk Fondasi Bored Pile pada Tanah Clay-Shale, Studi Kasus Jembatan Surabaya-Madura

BAB 5 KESIMPULAN DAN SARAN

BAB III METODE PENELITIAN

BAB III METODOLOGI. pondasi tiang mencangkup beberapa tahapan pekerjaan, sebagai tahapan awal

BAB VI PENUTUP. yang telah dilakukan, disimpulkan bahwa. dukung yang baik jika dilihat dari analisis perhitungan, namun pada

BAB III METODOLOGI PENELITIAN. Proyek pembangunan gedung berlantai banyak ini adalah pembangunan gedung

BAB IV ALTERNATIF DESAIN DAN ANALISIS PERKUATAN FONDASI

Output Program GRL WEAP87 Untuk Lokasi BH 21

TINJAUAN DAYA DUKUNG PONDASI TIANG PANCANG PADA TANAH BERLAPIS BERDASARKAN HASIL UJI PENETRASI STANDAR (SPT)

BAB 3 DATA TANAH DAN DESAIN AWAL

BAB V PENUTUP. 1. Berdasarkan perhitungan analisis daya dukung tiang bor tunggal metode Reese

Analisis Daya Dukung Tiang Tunggal Statik pada Tanah Lunak di Gedebage

KORELASI DAYA DUKUNG PONDASI TIANG ANTARA STATIC LOADING TEST DENGAN PILE DRIVING ANALYZER

EVALUASI DAYA DUKUNG TIANG PANCANG BERDASARKAN METODE DINAMIK

BAB III ANALISIS KAPASITAS FONDASI TIANG BERDASARKAN DATA SPT DAN INTERPRETASI KAPASITAS HASIL TES PEMBEBANAN

PREDIKSI SOIL PROPERTIES DARI HASIL CONE PENETROMETER TEST

ANALISA KUAT DUKUNG PONDASI BORED PILE BERDASARKAN DATA PENGUJIAN LAPANGAN (CONE DAN N-STANDARD PENETRATION TEST)

Evaluasi Formula Penentuan Daya Dukung Aksial Tiang Pancang Tunggal Menggunakan Data CPT Berdasarkan Metode Langsung (Direct Method)

Oleh : DWI DEDY ARIYANTO ( ) Dosen Pembimbing : Dr. Ir. Djoko Untung

ANALISA DAYA DUKUNG TIANG SPUNPILE DENGAN METODE UJI PEMBEBANAN STATIK (LOADING TEST)

PENGARUH KEMIRINGAN PONDASI TIANG TERHADAP DAYA DUKUNG TIANG TUNGGAL AKIBAT BEBAN VERTIKAL

ANALISIS DAYA DUKUNG TIANG PANCANG MENGGUNAKAN DATA INSITU TEST, PARAMETER LABORATORIUM TERHADAP LOADING TEST KANTLEDGE

Perilaku Tiang Pancang Tunggal pada Tanah Lempung Lunak di Gedebage

ANALISIS BEBAN-PENURUNAN PADA PONDASI TIANG BOR BERDASARKAN HASIL UJI BEBAN TIANG TERINSTRUMENTASI DAN PROGRAM GEO5

BAB II TINJAUAN PUSTAKA. Seluruh rekayasa konstruksi pada dasarnya bertumpu pada tanah dan didukung oleh

PERENCANAAN PONDASI TIANG BOR PADA PROYEK CIKINI GOLD CENTER

BAB 4 HASIL DAN PEMBAHASAN

PERNYATAAN KEASLIAN...

ANALISIS DAYA DUKUNG TIANG BOR BERDASARKAN DATA SPT DAN UJI PEMBEBANAN TIANG. Pembimbing : Ir. Asriwiyanti Desiani,M.T

Analisis Daya Dukung Tiang Tunggal Dinamik pada Tanah Lunak di Gedebage

Analisis Daya Dukung Helical Pile Menggunakan Metode Elemen Hingga

HITUNG BALIK NILAI KEKAKUAN TANAH DARI HASIL PILE LOADING TEST DENGAN MENGGUNAKAN PROGRAM PLAXIS

EVALUASI DAYA DUKUNG PONDASI BORED PILE TERHADAP UJI PEMBEBANAN LANGSUNG PADA PROYEK PEMBANGUNAN AEON MALL MIXED USE SENTUL CITY BOGOR

ABSTRAK. Kata kunci : pondasi, daya dukung, Florida Pier.

