ek SIPIL MESIN ARSITEKTUR ELEKTRO

dokumen-dokumen yang mirip
EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

PENDAHULUAN TINJAUAN PUSTAKA

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

ek SIPIL MESIN ARSITEKTUR ELEKTRO

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

Bab IV Analisa dan Pembahasan

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

BAB II DASAR TEORI BAB II DASAR TEORI

Momentum, Vol. 13, No. 2, Oktober 2017, Hal ISSN ANALISA PERFORMANSI REFRIGERATOR DOUBLE SYSTEM

PENENTUAN EFISIENSI DAN KOEFISIEN PRESTASI MESIN PENDINGIN MERK PANASONIC CU-PC05NKJ ½ PK

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

BAB II DASAR TEORI. 2.1 Cooling Tunnel

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

EFEK UDARA DI DALAM SISTEM REFRIGERASI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

PENGUJIAN PERFORMANCE DAN ANALISA PRESSURE DROP SISTEM WATER-COOLED CHILLER MENGGUNAKAN REFRIGERAN R-22 DAN HCR-22

EFEK TEMPERATUR PIPA KAPILER TERHADAP KINERJA MESIN PENDINGIN

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

ROTASI Volume 7 Nomor 3 Juli

Bab IV Analisa dan Pembahasan

BAB II TINJAUAN PUSTAKA

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI 2012

EFEK RASIO TEKANAN KOMPRESOR TERHADAP UNJUK KERJA SISTEM REFRIGERASI R 141B

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

PENGARUH PENGGUNAAN KATUP EKSPANSI JENIS KAPILER DAN TERMOSTATIK TERHADAP TEKANAN DAN TEMPERATUR PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP HIBRIDA

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

BAB II LANDASAN TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT 1 PK

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

BAB IV HASIL DAN ANALISA

V. HASIL DAN PEMBAHASAN. Perbaikan Dan Uji Kebocoran Mesin Pendingin Absorpsi

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II DASAR TEORI. BAB II Dasar Teori. Gambar 2.1 Florist Cabinet (Sumber Gambar: Althouse, Modern Refrigeration and Air Conditioning Hal.

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

V. HASIL DAN PEMBAHASAN

UNJUK KERJA MESIN PENDINGIN KOMPRESI UAP PADA BEBERAPA VARIASI SUPERHEATING DAN SUBCOOLING

BAB V HASIL DAN ANALISIS

BAB VI PENGOLAHAN DATA dan ANALISIS DATA

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB II DASAR TEORI 2.1 Cooling Tunnel

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara

BAB II DASAR TEORI BAB II DASAR TEORI. 2.1 Tinjauan Pustaka

TUGAS AKHIR PERANCANGAN MESIN PEMBUAT ES BALOK KAPASITAS 2 TON PERHARI UNTUK MENGAWETKAN IKAN NELAYAN DI PANTAI MEULABOH ACEH

Kaji Eksperimental Pemanfaatan Panas Kondenser pada Sistem Vacuum Drying untuk Produk Kentang

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

BAB II TINJAUAN PUSTAKA

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

Menghitung besarnya kerja nyata kompresor. Menghitung besarnya kerja isentropik kompresor. Menghitung efisiensi kompresi kompresor

STUDI KINERJA MESIN PENGKONDISI UDARA TIPE TERPISAH (AC SPLIT) PADA GERBONG PENUMPANG KERETA API EKONOMI

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

IV. METODE PENELITIAN

PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

BAB II DASAR TEORI. 2.1 Definisi Vaksin

Pengaruh Variasi Putaran Poros Kompresor Terhadap Performansi Sistem Refrigrasi

SISTEM REFRIGERASI KOMPRESI UAP

KAJI EKSPERIMENTAL APLIKASI KATUP EPR TERHADAP TEMPERATUR MESIN REFRIGERASI MULTI EVAPORATOR

Jurnal Pembuatan Dan Pengujian Alat Uji Prestasi Sistem Pengkondisian Udara (Air Conditioning)Jenis Split

