MONITORING PEMAKAIAN ENERGI LISTRIK BERBASIS MIKROKONTROLER SECARA WIRELESS

dokumen-dokumen yang mirip
RANCANG BANGUN SISTEM MONITORING LISTRIK PRABAYAR MELALUI SISTEM KOMUNIKASI MODEM GSM

Sistem Monitoring Pencurian Energi Listrik

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

PRAKTIKUM II PENGKONDISI SINYAL 1

BAB III PERANCANGAN Deskripsi Model Sistem Monitoring Beban Energi Listrik Berbasis

WIRELESS TELEMETERING KWH METER DIGITAL BERBASIS MIKROKONTROLER ABSTRAK

BAB II DASAR TEORI. AVR(Alf and Vegard s Risc processor) ATMega32 merupakan 8 bit mikrokontroler berteknologi RISC (Reduce Instruction Set Computer).

BAB III PERANCANGAN. Gambar 3.1. Blok sistem secara keseluruhan. Sensor tegangan dan sensor arus RTC. Antena Antena. Sensor suhu.

III. METODE PENELITIAN. Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014.

BAB III PERANCANGAN ALAT

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

BAB II LANDASAN TEORI

DAFTAR ISI. HALAMAN JUDUL... i. LEMBAR PENGESAHAN... ii. PERNYATAAN... iii. PRAKATA... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... ix. DAFTAR TABEL...

BAB III SISTEM PENGUKURAN ARUS & TEGANGAN AC PADA WATTMETER DIGITAL

Politeknik Elektronika Negeri Surabaya ITS Kampus ITS Sukolilo Surabaya

BAB II KONSEP DASAR PERANCANGAN

RANCANG BANGUN PERBAIKAN FAKTOR DAYA

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK

BAB III PERENCANAAN. 3.1 Perencanaan Secara Blok Diagram

Desain Sistem Kontrol Sudut Penyalaan Thyristor Komutasi Jaringan Berbasis Mikrokontroler PIC 16F877

BAB III PERENCANAAN DAN PEMBUATAN PERANGKAT LUNAK

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

RANCANG BANGUN DATA AKUISISI TEMPERATUR 10 KANAL BERBASIS MIKROKONTROLLER AVR ATMEGA16

Clamp-Meter Pengukur Arus AC Berbasis Mikrokontroller

Rancang Bangun Inverter Tiga Phasa Back to Back Converter Pada Sistem Konversi Energi Angin

RANCANG BANGUN WHIRLPOOL DENGAN MENGGUNAKAN MIKROKONTROLLER

Sensor Arus Sensor arus yang digunakan pada tugas akhir ini mengikuti

BAB III PERANCANGAN SISTEM

BAB IV PENGUJIAN DAN ANALISA

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai bulan April 2014 sampai bulan Januari 2015,

BAB III PERANCANGAN SISTEM

Ultrasonic Level Transmitter Berbasis Mikrokontroler ATmega8

BAB II LANDASAN TEORI. ACS712 dengan menggunakan Arduino Nano serta cara kerjanya.

PERANCANGAN SISTEM AKUSISI DATA PADA MINI MARITIME WEATHER STATION. Oleh: Edi Yulianto. Pembimbing : Ir.Syamsul Arifin, MT Imam Abadi, ST.

APLIKASI ATMEGA 8535 DALAM PEMBUATAN ALAT UKUR BESAR SUDUT (DERAJAT)

BAB 3 PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM

Gambar 3.1 Diagram Blok Alat

Kotak Surat Pintar Berbasis Mikrokontroler ATMEGA8535

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret 2015 sampai dengan Agustus 2015.