EVALUASI PERKIRAAN DAYA DUKUNG TEORITIS TERHADAP DAYA DUKUNG AKTUAL TIANG BERDASARKAN DATA SONDIR DAN LOADING TEST

BAB III METODOLOGI PENELITIAN

BAB VII TINJAUAN KHUSUS AXIAL LOADING TEST DAN PILE DRIVING ANALYZER

Nurmaidah Dosen Pengajar Fakultas Teknik Universitas Medan Area

PEMBUATAN PROGRAM APLIKASI UNTUK PERHITUNGAN DAYA DUKUNG DAN PENURUNAN PONDASI TIANG DENGAN MENGGUNAKAN MATLAB

BAB III LANDASAN TEORI

PENGARUH BENTUK DAN RASIO KELANGSINGAN PADA TIANG PANCANG YANG DIBEBANI LATERAL

PENGUJIAN BORED PILE

BAB III METODOLOGI PENELITIAN. pembangunan bangunan rumah susun sewa. Adapun data-data yang diketahui. 1. Nama Proyek : Rusunawa Jatinegara Jakarta

Gigih Sanjaya Jurusan Teknik Sipil, Fakultas Teknik Universitas Riau

PERBANDINGAN DAYA DUKUNG PONDASI AKIBAT PERBEDAAN METODE KONSTRUKSI PONDASI DALAM

ANALISIS DAYA DUKUNG SISTEM PONDASI KELOMPOK TIANG TEKAN HIDROLIS (STUDI KASUS PADA PROYEK PEMBANGUNAN ITC POLONIA MEDAN)

EVALUASI TES BEBAN PONDASI BORE PILE GEDUNG IRADIATOR GAMMA KAPASITAS 2 MCI

ANALISA PERILAKU DAYA DUKUNG TIANG TUNGGAL DENGAN RUMUS STATIK DAN MODEL FISIK PADA TANAH PASIR

KORELASI PENENTUAN DAYA DUKUNG TIANG CARA EMPIRIK (CPT) DENGAN PILE DRIVEN ANALYSIS (PDA) DI KOTA PEKANBARU

Komparasi Nilai Daya Dukung Tiang Tunggal Pondasi Bor Menggunakan Data SPT, dan Hasil Loading Test pada Tanah Granuler

ANALISIS DAYA DUKUNG DAN PENURUNAN ELASTIS PONDASI BORED PILE PADA PROYEK FLY OVER SIMPANG POS MEDAN. Manna Grace S. 1, Roesyanto 2 ABSTRAK

BAB III LANDASAN TEORI. yang ujungnya berbentuk kerucut dengan sudut 60 0 dan dengan luasan ujung 10

BAB II TINJAUAN PUSTAKA. bangunan-bangunan tingkat tinggi yang dipengaruhi oleh gaya-gaya

SIMULASI COMPRESSION PILE TEST

Analisis Daya Dukung dan Penurunan Fondasi Rakit dan Tiang Rakit pada Timbunan di Atas Tanah Lunak

2.5.1 Pengujian Lapangan Pengujian Laboratorium... 24

Ahmad Marzuki (1), Muhammad Firdaus (1), Ilhami (1) dan Sidik Sutiasno (2)

PERENCANAAN PERKUATAN PONDASI JEMBATAN CABLE STAYED MENADO DENGAN MENGGUNAKAN PROGRAM GROUP 5.0 DAN PLAXIS 3 DIMENSI

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R.

BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH

PENAMBAHAN LAPISAN PASIR PADAT SEBAGAI SOLUSI MASALAH PENURUNAN FONDASI DI ATAS LAPISAN LEMPUNG LUNAK : SUATU STUDI MODEL

PERBANDINGAN DAYA DUKUNG AKSIAL TIANG PANCANG TUNGGAL BERDASARKAN DATA SONDIR DAN DATA STANDARD PENETRATION TEST

BAB IV PERHITUNGAN DAN ANALISIS

PENGARUH KEPADATAN DAN KADAR AIR TERHADAP HAMBATAN PENETRASI SONDIR PADA TANAH PASIR (Studi kasus: Pasir Sungai Palu)

ANALISIS DAYA DUKUNG TIANG PANCANG DENGAN METODE ELEMEN HINGGA DAN SOFTWARE L-PILE

V. CALIFORNIA BEARING RATIO

BAB I PENDAHULUAN. alternatif ruas jalan dengan melakukan pembukaan jalan lingkar luar (outer ring road).

GARIS BESAR PROGRAM PENGAJARAN (GBPP)

SIMULASI HASIL UJI PLATE LOADING TEST STUDI KASUS HOTEL 10 LANTAI DI BANDUNG

PENGARUH KEPADATAN DAN KADAR AIR TERHADAP HAMBATAN PENETRASI SONDIR PADA TANAU LANAU (Studi kasus: Lanau di Tondo Kota Palu)

Jawaban UAS Teknik Pondasi (Waktu 120 menit) Tanggal : 18 Juni 2012

PERBANDINGAN DAYA DUKUNG ULTIMIT TIANG PANCANG ANTARA METODE TEORETIS DAN METODE AKTUAL DENGAN KONFIGURASI TIANG DAN KEDALAMAN

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( )

ANALISIS KAPASITAS DAYA DUKUNG TIANG BOR PADA PROYEK MEDAN FOCAL POINT (STUDI KASUS)

ANALISA PENGARUH KETEBALAN PILE CAP DAN JARAK ANTAR TIANG TERHADAP KAPASITAS KELOMPOK PONDASI DENGAN MENGGUNAKAN PLAXIS 3D