BAB III PERANCANGAN SISTEM

ROTASI Volume 7 Nomor 4 Oktober

KAJI EKSPERIMENTAL KARAKTERISTIK TERMODINAMIKA DARI PEMANASAN REFRIGERANT 12 TERHADAP PENGARUH PENDINGINAN

EFEKTIVITAS PENGGUNAAN THERMOSTATIC EXPANTION VALVE PADA REFRIGERASI AC SPLIT. Harianto 1 dan Eka Yawara 2

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan,

COEFFICIENT OF PERFORMANCE (COP) MINI FREEZER DAGING AYAM KAPASITAS 4 KG

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

PERFORMANSI SISTEM REFRIGERASI HIBRIDA PERANGKAT PENGKONDISIAN UDARA MENGGUNAKAN REFRIGERAN HIDROKARBON SUBSITUSI R-22

BAB II LANDASAN TEORI

LANDASAN TEORI. P = Pc = P 3 = P 2 = Pg P 5 P 4. x 5. x 1 =x 2 x 3 x 2 1

PENGUJIAN PERBANDINGAN UNJUK KERJA ANTARA SISTEM AIR-COOLED CHILLER

BAB I PENDAHULUAN Latar belakang

BAB II TINJAUAN PUSTAKA

BAB II STUDI PUSTAKA

STUDI EKSPERIMENTAL PERBANDINGAN REFRIJERAN R-12 DENGAN HYDROCARBON MC-12 PADA SISTEM PENDINGIN DENGAN VARIASI PUTARAN KOMPRESOR. Ir.

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

AIR CONDITIONING SYSTEM. Oleh : Agus Maulana Praktisi Bidang Mesin Pendingin Pengajar Mesin Pendingin Bandung, 28 July 2009

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI

Transkripsi:

ek SIPIL MESIN ARSITEKTUR ELEKTRO PENGARUH TEMPERATUR KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808 Muhammad Hasan Basri * Abstract The objectives of study to describe the influence of the change in the pressure of condenser on the performance refrigerator, and to gain an optimal working conditions of the machine by condenser temperature ulation. The study indicates that an increase in the temperature of condenser result in an increase in the compressor power but decreases the refrigeration capacity. Consequently, it decreases performance coefficient of the refrigeration system. The comparison between the experiment and the ulation indicates ilar result. The optimal workload suitable to focus 808 refrigerator in Laboratory is under condenser temperature of o C with performance coefficient of 4,54. Key word : temperature, condenser, COP Abstrak Penelitian ini bertujuan untuk mendapatkan pengaruh perubahan tekanan pada condenser dan mendapatkan kondisi kerja yang optimal dalam pengoperasian mesin dengan menulasikan temperature condenser. Hasil penelitian menunjukkan kenaikan temperature condenser akan menyebabkan kenaikan daya kompresor, tetapi menurunkan kapasitas refrigerasi sehingga menurunkan koefisien prestasi system refrigerasi. Kerja yang optimal yang cocok digunakan pada mesin refrigerasi focus 808 di laboratorium yaitu pada temeperatur o C dengan koefisien prestasi 4,54. Kata kunci: temperatur, kondensor, COP. Pendahuluan Mesin refrigerasi seperti halnya refrigerator maupun pegkondisian udara (AC) bukan lagi menjadi sekedar gaya hidup, tetapi telah berfungsi dalam meningkatkan kualitas hidup manusia, sehingga menyebabkan permintaan konsumen semakin meningkat. Mesin refrigerasi yang paling banyak digunakan adalah dari jenis siklus kompresi uap, karena memiliki fleksibilitas dalam penggunaannya dengan ukuran yang cukup kompak,sehingga tidak memerlukan ruang yang besar (Indartono, 006). Salah satu model mesin refrigerasi yang umum digunakan yaitu unit refrigeration Focus model 808 yang terdapat di Laboratorium Teknik pendingin Univesitas Tadulako. Focus 808 dipakai untuk berbagai jenis pengujian yang berhubungan dengan teknik pendinginan. Dengan melihat pentingnya fungsi dari mesin refrigerasi, maka masalah yang paling umum dijumpai setelah pemakaian beberapa tahun yaitu adanya penurunan laju perpindahan kalor pada evaporator yang terkait dengan pengaruh perubahan temperatur evaporasi Staf Pengajar Jurusan Teknik Mesin Fakultas Teknik Universitas Tadulako, Palu