AUTOMATISASI PERBAIKAN FAKTOR DAYA BERBASIS MIKROKONTROLER ATmega32

PERANCANGAN DAN IMPLEMENTASI TELMETRI SUHU BERBASIS ARDUINO UNO

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT. hardware dan perancangan software. Pada perancangan hardware ini meliputi

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

BAB III PERANCANGAN ALAT

Perancangan Alat Perbaikan Faktor Daya Beban Rumah Tangga dengan Menggunakan Switching Kapasitor dan Induktor Otomatis

BAB III PERENCANAAN. Pada bab ini akan dijelaskan langkah-langkah yang digunakan dalam

No Output LM 35 (Volt) Termometer Analog ( 0 C) Error ( 0 C) 1 0, , ,27 26,5 0,5 4 0,28 27,5 0,5 5 0, ,

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL

Pembangkit Pulsa Pemicu Berdasarkan Detektor Persilangan Nol yang Diperoleh dari Analog to Digital Converter dan Interrupt

RANCANG BANGUN SISTEM INFORMASI BIAYA PEMAKAIAN ENERGI LISTRIK PADA INDUSTRI. BERBASIS MIKROKONTROLLER ATmega8 LAPORAN TUGAS AKHIR

IV. HASIL DAN PEMBAHASAN. Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara

BAB II KWH-METER ELEKTRONIK

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

SISTEM KONVERTER DC. Desain Rangkaian Elektronika Daya. Mochamad Ashari. Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

PERANCANGAN RELE ARUS LEBIH DENGAN KARAKTERISTIK INVERS BERBASIS MIKROKONTROLER ATMEGA 8535

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September 2014 sampai November

BAB III PERANCANGAN SISTEM

BAB III DESKRIPSI MASALAH

Penguat Inverting dan Non Inverting

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB III DESKRIPSI DAN PERANCANGAN SISTEM

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia

TERMOMETER BADAN DIGITAL OUTPUT SUARA BERBASIS MIKROKONTROLLER AVR ATMEGA8535

BAB III PERANCANGAN. Pada bab ini akan menjelaskan perancangan alat yang akan penulis buat.

BAB IV ANALISIS DATA DAN PEMBAHASAN

1. PRINSIP KERJA CATU DAYA LINEAR

BAB III PERANCANGAN SISTEM

AKUISISI DATA BERAT MELALUI KOMPUTER BERBASIS MIKROKONTROLER AT89C51

Pengkondisian Sinyal. Rudi Susanto

BAB III PERANCANGAN SISTEM

BAB V PENGUJIAN DAN ANALISIS. dapat berjalan sesuai perancangan pada bab sebelumnya, selanjutnya akan dilakukan

II. TINJAUAN PUSTAKA. banyaknya muatan yang mengalir pada sebuah penghantar dalam waktu satu detik. Dimana : I = Arus listrik dalam satuan ampere (A)

BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN

BAB 3 PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN Bahan dan Peralatan

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan

SEMINAR TUGAS AKHIR PERANCANGAN SISTEM KOMUNIKASI DATA PADA MARITIM BUOY WEATHER UNTUK MENDUKUNG KESELAMATAN TRANSPORTASI LAUT

Monitoring Catu Cadangan 110V DC PMT dengan Menggunakan Media Modem GSM. Surya Mulia Rahman

BAB III ANALISIS DAN DESAIN SISTEM

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang

PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar

BAB III PERENCANAAN DAN REALISASI

BAB III PERANCANGAN ALAT. Pada bagian ini akan dijelaskan mengenai bagaimana alat dapat

BAB IV PENGUKURAN DAN ANALISA

BAB III DESAIN BUCK CHOPPER SEBAGAI CATU POWER LED DENGAN KENDALI ARUS. Pada bagian ini akan dibahas cara menkontrol converter tipe buck untuk

RANCANG BANGUN ALAT PEMANTAU SUHU DAN KELEMBABAN UDARA YANG BERBASISKAN WIRELESS

III. METODE PENELITIAN. Penelitian, perancangan, dan pembuatan tugas akhir ini dilakukan di Laboratorium

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli

INDIKATOR BAHAN BAKAR MINYAK DIGITAL PADA SEPEDA MOTOR MENGGUNAKAN SENSOR TEKANAN FLUIDA BERBASIS MIKROKONTROLER PUBLIKASI JURNAL SKRIPSI