DAFTAR PUSTAKA. Geotech Efathama,P.T , Various Report Uji Beban Statik

Estimasi Kuat Dukung Ultimit Tiang Pancang Dengan Metode Chin Dari Hasil Static Load Test (SLT) Kasus : Hasil SLT di Proyek-proyek Surabaya Barat

BAB I PENDAHULUAN. 1.1 Latar Belakang

Studi Komparatif Daya Dukung Pondasi Tiang Dengan Teori Meyerhoff Terhadap Teori L Decourt Berdasar Hasil Uji N-SPT Di Surabaya Timur

PENGARUH BENTUK, KEDALAMAN, DAN RASIO KELANGSINGAN TERHADAP KAPASITAS BEBAN LATERAL TIANG PANCANG BETON ABSTRAK

DESAIN PONDASI TIANG TANKI LIQUID NITROGEN PADA TANAH LEMPUNG. Muhammad D. Farda NIM :

Evaluasi Data Uji Lapangan dan Laboratorium Terhadap Daya Dukung Fondasi Tiang Bor

BAB I PENDAHULUAN Latar Belakang

PERILAKU PONDASI TELAPAK BUJUR SANGKAR BERSELIMUT DI ATAS TANAH PASIR AKIBAT PEMBEBANAN

ANALISIS DAYA DUKUNG PONDASI TIANG PANCANG DENGAN SISTEM HIDROLIS PADA PROYEK PEMBANGUNAN GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI MEDAN

MODUL 5 DAYA DUKUNG TIANG TUNGGAL

ANALISIS DAYA DUKUNG PONDASI KELOMPOK HELICAL PILE PADA TANAH GAMBUT

BAB II TINJAUAN PUSTAKA. Pemilihan jenis pondasi bangunan umumnya didasarkan pada beberapa faktor,

ANALISIS POTENSI LIKUIFAKSI DI PT. PLN (PERSERO) UIP KIT SULMAPA PLTU 2 SULAWESI UTARA 2 X 25 MW POWER PLAN

Transkripsi:

Konferensi Nasional Teknik Sipil 4 (KoNTekS 4) Sanur-Bali, 2-3 Juni 2010 EVALUASI KAPASITAS BORED PILE DENGAN MEYERHOF METHOD DAN CHIN S METHOD Yohannes Lulie 1), Y. Hendra Suryadharma 2) 1, 2 Staf pengajar Universitas Atma Jaya Yogyakarta ABSTRAK Adanya bermacam-macam metode desain kapasitas bored pile dan ketidakpastian yang ada pada tanah di mana bored pile berpijak. Akar permasalahan pada penelitian ini adalah tidak disepakati secara umum akurasi persamaan analisis statik dengan Meyerhof Method untuk mengistimasi kapasitas memikul beban rencana bored pile. Perlu adanya kualitas kontrol pada desain bored pile dengan suatu evaluasi menjamin kapasitas bored pile di lapangan dengan Chin s method dari suatu hasil uji static axial load test (kentledge system). Hasil yang didapat dari penelitian ini yaitu nilai safety factor 2,5 sebagai usulan. Mengingat F ultimate yang dihasilkan baik empiris Meyerhof method maupun Chin s method mendekat sama. F working load atau F allowable terjadi perbedaaan yang menyolok karena safety factor yang digunakan berbeda yaitu safety factor 2 untuk Meyerhof method dan safety factor 3 untuk Chin s method. Nilai safety factor 2,5 sebagai batas toleransi win win solution agar F working load atau F allowable mendekati sama. Kata kunci: SPT, bored pile, safety factor 1. PENDAHULUAN Ketidakpastian yang ada pada tanah di mana bored pile berpijak muncul adanya alternatif bermacam-macam metode desain kapasitas bored pile. Bored pile telah banyak digunakan sebagai fondasi bangunan. Ada beberapa issue yang berhubungan dengan desain bored pile dan pelaksanaannya, termasuk metode desain empiris, seperti: Minimum- Path Method dengan menggunakan data cone resistance q c dari uji CPT atau Meyerhof Method berdasarkan data SPT. Persamaan analisis statik yang ada untuk mengistimasi kapasitas bored pile memikul beban rencana belum disepakati secara umum berkaitan dengan akurasinya, (Lulie, 2008). Untuk mengetahui penyimpangan maupun keakurasian dari hasil desain suatu metode pendekatan empiris perlu diuji kemampuan struktur suatu bored pile dengan uji in situ seperti dynamic load testing atau dengan static axial load test (kentledge), (Keller, 2008). Ada jaminan akan kapasitas bored pile dalam pelaksanaannya, karena disebabkan adanya kerusakan struktural saat beban bekerja, (ODOT, 2007; Fellenius, 1999; Fellenius, 2002). Kebijakan akan muncul apakah safety factor dalam desain dapat mengatasi perbedaan sehingga masih dapat ditoleransi dalam kondisi batas aman dan sebagai evaluasi desain selanjutnya ke arah lebih baik. Safety factor cara empiris sebesar 2,0~2,5 untuk mengkoreksi daya dukung pile menjadi hasil akhir daya dukung berfaktor (Brower,2002). Selanjutnya perbedaan daya dukung berfaktor antara kedua metode dapat dianalisis nilai koreksi safety factor untuk metode empiris. Issue dalam penelitian ini perlu adanya kualitas kontrol pada desain kapasitas bored pile metode desain Meyerhof Method dengan Chin s method dari suatu hasil uji static axial load test (kentledge). Akar permasalahan pada penelitian ini adalah tidak disepakati secara umum akurasi persamaan analisis statik dengan Meyerhof Method untuk mengistimasi kapasitas memikul beban rencana bored pile. Perlu adanya kualitas kontrol pada desain bored pile dengan suatu evaluasi menjamin kapasitas bored pile di lapangan dengan Chin s method dari suatu hasil uji static axial load test (kentledge). Tujuan penelitian ini adalah melakukan pembebanan statis axial load test untuk mengetahui besarnya daya dukung ultimate bored pile. Dari hasil pengujian akan didapat informasi besarnya kapasitas dukung termobilisir, kemudian memverifikasikan hasil kapasitas dukung normal tekan yang diperoleh dari cara empiris Meyerhof Method. Faktor keamanan 2 (dua) yang sering dipakai untuk menilai apakah beban kerja rencana dapat diterima dengan aman oleh bored pile. 2. TINJAUAN PUSTAKA 2.1. Standard Penetration Test Standard penetration test (SPT) merupakan suatu tes di lapangan yang simple. Hasil uji SPT berupa N-value adalah jumlah pukulan yang dilakukan untuk mendorong batang diameter 50 mm sedalam 300 mm pada dasar lobang bor. Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta G - 119