Pengaruh Temperatur Kondensor terhadap Kinerja Mesin Refrigerasi Focus 808 (Muhammad Hasan Basri) sehingga akan mmepengaruhi koefisien prestasi mesin. Dalam penelitiannnya, Harahap, dkk (006) meneliti bagaimana chiller water unit yang telah lama pemakaiannnya akan menurun prestasinya. Selain itu, cahyo (00) dalam penelitiannya diperoleh informasi bahwa perubahan temperatur pada evaporator akan sangat mempengaruhi koefisien prestasi mesin. Salah satu metode analisis yang dapat digunakan dalam menganalisis sistem kinerja mesin adalah metode ulasi untuk mempermudah pengamatan dalam pengujian. Harini (006) mengungkapkan bahwa ulasi dengan Matlab versi 7.0 mempermudah dalam analisa dan perancangan terhadap sistem kontrol fuzzy sebagai pengendali sistem evaporator jika terjadi gangguan pada feed. Dengan kondisi seperti di atas, maka perlu dilakukan penelitian berupa pengujian secara ulasi dalam bahasa Matlab untuk mendapatkan kinerja yang optimum dan aman untuk kondisi operasional di dalam laboratorium dengan melihat perubahan temperatur evaporator pada mesin refrigerasi focus 808. Tujuan penelitian adalah: ) mendapatkan pengaruh perubahan tekanan kondensor terhadap kinerja mesin refrigerasi dengan menulasi temperaturnya. ) Membandingkan pengaruh perubahan tekanan pada kondensor secara eksperimen dan secara ulasi. ) Mendapatkan suatu kondisi kerja yang optimal dan aman dalam pengoperasian mesin dengan menulasi temperatur kondensor.. Tinjauan Pustaka. Mesin refrigerasi Mesin refrigerasi merupakan mesin yang mempunyai fungsi utama untuk mendinginkan zat sehingga temperaturnya lebih rendah dari temperatur lingkungan. Pendinginan dilakukan sesuai dengan tujuan masingmasing orang yang akan melakukan proses pendinginan tersebut. Komponen utama dari mesin refrigerasi terdiri atas kompresor, kondensor, katup ekspansi dan evaporator. a. Kompresor Salah satu jenis kompresor positif yang banyak digunakan untuk unit kapasitas rendah adalah kompresor hermetic. Daya kompresor (PT) dihasilkan dari daya motor penggerak (PS) melalui input arus listrik. Daya kompresor dinyatakan dalam persamaan PT = PS.EC.Em..() dimana : EC = efisiensi kompresi ES = efisiensi mekanik Harga dari efisiensi kompresi dan efisiensi mekanik dapat ditentukan melalui kurva hubungan antara rasio kompresi dengan efisiensi ref. ). Daya motor penggerak kompresor dari input listrik ditentukan dengan persamaan: P = VI cos Φ () dimana : V = tegangan listrik, volt I = kuat arus, amprere Cos Φ = factor daya (0.7.0, untuk motor single phase) sedangkan laju aliran massa uap refrigeran (m) yang mengalir: P m = () (h h ) dimana : h = entalpi pada titik kondisi panas lanjut, kj/kg h = entalpi pada titik kondisi uap jenuh, kj/kg sehingga kapasitas refrigerasi dapat ditentukan dengan persamaan : Qe = m (h h4).(4) dimana : h4 = entalpi pada titik 4 pada kondisi campuran, kj/kg 6

Jurnal SMARTek, Vol. 7, No., Pebruari 009: 6-68 b. Kondensor Kondensor merupakan salah satu alat penukar kalor yang berfungsi sebagai tempat kondensasi. Uap yang bertekanan dan bertemperatur tinggi pada akhir kompresi dapat dengan mudah dicairkan dengan cara mendinginkannya dengan media pendingin. keseimbangan kalor pada kondensor dapat ditentukan dengan persamaan : Qc = UAΔT = ma.cp.(to Ti).(5) laju aliran massa udara (ma) dapat ditentukan dengan persamaan : ma = V.ρ = v.a.ρ..(6) dimana : v = kecepatan udara melewati kondensor, m/s ρ = densitas udara, kg/m c. Katup ekspansi Katup ekspansi berfungsi untuk mengekspansikan secara adiabatis cairan refrigeran yang bertekanan dan bertemperatur tinggi sampai mencapai temperatur dan tekanan rendah, serta mengatur pemasukan refrigeran yang disesuaikan dengan beban pendinginan yang akan dilayani oleh evaporator. Jenis yang dipakai dalam penelitian ini adalah jenis automatik, dimana katup bekerja dengan prinsip keseimbangan tekanan pada diafrgama antara tekanan dari evaporator dan tekanan pegas yang dapat diatur pada katup ekspansi. d. Evaporator Evaporator merupakan alat penukar kalor yang memegang peranan penting didalam siklus yaitu mendinginkan media sekitar.. Siklus kompresi uap standar Proses yang membentuk siklus kompresi uap standar dapat dilihat pada Gambar. Proses yang terjadi : proses - : kompresi adibatis, Q = 0, kerja yang dilakukan, W = h h proses - :pengkondensasian pada tekanan konstan; qc = h-h proses -4 : ekspansi h = hf4 + x (h hf4) proses 4- : penguapan pada tekanan konstan, Qe = h h4 sehingga koefisien prestasi (COP) dari siklus uap standar : COP h h 4 =..(7) h h P T 4 ekspansi kondensasi evaporasi kompresi 4 h s Gambar. diagram P-h dan T-s siklus uap standar 64