BAB III ANALISIS DAN PERANCANGAN

BAB 3 PERANCANGAN ALAT DAN PROGRAM

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

BAB III METODE PENELITIAN

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015,

ANALISA ADC 0804 dan DAC 0808 MENGGUNAKAN MODUL SISTEM AKUISISI DATA PADA PRAKTIKUM INSTRUMENTASI ELEKTRONIKA

Transkripsi:

MONITORING PEMAKAIAN ENERGI LISTRIK BERBASIS MIKROKONTROLER SECARA WIRELESS Dayita Andyan Rusti. 1, M. Safrodin, B.Sc., MT. 2 Ainur Rofiq Nansur, ST., MT 2 1 Mahasiswa Jurusan Teknik Elektro Industri 2 Dosen Jurusan Teknik Elektro Industri Politeknik Elektronika Negeri Surabaya ITS Kampus ITS Sukolilo Surabaya 60111 e-mail: stillwithmedayita@gmail.com ABSTRAK Monitoring daya listrik rumah tangga yang digunakan saat ini menuntut pihak distributor daya untuk melakukan monitoring door-to-door untuk mendapatkan informasi tentang penggunaan daya listrik dari tiap pelanggan. Penelitian akhir ini memberikan solusi praktis untuk memonitor penggunaan daya listrik rumah tangga dengan teknologi wireless monitoring. Dengan panel meter yang memiliki sensor tegangan, arus, dan beda fasa, dapat diamati beberapa parameter pokok dan parameter turunan sebagai catatan telemetri konsumsi daya listrik melalui sebuah PC yang terhubung secara wireless. Error 5% didapatkan pada pengujian sensor tegangan di 70 hingga 260 VAC. Dibawah nilai tersebut, linieritas pengukuran berkurang. Akurasi hingga 5% juga didapat pada pengukuran arus mulai 0A hingga 10A. Pengukuran nilai faktor daya didapatkan error 10%. Error tersebut didapat dengan referensi alat ukur standar praktikum terkalibrasi. Untuk aplikasi monitoring daya rumah tangga, rating pengukuran dari penelitian akhir ini cukup memadai untuk diaplikasikan. Kata kunci: KWh meter, Power Measuring, wireless RF Module I. PENDAHULUAN Meningkatnya kegiatan ekonomi dan kesejahteraan masyarakat menuntut kebutuhan energi listrik yang terus meningkat. Energi listrik merupakan salah satu kebutuhan utama masyarakat. Oleh karena itu, untuk meyakinkan konsumen atas kualitas energi listrik yang dikonsumsi, perlu dilakukan monitoring energi listrik. Meter-meter ukur listrik 1 phasa saat ini masih menggunakan sistem konvensional yang mengharuskan distributor daya listrik melakukan pendataan konsumsi energi listrik pada tiap-tiap rumah. Metode tersebut dinilai kurang efektif mengingat banyaknya jumlah rumah yang mengkonsumsi daya listrik dari sebuah distributor. Untuk meningkatkan efektifitas kerja dalam monitoring parameter distribusi daya listrik, dibuat sebuah alat yang dapat melakukan pengukuran konsumsi daya listrik dan beberapa parameter distribusi listrik lainnya pada rumah-rumah melalui sebuah workstation PC. Diharapkan dengan dibuatnya alat tersebut, monitoring penggunaan daya listrik tidak perlu lagi dilakukan dengan menghampiri rumah-rumah yang mengkonsumsi daya listrik. Pada proyek akhir ini, parameter-parameter yang dideteksi adalah tegangan, arus, frekuensi, dan beda phase. Data-data tersebut akan disimpan dalam sebuah memori. Sehingga penyedia jasa listrik dapat menganalisa besar biaya yang harus ditanggung pelanggan setiap bulannya sekaligus mendapatkan data telemetri tentang kualitas daya yang dikonsumsi oleh rumah dengan listrik 1 phasa. Dengan didapatkannya data telemetri dari penggunaan daya listrik yang didistribusikan, pihak distributor dapat melakukan evaluasi dari data-data tersebut untuk melakukan peningkatan mutu pelayanan pengadaan daya listrik demi kepuasan konsumen pemakai daya listrik. Selain itu, dengan mengamati karakteristik penggunaan daya, dapat dilakukan langkah-langkah preventif untuk meningkatkan efisiensi energi terkait masalah power factor maupun parameter lainnya. II. PENGUKURAN PARAMETER DAYA Pengukuran parameter daya dilakukan pada 3 parameter pokok. Yaitu tegangan, arus, dan faktor daya dimana parameter turunan dapat dikalkulasi berdasarkan parameter pokok tersebut. 2.1 Sensor 180KΩ 180KΩ Gambar 1 Rangkaian Sensor Gambar 1 adalah skema pengkondisian sinyal untuk pengukuran tegangan. Tahap pertama pengkondisian sinyal i