Yohannes Lulie dan Y. Hendra Suryadharma Schmertmann (1975) mengindentifikasi hubungan N-value yang diperoleh dari tes SPT yang dipengaruhi oleh effective overburden stress. Effective overburden stress = berat material di atas dasar lobang bor berat air. Meyerhof (1976) menentukan hubungan antara base (dasar) dan frictional resistances dan N-values. Selanjutnya yang direkomendasi adalah N-values yang sudah dinormalisasi terhadap pengaruh effective overburden stress. Normalised N = N measured x 0,77 log(1920 / σ v ) Hubungan tipe tiang, tipe tanah, ultimate base resistance (Q b ) dan ultimate shaft resistance (Q s ) ditampilkan pada Tabel 1. Tabel 1. Hubungan tipe tiang, tipe tanah, Q b dan Q s Pile type Soil type Ultimate base resistance Q b (kpa) Driven Bored Gravelly sand Sand Sandy silt Silt Gravel and sands Sandy silt Silt Note: L = embedded length d = shaft diameter N avg = average value along shaft 40(L/d) N but < 400 N 20(L/d) N but < 300 N 13(L/d) N but < 300 N 13(L/d) N but < 300 N Ultimate shaft resistance Q s (kpa) 2 N avg 2.2. Bored Piles di Tanah Non-cohesive Proses desain untuk bored piles di tanah berbutir sama seperti untuk driven piles. Harus diasumsi hilangnya tanah akibat pekerjaan bor. Tanah padat nilai angle of friction yang digunakan untuk menghitung nilai N q untuk end bearing (tahan ujung) dan δ values untuk skin friction harus diasumsi untuk loose soil (tanah lepas). Tetapi, jika rotary drill yang membawa sample tanah pada kondisi bentonite slurry φ dapat diperlakukan sebagai undisturbed soil. N avg Ultimate bearing capacity (kapasitas tahanan ultimit) dari suatu tiang mempunyai tiga nilai: maximum load F max. dengan penetrasi lebih lanjut tanpa meningkatkan beban; calculated value F pile ultimate diperoleh dari total end-bearing (tahan ujung) dan shaft resistances (tahanan selubung), atau beban dengan suatu settlement (penurunan) yang terjadi sebesar 0,1 diameter tiang (jika F max. tidak jelas). Formula standard untuk hitungan ultimate pile resistance untuk fondasi tiang pada pasir dapat ditransformasi dari hasil penggunaan tip resistance dan local friction. F pile ultimate = F BASE + F SHAFT Untuk compression pile (tiang tekan) beban kerja tiang mengikuti persamaan: F c working load = F pile ultimate / safety factor Sedangkan untuk tension pile (tiang tarik) beban kerja tiang mengikuti persamaan: F t working load = F SHAFT / safety factor Dengan safety factor= 2. 2.3. Settlement Pada Fondasi Tiang Gambar 1. Load and Settlement curves G - 120 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta

