PENGUKURAN SCAN REFERENSI PADA KOLOM GASOLINE FRACTIONATION MENGGUNAKAN Co-60.

dokumen-dokumen yang mirip
PEMETAAN SEDIMEN PADA TANGKI FB-901 DENGAN TEKNIK HAMBURAN NEUTRON

PRIMA Volume 3, Nomor 6, November 2006 ISSN

Rancang Bangun Alat Gamma Scan Aktuator Ganda Berbasis Mikrokontroler. Design of Microcontroller Based Double Actuator Gamma Scanner

PENGEMBANGAN DETEKTOR GEIGER MULLER DENGAN ISIAN GAS ALKOHOL, METANA DAN ARGON

SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5

Jurnal Fisika Unand Vol. 3, No. 2, April 2014 ISSN

Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller

PENGARUH DIAMETER PHANTOM DAN TEBAL SLICE TERHADAP NILAI CTDI PADA PEMERIKSAAN MENGGUNAKAN CT-SCAN

OPTIMASI ALAT CACAH WBC ACCUSCAN-II UNTUK PENCACAHAN CONTOH URIN

UJI LINE SCAN CAMERA PADA RANCANG BANGUN SISTEM PENCITRAAN PETI KEMAS DENGAN TEKNIK SERAPAN SINAR GAMMA

PEREKAYASAAN SISTEM PENCITRAAN MATERIAL DI DALAM REAKTOR PETROKIMIA DENGAN TEKNIK SERAPAN SINAR GAMMA

SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5

PEMERIKSAAN KUALITAS BOOM FOOT MENGGUNAKAN TEKNIK UJI TAK RUSAK

PROGRAM JAMINAN KUALITAS PADA PENGUKURAN. RADIONUKLIDA PEMANCAR GAMMA ENERGI RENDAH:RADIONUKLIDA Pb-210

OPTIMASI PENGUKURAN KEAKTIVAN RADIOISOTOP Cs-137 MENGGUNAKAN SPEKTROMETER GAMMA

PERBANDINGAN METODA OTOMATIS DAN MANUAL DALAM PENENTUAN ISOTOP Cs-137 MENGGUNAKAN SPEKTROMETER GAMMA

PEREKAYASAAN SISTEM PENCITRAAN MATERIAL DIDALAM REAKTOR PETROKIMIA DENGAN TEKNIK SERAPAN SINAR GAMMA

RANCANG BANGUN SISTEM KENDALI PEMANTAUAN BATAS PERMUKAAN (LEVEL GAUGING) DINAMIS BERBASIS MIKROKONTROLER

GANENDRA, Vol. V, No. 1 ISSN ANALISIS DAN PENENTUAN DISTRIBUSI FLUKS NEUTRON SALURAN TEMBUS RADIAL UNTUK PENDAYAGUNAAN REAKTOR KARTINI

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10.

Jurnal Radioisotop dan Radiofarmaka ISSN Journal of Radioisotope and Radiopharmaceuticals Vol 10, Oktober 2007

PERBANDINGAN DOSIS RADIASI DI UDARA TERHADAP DOSIS RADIASI DI PERMUKAAN PHANTOM PADA PESAWAT CT-SCAN

SISTEM MONITORING MATERIAL CLOGGING PADA REAKTOR LOW LINIER DENSITY POLYETHYLENE DENGAN RADIASI GAMMA

Youngster Physics Journal ISSN : Vol. 2, No. 1, April 2013, Hal 27-34

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60

Jurnal Fisika Unand Vol. 3, No. 3, Juli 2014 ISSN

PENINGKATAN AKURASI DATA HRSANS DENGAN MODIFIKASI PERANGKAT LUNAK KENDALI PADA BAGIAN SAMPLE CHANGER

Suparno, Anda Sanusi - PENENTUAN WAKTU PENYINARAN RADlOGRAFllr-192 MENGGUNAKAN PERSAMAAN DOSIS RADIASI

STUDI AWAL UJI PERANGKAT KAMERA GAMMA DUAL HEAD MODEL PENCITRAAN PLANAR (STATIK) MENGGUNAKAN SUMBER RADIASI MEDIUM ENERGY RADIUM-226 (Ra 226 )