1,2 20 40 60 80 100 120 140 160 180 200 220 240 adalah pembagian tegangan. Pada tahap ini tegangan AC 220 V diturunkan hingga rentang yang dapat diterima oleh input Op-Amp. Lalu penguatan dilakukan pada sinyal sinus pembagi tegangan. Dengan catu daya non simetris, akan didapatkan pemotongan sinyal keluaran. 3 2,5 2 1,5 1 0,5 0 Pembagi (vpp) Gambar 2 Gelombang Sinus Dengan menghubungkan catu daya negatif Op-Amp pada ground, maka pemotongan sinyal keluaran akan terjadi pada tegangan negatif. Pemotongan tersebut memberikan efek seperti halfwave rectifier. Selanjutnya, sinyal keluaran tersebut diberi filter capasitor untuk menekan ripple factor yang dapat mengganggu pembacaan pada ADC. Rangkaian tersebut memberikan hasil pengukuran seperti pada tabel 1. Gambar 3 Grafik Pembagi 2.2 Sensor Arus output(vdc) Untuk pengukuran arus, digunakan IC ACS712-30A. IC tersebut merupakan sensor arus dengan kapasitas maksimum 30 Ampere. Tabel 1 Hasil Pengukuran Voltage Devider Input (Volt) Pembagi (V-pp) Output (Vp) Vout/Vin 1,2 0,475 0,81 0,675 20 0,395 0,68 0,034 40 0,395 0,65 0,01625 60 0,405 0,75 0,0125 80 0,515 0,87 0,010875 100 0,615 1,03 0,0103 120 0,745 1,31 0,010916667 140 0,87 1,56 0,011142857 160 0,975 1,76 0,011 180 1,115 1,96 0,010888889 200 1,23 2,26 0,0113 220 1,36 2,43 0,011045455 240 1,41 2,72 0,011333333 Linieritas sensor tegangan terlihat pada gambar3. Gambar 4 IC ACS 712-30A IC ACS712-30A memiliki rate tegangan output yang linier terhadap arus input. Pada 0Ampere, tegangan output terukur pada setengah dari tegangan supply. Dari tegangan supply 5v terukur tegangan output ACS sebesar 2,5v DC pada input 0A. Untuk arus AC, tegangan output ACS memiliki output sinyal sinus dengan DC refference sebesar ½ Vcc. Dengan kondisi tersebut, digunakan rangkaian pengkondisian sinyal seperti pada gambar 4. Gambar 5 Rangkaian Sensor Arus Pada rangkaian tersebut terdapat coupling kapasitif yang dapat menghilangkan DC refrensi dari sinyal ouput ACS. Selanjutnya sinyal tersebut dikuatkan dengan Op-Amp tanpa catu daya negatif. Sehingga ii