Evaluasi Kapasitas Bored Pile Dengan Meyerhof Method Dan Chin s Method Safe load: F pile = (F b + F s ) / 1.4 s = s b.f(a); s = s s.f(b); F pile = a.f b + b.f s ; (0 a;b 1). di mana: = ultimate base resistance derived from CPT, F u;b F u;s = ultimate shaft resistance derived from CPT, F b = corrected base resistance = F u;b /(1.33 x 1.33)* F s = corrected shaft resistance = F u;s /(1.33 x 1.33)* corrections for scale effect and statistical chance. Gambar 1 Settlement curves di atas berupa fungsi exponential. Settlement saat sebelum runtuh (collapse) dari tahan dasar (base resistance). Settlement saat sebelum runtuh (collapse) dari shaft-resistance nilai tetap sebesar 10 mm untuk driven piles untuk pasir padat (dense sand). Demikian juga, Settlement saat sebelum runtuh (collapse) untuk non-displacement piles, mendekati 2 (dua) kali settlement dari displacement piles, (Brower,2002). 2.4. Pengujian Statis Axial Load test Tujuan pengujian pembebanan statis axial load test adalah untuk mengetahui besarnya daya dukung ultimate bored pile. Prosedur pengujian mengikuti ASTM Designation D.1143.61 Cyclic Loading. Sistem pembebanan menggunakan Kentledge System dengan menggunakan hydraulic jack yang diletakkan di atas permukaan pile percobaan yang dihubungkan dengan main beam, secondary beam, dan blok beton yang disusun di atasnya. Besarnya beban percobaan dapat dibaca pada manometer yang terpasang. Settlement diukur dengan 4 (empat) buah dial gauge yang dipasang dengan posisi diagonal pada pile top dan dihubungkan dengan profil baja, (Poulos, 1980; US Army, 1991). 2.5 Chin s Method Chin s method (1970) diturunkan dari failure load Q f atau ultimate resistance, Q ult sebagai asymptotic ultimate load yang definisikan sebagai Q f /C 1. Metode ini memgestimasi kapasitas ultimit diasumsikan bentuk load/deformation curve (s/q versus s) adalah bentuk hyperbolic dan merupakan suatu empirical method. Chin s method dikenal sebagai salah satu metode yang sangat simple dan telah diadopsi oleh para insinyur di banyak negara. Metode ini awalnya dikembangkan pada fondasi telapak dan precast floating piles. Perkembangan selanjutnya, Chin menyelidiki pada banyak kasus hasil plot dari settlement s versus ratio s/q menghasilkan suatu hubungan linier saat pile mendekatai keruntuhan (failure), ( HKG,2006). 3. DATA DAN PEMBAHASAN 3.1. Stratigrafi Lapisan Tanah Secara umum bor dalam B 1, B 2 dan B 3 menginformasi keadaan stratigrafi lapisan tanah mendekati sama. Di kedalaman -4,00 m (peil referensi ±0,00 m dari permukaan tanah) terdapat lapisan pasir, SP, pasir kasar-halus, warna coklat hitam, sedikit krikil, dengan kepadatan very loose to medium. Pada kedalaman antara -4,00 m sampai - 5,70 m terdapat lapisan pasir, SP, pasir kasar-halus, coklat hitam, sedikit kerikil, dengan kepadatan medium to dense. Dari peil -5,70 m sampai -9,00 m terdapat lapisan silt, ML, silt pasir lempung, dengan warna coklat hitam dengan kosistensi hard to very stiff; pasir, SP, pasir kasar-halus, coklat hitam sedikit berkerikil, dengan kepadatan dense to very dense. Di antara peil -9,00 m sampai -20,80 m terdapat lapisan pasir, SP, pasir kasar-halus, sedikit berkerikil dengan warna coklat hitam, dengan kepadatan dense to vey dense. Sedangkan, pada peil -20,80 m sampai -30,00 m terdapat lapisan pasir, SP, pasir kasar-halus, hitam dengan kepadatan very dense. Selama pelaksaan bor dalam dilakukan pengukuran permukaan air tanah di antara peil -4,30 sampai -6,30 m. 3.2. Effective Overburden Stress dan Normalised N-values Menentukan effective overburden stress untuk kedalaman -10,00 m< L<-18,00 m dan -18,00 m, sebagai berikut: a. untuk kedalaman -10,00 m< L<-18,00 m, (ditentukan kedalaman rata-rata), σ v = 4 x 19 4 x 9,81 = 37 kn/m 2, b. untuk kedalaman -10,00 m, σ v = 8 x 20 8 x 9,81 = 81 kn/m 2, Menentukan Normalised N-values untuk kedalaman -10,00 m< L<-18,00 m dan -18,00 m, sebagai berikut: c. untuk kedalaman -10,00 m< L<-18,00 m, (ditentukan kedalaman rata-rata), Normalised N-values = N-values measured x 0,77 log(1920 / σ v ) Normalised N-values = 45 x 0,77log(1920 / 37) = 59 d. untuk kedalaman -10,00 m, Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta G - 121