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF

PEMANTAUAN RADIOAKTIVITAS DEBU DI UDARA DAERAH KERJA PPGN TAHUN 2011

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN

PERANGKAT LUNAK SISTEM PENCACAH RADIASI MENGGUNAKAN VISUAL BASIC

SIMULASI PENGUKURAN EFFISIENSI DETEKTOR HPGe DAN NaI (Tl) MENGGUNAKAN METODE MONTE CARLO MCNP5

Sistem Pencacah dan Spektroskopi

DISTRIBUSI TEMPERATUR SAAT PEMANASAN DAN PENDINGINAN PER- MUKAAN SEMI-SPHERE HeaTING-03 BERDASARKAN TEMPERATUR AWAL

PENENTUAN CALIBRATOR SETTING CAPINTEC CRC-7BT UNTUK SAMARIUM-153

RANCANG BANGUN SISTEM KENDALI CONVEYOR PADA PROTOYPE MONITOR PETI KEMAS DENGAN TEKNIK SERAPAN SINAR GAMA

PEREKAYASAAN SISTEM DETEKSI PERANGKAT SCINTIGRAPHY MENGGUNAKAN PSPMT

Dengan klasifikasi tersebut maka konsumen dapat memilih mana yang tepat untuk

PENENTUAN TEGANGAN OPERASIONAL PADA DETEKTOR GEIGER MULLER DENGAN PERBEDAAN JARI-JARI WINDOW DETEKTOR

UJI KESESUAIAN PESAWAT CT-SCAN MEREK PHILIPS BRILIANCE 6 DENGAN PERATURAN KEPALA BAPETEN NOMOR 9 TAHUN 2011

PENENTUAN NILAI NOISE BERDASARKAN SLICE THICKNESS PADA CITRA CT SCAN SKRIPSI HEDIANA SIHOMBING NIM :

PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co

PENGGUNAAN SINAR-X KARAKTERISTIK U-Ka2 DAN Th-Ka1 PADA ANALISIS KOMPOSISI ISOTOPIK URANIUM SECARA TIDAK MERUSAK

DESAIN DAN PEMBUATAN PENDUKUNG MEKANIK PADA PROTOTIPE PERANGKAT SISTEM PENCITRAAN PETI KEMAS DENGAN TEKNIK SINAR GAMMA

PEMBUATAN TABUNG DETEKTOR GEIGER MULLER TIPE JENDELA SAMPING

PENGUKURAN FLUKS NEUTRON SALURAN BEAMPORT TIDAK TEMBUS RADIAL SEBAGAI PENGEMBANGAN SUBCRITICAL ASSEMBLY FOR MOLYBDENUM (SAMOP) REAKTOR KARTINI

RADIOGRAFI CO-60 PADA KUBUS CORAN TIMAH HITAM

Prinsip Dasar Pengukuran Radiasi

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF

BAB IV ANALISA HASIL PENGUJIAN

Parallel Beam Measurement of Pipe Scaling using Parallel Beam Gamma Tomography

METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA

PENGUKURAN LAJU DOSIS PAPARAN RADIASI EKSTERNAL DI AREA RADIOTERAPI RSUD DR. SAIFUL ANWAR MALANG. Diterima: 6 Juni 2016 Layak Terbit: 25 Juli 2016

Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down

OXEA - Alat Analisis Unsur Online

VALIDASI METODA PENGUKURAN ISOTOP 137 Cs MENGGUNAKAN SPEKTROMETER GAMMA

Sinar x memiliki daya tembus dan biasa digunakan dalam dunia kedokteran. Untuk mendeteksi penyakit yang ada dalam tubuh.

BAB III SPESIFIKASI PERALATAN PROSES

DETEKTOR RADIASI INTI. Sulistyani, M.Si.

STUDI AWAL UJI PERANGKAT KAMERA GAMMA DUAL HEAD MODEL PENCITRAAN PLANAR STATIK MENGGUNAKAN SUMBER RADIASI HIGH ENERGY IODIUM-131 (I 131 )

PENENTUAN KARAKTERISTIK SERAPAN DAN KOEFISIEN ATENUASI LINIER PENYANGGA MYLAR TERHADAP RADIASI UNTUK SUMBER STANDAR Sr-90

Analisa Kualitas Sinar-X Pada Variasi Ketebalan Filter Aluminium Terhadap Dosis Efektif