sinyal sinus terpotong pada setiap tegangan negatifnya. Output sinyal terlihat seperti pada gambar 6. Gambar 6 Output ACS+Pengkondisian sinyal Sinyal output tersebut masih memiliki ripple sehingga pembacaan melalui ADC akan sulit dilakukan. Sinyal tersebut difilter dengan kapasitor, sehingga ripple factor dapat dihilangkan. Hasil pengukuran arus pada ACS dapat dilihat pada tabel 2. Dan linieritas dari pengukuran terlihat pada gambar 7. Tabel 2 Hasil Pengukuran Sensor Arus I input V out Vout / I in 0,5 0,173 0,346 0,93 0,339 0,364516 1,4 0,506 0,361429 1,84 0,676 0,367391 2,06 0,746 0,362136 2,3 0,818 0,355652 2,5 0,905 0,362 2,72 0,97 0,356618 2,94 1,06 0,360544 3,4 1,235 0,363235 3,62 1,32 0,364641 3,85 1,42 0,368831 4,1 1,51 0,368293 4,32 1,59 0,368056 4,56 1,676 0,367544 2.3 Sensor Faktor Daya Dari dua sensor tersebut, didapatkan dua sinyal sinusoidal yang mewakili tegangan maupun arus. Untuk mendapatkan parameter faktor daya, kedua sinyal tersebut harus diolah untuk mengambil informasi tentang beda fase antara sinyal tegangan dan sinyal arus. Untuk mengukur beda fase, digunakan teknik zerocrossing detection untuk mendapatkan sinyal digital yang menandai pergeseran fasa dengan dua level sinyal dan dibaca secara digital oleh mikrokontroller.. Gambar 8 Zero Cross Detektor Beban Resistif Gambar 9 Zero Cross Detektor Beban Kapasitif 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 0,5 1,4 2,06 2,5 2,94 3,62 4,1 4,56 V out Iin Gambar 10 Zero Cross Detektor Beban Kapasitif+Resistif Gambar 8, gambar 9, dan gambar 10 merupakan sinyal keluaran zero crossing detector. Sinyal tegangan (atas) dan sinyal arus (bawah) memperlihatkan beda fase yang terjadi pada beban. Untuk mendapatkan parameter faktor daya, diperlukan pengukuran pergeseran fase arus terhadap fase tegangan. Dari dua sinyal tersebut dapat diukur pergeseran fase dengan menghitung panjang kombinasi XOR antara dua sinyal tersebut. Gambar 7 Grafik Rangkaian Sensor Arus iii