Yohannes Lulie dan Y. Hendra Suryadharma Normalised N-values = 45 x 0,77log(1920 / 81) = 58. Hasil measured N-value, σ v, Normalised N-values dapat dilihat pada Tabel 2. Kedalaman Tabel 2. measured N-value, σ v, Normalised N-values N-values measured σ v Normalised N- dari peil ±0,00 B 1 B 2 B 3 Average values m (kn/m 2 ) -10< L<-18 56 41 37 45 37 59-18 63 60 43 55 81 58 3.3. Kapasitas Bored Pile Bored pile dengan diameter 800 mm, dilapisan berpasir, a. Ultimate base resistance F BASE = 13 (L/D) N Normalised < 300 N Normalised F BASE = 13 (8/0,8) 58 = 7540 knf < 300 x 58 = 17400 knf = 754 T < 1740 T (G). b. Ultimate Shaft resistance F SHAFT = 8 X 59 = 472 knf = 47,2 T c. F pile ultimate = F BASE + F SHAFT = 754 + 47,2 = 801,2 T untuk compression pile (tiang tekan) beban kerja tiang mengikuti persamaan: F c working load = F pile ultimate / safety factor = 801,2 / 2 = 400,6 T 400 T Sedangkan, untuk tension pile (tiang tarik) beban kerja tiang mengikuti persamaan: F t working load = F Shaft / safety factor = 47,2 / 2 = 23,6 T 23 T 3.4. Settlement pada bored pile Analisis settlement yang terjadi pada ujung bored pile dapat dilihat pada Tabel 3. Tabel 3. Settlement pada bored pile Settlement F b = F BASE / (1,33 x 1,33) F b = 754 / (1,33 x 1,33) = 426 T F s = F SHAFT / (1,33 x 1,33) F s = 47,2 / (1,33 x 1,33) = 27 T F PILE = (F b + F s) / 1,4 F PILE = (426+27) / 1,4 = 323,6 T s s = 25a 3 = 10b 3 25a 3 = 10b 3 b = 1,36a F PILE F PILE = 426a + 27b = 323,6 426a + 27 x 1,36a = 323,6 a = 0,7 b b = 1,36 x 0,7 = 0,952 a x F b 0,7 x 426 = 298,2 kn b x F s 0,936 x 77 = 72 kn F PILE F PILE = 445 + 72 = 517 kn Settlement, s 1 s 1 = 25a 3 = 25 x 0,688 3 = 8,14 mm Settlement, s 2 =0,2x400[(517-77)/647] 2 = 36,9 mm s 2 = 0,2D[(F PILE - F s) / F b] 2, with specification: 20 mm < 37 mm < 0,2x400 20mm < s 2 < 0,2D 20 mm < 37 mm < 80mm, (G) 3.5. Kapasitas Bored pile Chin s Method Pengujian axial load test dilakukan pada bored pile dengan diameter berukuran 800 mm. Prosedur pengujian mengikuti ASTM Designation D.1143.81 cyclic loading. Sistem pembebanan yang digunakan adalah Kentledge System dengan menggunakan hydraulic jack yang diletakkan di atas permukaan tiang percobaan yang dihubungkan dengan main beam, secondary beam, dan balok-balok yang disusun di atasnya. Skema diagram compression load test menggunakan Kentledge System dapat dilihat pada Gambar 2. Besar beban percobaan dapat dibaca pada manometer yang dipasang pompa tangan. Settlement diukur dengan 4 (empat) buah dial gauge yang dipasang secara diagonal pada pile cap dan dihibungkan dengan profil baja. G - 122 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta

Evaluasi Kapasitas Bored Pile Dengan Meyerhof Method Dan Chin s Method Gambar 2. Skema diagram compression load test menggunakan Kentledge System 3.6. Hubungan Beban dan Penurunan Dari hasil pembacaan hasil loading test kemudian dapat ditabulasi data hubungan load (beban) versus settlement (penurunan). Tabel 4 menginformasi hubungan antara cycle loading, percent loading, load dan settlement. Sedangkan, grafik hubungan load versus settlement dapat dilihat pada Gambar 3. Tabel 4. Hubungan Cycle loading, percent loading, load dan settlement Cycle loading Percent loading Load Settlement (mm) 0 0 0 I 25 62,5 0,8625 50 125 2,5375 25 62,5 2,045 0 0 0,8675 50 125 2,7400 II 75 187,5 4,6125 100 250 7,3300 75 187,5 6,9950 50 125 6,0660 0 0 3,6050 50 125 5,7375 100 250 8,0175 III 125 312,5 10,8325 150 375 13,6300 125 312,5 13,3850 100 250 12,8775 50 125 11,3825 0 0 7,7925 50 125 10,2250 100 250 12,5675 150 375 15,4125 IV 175 437 18,1050 200 500 21,4525 150 375 20,4550 100 250 18,7250 50 125 15,6850 0 0 11,4950 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta G - 123