Pengaruh Temperatur Kondensor terhadap Kinerja Mesin Refrigerasi Focus 808 (Muhammad Hasan Basri). Pengaruh parameter pada evaporator Didalam evaporator, besarnya perpindahan kalor dihitung berdasarkan perbedaan temperatur rata-rata logaritmik, semakin besar perbedaan temperatur rata-rata, maka semakin kecil ukuran penukar kalor yang diperlukan. Perubahan tekanan dan temperatur yang terjadi pada evaporator dapat dilihat pada Gambar..4 Sistem ulasi Metode yang digunakan dalam sistem ulasi yaitu metode least square, dimana memilih dan menentukan 9 titik dari grafik dan mensubtitusi ke persamaan untuk menyelesaikan sembilan persamaan ultan untuk konstanta c dan d. Model matematis dari sistem kompresi uap dapat diekspresikan : a. Kompresor karakteristik kompresor sebagai fungsi temperatur kerja evaporator dan kondensor : ) Kapasitas refrigerasi (Qe) ) Daya yang dibutuhkan kompresor (P): P = d + dte + dte + d4tc + d5tc + d6tetc + d7te Tc + d8tetc + d9te Tc...(9) b. Kondensor karakteristik kondensor dalam bentuk panas yang dilepaskan ke fluida pendingin dapat dinyatakan dalam bentuk : Qc = ma.cpa.(ta - Tb) atau Qc = Qe + P...(0) c. Alat ekspansi Alat ekspansi dalam sistem ini tidak ditinjau dengan anggapan bahwa alat ekspansi dapat mengatur aliran refrigeran ke evaporator sehingga permukaan alat penukar kalor pada bagian evaporator senantiasa dibasahi oleh cairan refrigeran d. Koefisien prestasi Koefisien prestasi sistem dinyatakan dalam persamaan: COP = Qe / P.() Qe = c + cte + cte + c4tc + c5tc + c6tetc + c7te Tc + c8tetc + c9te Tc...(8) P 4 4 Gambar. Perubahan tekanan atau temperatur pada evaporator h 65

Jurnal SMARTek, Vol. 7, No., Pebruari 009: 6-68. Metode Penelitian. Alat uji Alat uji berupa satu buah unit mesin refrigerasi focus 808, yang terdiri dari sebuah kompresor hermetik universal SCG danfoss, buah kondensor pendingin udara dan pendingian air, empat buah katup ekspansi dan dua evaporator.. Cara pengambilan data Cara pengambilan data yaitu data diambil dengan mengubah tekanan kondensor (Pc) dari 8 sampai bar dengan mempertahankan tekanan evaporator pada tekanan tertentu. Data tekanan temperatur dicatat setelah penunjukan alat ukur stabil.. Metode analisis Analisis yang digunakan yaitu analisis teoritis berdasarkan data pengukuran (tekanan dan temperatur) melalui persamaan umum siklus kompresi uap. Analisis kemudian dilanjutkan dengan analisis melalui program ulasi yaitu melakukan pengujian melalui bantuan program software matlab 7 dimana parameter yang harus dicari yaitu konstanta c, d, Tc dan Te. Berdasarkan persamaan ulasi maka dapat dibuat program ulasi untuk menghitung kapasitas refrigerasi, daya yang dibutuhkan kompresor, panas yang dilepaskan kondensor dan koefisien prestasi. 4. Hasil dan Pembahasan Berdasarkan hasil perhitungan atau grafik hubungan temperatur kondensor dengan daya yang dibutuhkan kompresor menunjukkan bahwa daya kompresor mengalami kenaikan seiring dengan kenaikan temperatur kondensor, meskipun kenaikannya relatif kecil. Kenaikan temperatur kondensor dari. (Pc = 8 bar) menjadi.47 o C (Pc =8.5 bar) mengakibatkan naiknya daya kompresor dari 0.549 kw menjadi 0.55500 kw atau terjadi kenaikan sebesar 0.00058 kw, kenaikan daya kompresor terkait dengan kenaikan kuat arus listrik dari.8 ampere menjadi.7 ampere. Sedangkan perbandingan antara hasil eksperimen dengan hasil ulasi pada temperatur evapotaror yang sama (-6.6 o C), terlihat pada Gambar, bahwa daya yang dibutuhkan pada pengujian eksperimen lebih besar dibandingkan hasil ulasi. Pada pengujian eksperimen, pada temperatur antara 5 sampai 7 terjadi kenaikan daya yang signifikan akibat perubahan kuat arus dari. A sampai. A, tetapi secara umum kenaikan daya kompresor relatif kecil. pada pengujian ulasi perubahan kenaikan daya kompresor cenderung konstan karena daya merupakan fungsi dari temperatur kondensor sehingga terbentuk profil yang bagus. Daya Kompresor, kw 0,6 0,595 0,59 0,585 0,58 0,575 0,57 0,565 eksp 0,56 0 4 6 8 40 4 44 Gambar. Perbandingan Daya kompresor hasil eksperimen dengan hasil ulasi 66