USART III. Embedded System Volt meter Ampere meter Micro Contr oller Cos phi USART (Universal Serial Asynchronous Rx Tx), merupakan antarmuka komunikasi serial dengan protokol data berupa karakter ascii. Dengan mode 8 bit, USART juga dapat digunakan untuk mengirimkan data byte non ascii. Dengan mencocokkan baud rate pada masing-masing terminal, maka akan didapatkan transmisi data yang sinkron dengan error yang cukup kecil. RF Module RF Module PC Gambar 11 Block Diagram Sistem Dengan mikrokontroler AVR, parameter-parameter pengukuran diolah. Pengukuran tegangan dan arus dilakukan dengan fitur ADC yang terdapat pada mikrokontroler AVR. Parameter faktor daya juga diolah dengan menghitung kombinasi XOR secara terprogram dalam sistem mikrokontroler. Selain melakukan pengukuran, mikrokontroller pada sistem juga melakukan pencatatan data. Data-data tersebut dikumpulkan untuk mendapatkan laporan akhir tentang penggunaan daya listrik. Dengan komunikasi serial, data pada mikrokontroler dapat dimonitor melalui sebuah PC. 3.1 Mikrokontroler Mikrokontroler adalah sistem mikroprosesor yang telah dikemas dalam sebuah IC dengan beberapa fitur yang terintegrasi. Atmel s AVR merupakan salah satu jenis mikrokontroler yang memiliki banyak fitur dengan harga yang terjangkau. Beberapa fitur dari mikrokontroler yang digunakan dalam project ini antara lain adalah: ADC, USART, interrupt, dll. ADC merupakan perangkat yang dapat merubah tegangan analog DC menjadi data digital secara linier. Dengan ADC tegangan DC dapat dibaca dan diolah dalam mikrokontroler dengan berbagai operator logika maupun matematika. analog yang dapat diinputkan kedalam ADC memiliki rentang yang terbatas. Yaitu 0 hingga 5 volt DC. Rentang tegangan tersebut dikonversikan secara linier kedalam bentuk bilangan digital yang memiliki resolusi 8 hingga 10 bit. Dengan ADC pada mikrokontroller ATmega16, dilakukan pengukuran pada rangkaian pengkondisian sinyal yang telah mengkonversi sinyal sinus menjadi sinyal DC yang mewakili informasi tegangan AC jalajala. Pencuplikan data tegangan dan arus dilakukan dalam frekuensi 1000Hz. Dengan demikian dapat diambil rata-rata dari akumulasi data tiap 500ms. Algoritma tersebut digunakan untuk mendapatkan hasil pengukuran yang stabil dan lebih akurat. Start Inisialisasi While(1) untuk i=0 hingga 500 Cuplik ADC tegangan Cuplik ADC arus tegangan = tegangan + ADC tegangan arus = arus + ADC arus frekuensi = frekuensi + frekuensi faktor daya= faktor daya + faktor daya Tunda 1 mili detik tegangan = tegangan / 500 arus = arus /500 frekuensi = frekuensi /500 faktor daya= faktor daya /500 Wh = Wh + (tegangan * arus / 7200) KWh = Wh / 1000 Tampilkan data pada Display Simpan data sebagai catatan telemetri Gambar12 Flowchart program utama A A iv

Flowchart pada gambar 11 merupakan alur pengukuran dari data ADC pada mikrokontroler. Selain data ADC, juga diolah data tentang frekuensi jala-jala dan cos phi yang pengukurannya dilakukan pada rutin interupsi timer pada mikrokontroller. 55µs? Y Timer Start Interupsi Periode = periode +1 V^I=1? Gambar 13 Flow chart interupsi timer Dengan interupsi timer, dilakukan pencacahan variabel periode yang nilainya akan memberikan informasi tentang periode satu gelombang tegangan pada jala-jala. Dari interupsi timer juga dilakukan pencacahan variabel phi yang nilainya akan dicacah setiap kali terdeteksi kondisi XOR dari sinyal tegangan dan dinyal arus. Nilai variabel periode dan phi akan dihapus setiap satu gelombang. Satu gelombang ditandai dengan permintaan interupsi eksternal. interrupt [TIM1_COMPA] void timer1_compa_isr(void) { If(V_sign^^I_sign)phi++; } External IRQ Frekuensi = 1 / (periode*55µs) Power Factor = cos(phi) Phi = 0 Periode = 0 Y T Phi=phi+1 END T tunggu faktor daya akan diolah pada rutin tersebut. Setiap kali rutin tersebut terjadi, akan didapatkan parameter akhir dari pengukuran periode gelombang dan pengukuran beda fase yang dikonversi menjadi cos phi. Selanjutnya, parameter-parameter dari hasil pengukuran disimpan dalam memori untuk diambil datanya sewaktu-waktu. 3.2 RF tranceiver Merupakan media komunikasi tanpa kabel dengan carier berupa gelombang radio. Dengan perangkat ini, dapat dilakukan komunikasi tanpa kabel untuk mengirimkan berbagai macam informasi. 3.3 Microsoft s Visual Basic 6 Merupakan aplikasi software development yang digunakan untuk membangun sebuah software dengan berbagai macam tugas. Dengan aplikasi tersebut, dapat dibuat sebuah software yang mampu mengakses sistem komunikasi serial. Dengan demikian, dapat dibangun sebuah software yang dapat terhubung dengan sistem mikrokontroler yang dikoneksikan secara nirkabel melalui antarmuka USART (Serial Communication). IV. ANALISA Dalam tahap pengujian, terdapat beberapa error yang mengakibatkan gangguan kinerja dari sistem Monitoring pemakaian energi listrik berbasis mikrokontroler secara wireless. Beberapa kasus diantaranya adalah error pada pengukuran tegangan, error pada pengukuran arus. 4.1 Error Pengukuran Sensor dikatakan ideal jika memiliki tingkat akurasi, presisi, diskriminasi, sensitivitas, linieritas yang tinggi dan tingkat error (kesalahan) yang rendah. Error pengukuran tegangan terjadi dengan indikasi nonlinier pada hasil keluaran dari sistem pengkondisian sinyal. Pada perencanaan telah dikalkulasi nilai-nilai pada beberapa node dari rangkaian pengkondisian sinyal, dimana secara teoritis didapatkan perhitungan sebagai berikut. End Gambar 14 Flow chart interupsi eksternal Rutin permintaan interupsi eksternal berfungsi untuk mengulangi penghitungan pada timer. dimana parameter-parameter yang bersangkutan dengan frekuensi jala-jala dan Resistor yang dipakai dalam pengukuran ini adalah R1 = 180 k, R2 = 220 v