Yohannes Lulie dan Y. Hendra Suryadharma 3.7. Grafik Chin s Plot Grafik Chin s Plot merupakan grafik hubungan antara settlement versus settlement/beban, settlement pada sumbu x dan settlement/beban pada sumbu y. Hubungan parameter settlement, load dan settlement/load dapat dilihat pada Tabel 5. Tabel 5. Hubungan parameter settlement, load dan settlement/load Settlement (mm) Load Settlement/load (10 3 ) 2 120 16,660 4 192 20,330 6 248 24,193 8 296 27,027 10 340 29,411 12 380 31,578 14 416 33,635 16 448 35,714 18 472 38,135 20 482 40,650 21,5 500 43,000 Selanjutnya dari parameter settlement dan settlement/load pada Tabel 5 dibuat Gambar 4 grafik hubungan antara settlement versus settlement/load. G - 124 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta

Evaluasi Kapasitas Bored Pile Dengan Meyerhof Method Dan Chin s Method 3.8. Kapasitas Bored Pile dari grafik Chin s Plot Ultimate, allowable bored pile capacity serta Ultimate, allowable bored pile friction dengan menggunakan grafik Chin s Plot, sebagai berikut: F = δ / (δ/p) = 3,6 / (3,8 x 10 3 ) = 947,368 T F ultimate = 0,85 x 947,368 = 805,260 T F allowable = 805,260 / 3 = 268 T Friction = 3,2 / (5,5 x 10 3 ) = 581,81 T Friction ultimate = 0,85 x 581,81= 494,54 T Friction allowable = 494,54 / 3 = 168 T 3.9. Settlement Bored Pile Akibat Loading Test Hasil loading test pada bored pile di lokasi penelitian seperti yang pada Tabel 4 dan Gambar 3 menginformasikan pada Cycle loading tahap ke empat dengan percentage loading 200% dengan beban 500 ton menyebabkan settlement yang maksimum sebesar 21,4526 mm 21,45 mm. 3.10. Pembahasan Dari aplikasi desain kapasitas dan settlement bored pile menggunakan Meyerhof method selanjutnya dibandingkan dengan Chin s method dari hasil loading test, masing-masing metode dapat dilihat pada Tabel 6 dan Tabel 7. Bored pile Diameter (mm) F BASE Tabel 6. Kapasitas dan settlement bored pile Meyerhof method F SHAFT F ultimate F working load (safety factor = 2) Settlement (mm) Compression Tension s 1 s 2 800 754 47,2 801,2 400 23 8,58 77,56 Bored pile Diameter (mm) Tabel 7. Kapasitas dan settlement bored pile Chin s method F = δ / (δ/p) F ultimate F allowable (safety factor = 3) Settlement (mm) Compression friction s 800 947,368 805,26 268 168 21,45 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta G - 125