Pengaruh Temperatur Kondensor terhadap Kinerja Mesin Refrigerasi Focus 808 (Muhammad Hasan Basri) Kapsitas Refrigerasi, kw 0,5 0,5 0,48 0,46 0,44 0,4 0,4 eks 0,8 0 4 6 8 40 4 44 Gambar 4. Perbandingan Kapasitas refrigerasi hasil eksperimen dan ulasi Kalor yang dilepaskan kondensor, kw 0,68 0,66 0,64 0,6 0,6 0,58 0,56 0,54 0 4 6 8 40 4 44 Gambar 5. Perbandingan kalor yang dilepaskan kondensor dengan metode ulasi dan eksperimen eksp Koefisien Prestasi,,,,9,8,7,6,5,4, 0 4 6 8 40 4 44 eks p Gambar 6. Perbandingan Koefisien prestasi metode ulasi dan eksperimen 67

Jurnal SMARTek, Vol. 7, No., Pebruari 009: 6-68 Pada Gambar 4 terlihat bahwa Kapasitas refrigerasi akan turun seiring dengan kenaikan temperatur kondensor. Kenaikan temperatur kondensor sebesar.7 o C (0.5 bar) mengakibatkan penurunan kapasitas refrigerasi sebesar 0.0989 kw. penurunan tersebut diakibatkan oleh penurunan efek refrigerasi dan laju aliran massa refrigeran. Dari hasil perhitungan juga diperoleh bahwa koefisien prestasi mesin (COP) terjadi penurunan seiring dengan kenaikan temperatur kondensor. Kenaikan temperatur kondensor sebesar.7 o C (0.5 bar) akan mengakibatkan penurunan koefisien prestasi sebesar 0.6. penurunan koefisien prestasi disebabkan oleh nilai daya kompresor yang lebih tinggi jika dibandingkan nilai kapasitas refrigerasi (Gambar 6). Sedangkan perbandingan antara hasil eksperimen dan hasil ulasi pada temperatur evaporator yang sama, menunjukkan hasil yang cenderung sama. Hal ini karena keduanya dominan dipengauhi oleh kapasitas refrigerasi dan daya kompresor pada sistem. Publishing Company Limited, New Delhi. Cahyo, 00. Analisa Sistem Pendingin Water Chiller dengan Membandingkan Fluida kerja R dan R. Universitas Dipenogoro, Semarang. Dossat, R. Principle of Refrigeration. Second Edition. John Wiley & Sons, New York. Harahap, 006. Uji Kemampuan Chillaer Pasca Refungsionalisasi pada fasilitas KH-IPSB. Buletin Pengelolaan Reaktor Nuklir, Volume II no.. Stoecker, 989, Design of Termal System. Edisi ketiga. McGrwa-Hill International. Singapura. Zuhal, 988. Dasar Teknik Tenaga dan Elektonika Daya. PT. Gramedia, Jakarta. 5. Kepulan ) Kenaikan temperatur kondensor akan menyebabkan kenaikan daya kompresor tetapi menurunkan kapasitas refrigerasi sehingga menurunkan koefisien prestasi mesin (COP). ) Kondisi kerja yang optimal dan cocok untuk mesin refrigerasi focus 808 di dalam laboratorium yaitu pada temperatur kondensor o C dimana COPnya 4.54. 6. Daftar Pustaka Arismunandar, W., Saito. 00. Penyegaran Udara. Edisis keenam, PT. Pradnyaa Paramita, Jakarta. Arora, C.P., Refrigeration and Air Conditioning. Tata McGraw-Hill 68