4.2 Error Pengukuran Arus Gambar 19 Rangkaian Sensor Arus Gambar 15 Rangkaian Sensor Berikut adalah simulasi rangkaian sensor arus menggunakan PSIM dengan Vin AC = 850 mv, Vin DC = 2.5 V, f = 50 Hz. Output pengkondisian sinyal non linier pada tegangan rendah, karena pengaruh kapasitor. Berikut adalah simulasi rangkaian pembagi tegangan menggunakan PSIM dengan Vin = 220 V, f = 50 Hz, R1 = 180kΩ, R2 = 220Ω, R3 = 180kΩ. Gambar 20 Rangkaian Sensor Arus Gambar 16 Rangkaian Sensor Gambar 21 Bentuk Input ACS Gambar 17 Bentuk Output Pembagi Gambar 18 Bentuk Output (Setelah Penguatan Op-Amp) Output ACS menurut datasheet adalah : 66 to 185 mv/a output sensitivity Rangkaian sensor arus yang dipakai menggunakan kopling kapasitif, yang dapat menyebabkan penurunan tegangan. Kopling kapasitif yang digunakan membentuk suatu pembagi tegangan kapasitif yang berguna untuk menurunkan tegangan dari level tegangan transmisi ke level tegangan distribusi. Sistem kopling kapasitif (Capacitive Coupling System / CCS), dikembangkan menjadi suatu suplai daya didasarkan pada suatu pembagi tegangan kapasitif yang dihubungkan langsung pada kawat fasa saluran udara transmisi dan merupakan input suatu transformator penurun tegangan. vi

V. KESIMPULAN - Pengukuran tegangan dan arus listrik memiliki error maksimal sebesar 5% - Untuk aplikasi monitoring daya rumah tangga, rating pengukuran dari penelitian akhir ini cukup memadai untuk diaplikasikan. VI. DAFTAR PUSTAKA [1] Cooper, W. D, Instrumentai Elektronik dan Teknik Pengukuran, Erlangga, 1991. [2] Dahono. AP, Besaran Tenaga Listrik: Definisi dan Masalahnya, Seminar Nasional Teknik Tenaga istrik, Bandung, 2004. [3] Frenzel, Lois E, Communications Electronics, McGraw-Hill, 1989. [4] http/www: lem.com. [5] Jacob, J. M, Industrial Control Electronics, Prentince Hall International, 1989 [6] Kennedy, George, Eletronic Comunication Systems, McGraw-Hill, 19861 [7] Mohan, Undeland, Robbins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, 1994 [8] Rashid, M H, Power Electronics: Circuits, Devices and Applications, Prentice Hall International, 1993 [9] Simpson. C. D, Industrial Electronics., Prentince Hall International, 1996. [10] Smith, J, Modern of Communication System, McGraw-Hill, 1986. vii