Yohannes Lulie dan Y. Hendra Suryadharma Kalau dicermati Tabel 6 dan Tabel 7 menginformasikan F ultimate bored pile Meyerhof method sebesar 801,2 ton sedangkan F ultimate bored pile chin s method sebesar 805,26 ton. F ultimate bored pile dari kedua metode mendekati nilai yang sama dan hanya sedikit perbedaannya sekitar 0,51%. Safety factor 2 untuk Meyerhof method dan safety factor 3 untuk Chin s method mengakibatkan nilai F allowable yang sangat berbeda. Terlihat Chin s method sangat begitu konservatif dalam menentukan F ultimate bored pile. Batas nilai settlement pada Meyerhof method mempunyai nilai settlement s 1 = 8,58 mm dan s 2 =77,56 mm masingmasing lebih kecil dan lebih besar dibandingkan settlement yang terjadi pada Chin s method sebesar s =21,45 mm. 4. KESIMPULAN DAN SARAN 4.1. Kesimpulan Dari aplikasi desain kapasitas dan settlement bored pile secara empiris Meyerhof method dan hasil analisis loading test Chin s method yang ada di bagian depan, ada empat kesimpulan penting. Point pertama dan kedua merupakan pendekatan yang berbeda dari metode, alat dan formula yang digunakan. Point ketiga menginformasikan F ultimate yang dihasilkan baik empiris Meyerhof method maupun Chin s method mendekat sama. F working load atau F allowable terjadi perbedaaan yang menyolok karena safety factor yang digunakan berbeda. Sedangkan settlement yang ditimbulkan dari kedua metode pada point empat. Untuk jelasnya dapat dilihat pada uraian berikut. 1. Untuk mencari kapasitas bored pile dengan empiris Meyerhof method dibutuhkan nilai measured N-values dari alat SPT. Selanjutnya, dari nilai measured N-values akan diperoleh normalized N-values pada pile base dan di sepanjang setelah diperhitungan adanya effective overbunden. F ultimate diperoleh dari gabungan F BASE dan F SHAFT. Beban kerja tiang F working load diperoleh dari F ultimate dibagi safety factor 2. Settlement yang terjadi menggunakan formula empiris s 1 = 25a 3 dan s 2 = 0,2D[(F PILE F SHAF ) / F BASE ] 2. 2. Kapasitas bored pile dan settlement dengan Chin s method diperoleh dari pengujian loading test. Pembebanan yang digunakan menggunakan Kentledge system. Dari hasil loading test akan diperoleh grafik hubungan load versus settlement dan grafik settlement versus settlement/load. F ultimate = δ / (δ/p), sedangkan F allowable diperoleh dari F ultimate dibagi safety factor 3. Settlement maksimum diperoleh dari cycle loading tahap ke empat dengan percentage loading 200%. 3. Baik Meyerhof method maupun Chin s method menghasilkan F allowable mendekati sama, masing-masing 801,20 ton dan 805,26 ton, dan hanya selisih 0,51%. Safety factor 2 pada Meyerhof method dan safety factor 3 pada Chin s method mengakibatkan terjadi perbedaan F working load. 4. Nilai settlement Meyerhof method sebesar s = 21,45 mm masih dalam range batas bawah s 1 =8,58 mm dan batas atas s 2 = 77,56 mm yang diperoleh menggunakan Chin s method. 4.1. Saran Adanya bermacam metode desain kapasitas bored pile dan ketidakpastian yang ada pada tanah tanah akan munjulnya penyimpangan maupun keakurasian hasil desain. Untuk menangani penyimpangan dari hasil desain suatu metode empiris perlu diuji kemampuan suatu bored pile dengan uji in situ loading test. Kebijakan akan muncul apakah safety factor dalam desain dapat mengatasi perbedaan yang masih dapat ditoleransi dalam kondisi batas win win solution sebagai evaluasi metode kearah lebih baik. Hasil yang didapat dari penelitian ini yaitu nilai safety factor 2,5 sebagai usulan. Mengingat F ultimate yang dihasilkan baik empiris Meyerhof method maupun Chin s method mendekat sama. F working load atau F allowable terjadi perbedaaan yang menyolok karena safety factor yang digunakan berbeda yaitu safety factor 2 untuk Meyerhof method dan safety factor 2 untuk Chin s method. Nilai safety factor 2,5 sebagai batas toleransi win win solution agar F working load atau F allowable mendekati sama. Perlu dilakukan banyak penelitian yang menguatkan safety factor 2,5 seperti yang direkomendasikan untuk empiris Meyerhof method dan Chin s method baik di tanah berpasir (sand) dan jenis tanah yang lainnya (silt, clay, mixed soils) serta untuk bermacam-macam fondasi tiang seperti: driven pile, continuous flight auger (CFA-pile). DAFTAR PUSTAKA Brouwer, J.J.M., 2002, Guide to Cone Penetration Testing on Shore and Near Shore, Lankelma, Cone Penetration Testing LTD, Iden, East Sussex. Chin, F.V., (1970), Estimation of The Ultimate Load of Piles not Carried to Failure, Proceedings of 2 nd Shoutheast Asian Conference on Soil Engineering, pp. 81-90. G - 126 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta

Evaluasi Kapasitas Bored Pile Dengan Meyerhof Method Dan Chin s Method Fellenius, B.H., 1999, Using the Pile Driving Analyzer, Annual Meeting, San Diego. Fellenius, B.H., 2002, Pile Dynamics in Geotechnical Practice Six Case Histories, Urkkada Technology, LTD. Ottawa, Ontario. Keller Company, 2008, Dynamic Load Testing, 56 Station St, Parramatta, NSW. Lulie, Y.; Suryadharma, Y.H., 2007, Kapasitas Fondasi Tiang dari Metode Langsung Cone Penetration Test, Laporan Penelitian, Program Studi Teknik Sipil, Fakultas Teknik, Universitas Atma Jaya Yogyakarta. Lulie, Y.; Hatmoko, J.T., 2008, Verifikasi Kapasitas Bored Pile dengan Pile Driving Analyzer, Laporan Penelitian, Program Studi Teknik Sipil, Fakultas Teknik, Universitas Atma Jaya Yogyakarta. Meyerhof, G.G., 1976, Bearing Capacity and Settlement of Pile Foundation, Journal of Geotechnical Engineering, ASCE, 102(3), 197-228 ODOT, 2007, Dynamic Pile Testing Technology: Validation and Implementation, 1980 West Broad Street, Columbus, OH. Poulos, H.G., et al., 1980, Pile Foundation Analysis and Design, John Wiley & Sons. The Government of the Hong Kong (HKG), 2006, Foundation Design and Construction, Geotectical Engineering Office, Geo Publication, No.1/2006. US Army Corps of Engineering, 1991, Design of Pile Foundations, Engineer Manual 1110-2-2906. US Army Corps of Engineering, 2001, Engineering and Design, Geotechnical Investigations, Engineer Manual 1110-1-1804. Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta G - 127

Yohannes Lulie dan Y. Hendra Suryadharma G - 128 Universitas Udayana Universitas Pelita Harapan Jakarta Universitas Atma Jaya Yogyakarta