STUDI KARAKTERISTIK DETEKTOR SODIUM IODIDE DALAM PEMANFAATANNYA SEBAGAI SEGMENTED GAMMA SCANNER LIMBAH RADIOAKTIF

PEMILIHAN TIPE KOLOM PEMISAH. Asep Muhamad Samsudin

ALTERNATIF PERANCANGAN SISTEM MEKANIK PERANGKAT RENOGRAF DAN THYROID UPTAKE TERPADU

PEREKAYASAAN SISTEM TIMBANGAN MASSA BATUBARA PADA BELT CONVEYOR DENGAN TEKNIK SERAPAN RADIASI GAMMA

METODE STANDARDISASI SUMBER 60 Co BENTUK TITIK DAN VOLUME MENGGUNAKAN METODE ABSOLUT PUNCAK JUMLAH

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN

ANALISIS KERUSAKAN X-RAY FLUORESENCE (XRF)

PEMANFAATAN GAMMA SPEKTROMETRI UNTUK PENGAMATAN DISTRIBUSI PEMBELAHAN DALAM PELAT ELEMEN BAKAR NUKLIR

PENGUKURAN DOSIS RADIASI PADA PASIEN PEMERIKSAAN PANORAMIK. Abdul Rahayuddin H INTISARI

ANALISIS NOSEL BAHAN TUNGSTEN DIAMETER 200 mm HASIL PROSES PEMBENTUKAN

FAKTOR KOREKSI PENGUKURAN AKTIVITAS RADIOFARMAKA I-131 PADA WADAH VIAL GELAS TERHADAP AMPUL STANDAR PTKMR-BATAN MENGGUNAKAN DOSE CALIBRATOR

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60

DETEKTOR RADIASI. NANIK DWI NURHAYATI, S.Si, M.Si nanikdn.staff.uns.ac.id

KONTAINER SUMBER RADIASI 137CS 70 mci UNTUK PEMINDAI GAMMA

PENGUKURAN DOSIS RADIASI RUANGAN RADIOLOGI II RUMAH SAKIT GIGI DAN MULUT (RSGM) BAITURRAHMAH PADANG MENGGUNAKAN SURVEYMETER UNFORS-XI

RADIOGRAFI Co-60 PADA CORAN KOMPONEN ALAT BERAT

Perbandingan Mode Live Time Clock (LTC) dan Zero Dead Time (ZDT) pada Pengukuran Radioaktivitas Umur Paruh Pendek

ALAT UKUR RADIASI. Badan Pengawas Tenaga Nuklir. Jl. MH Thamrin, No. 55, Jakarta Telepon : (021)

X-Ray Fluorescence Spectrometer (XRF)

ANALISIS KENAIKAN HARGA AKTIVITAS KPK 01 CR001

BAB V KESIMPULAN DAN SARAN

DESAIN DASAR PERANGKAT SCINTIGRAPHY

FABRIKASI DETEKTOR PARTIKEL ALPHA MENGGUNAKAN SEMIKONDUKTOR SILIKON TIPE P

PENGUNGKUNGAN SUMBER 85 Kr, 133 Xe, 198 Au, DAN 24 Na PASCA IRADIASI

Buletin Fisika Vol. 8, Februari 2007 : 31-37

UJI LAPANGAN PERANGKAT DETEKSI GAMMA DENSITY HASIL REKAYASA BATAN PADA INDUSTRI & PERTAMBANGAN

Analisis Persamaan Respon Dosis Thermoluminescent Dosimeter (TLD) Pada Spektrum Sinar-X Menggunakan Metode Monte Carlo

SPEKTROSKOPI-γ (GAMMA)

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

Abstrak. Kata kunci: Hydrotest, Faktor Keamanan, Pipa, FEM ( Finite Element Method )

PENENTUAN CALIBRATION SETTING DOSE CALIBRATOR CAPINTEC CRC-7BT UNTUK Ce-139

PENGGUNAAN FLUENT UNTUK SIMULASI DISTRIBUSI SUHU DAN KECEPATAN PADA ALAT PENUKAR KALOR

PENGARUH IRADIASI-γ TERHADAP REGANGAN KISI DAN KONDUKTIVITAS IONIK PADA KOMPOSIT PADAT (LiI) 0,5 (Al 2 O 3.4SiO 2 ) 0,5

Jurnal Radioisotop dan Radiofarmaka ISSN Journal of Radioisotope and Radiopharmaceuticals Vol 9, Oktoberl 2006

Transkripsi:

PROSIDING PERTEMUAN DAN PRESENTASI ILMIAH PENELITIAN DASAR ILMU PENGETAHUAN DAN TEKNOLOGI NUKLIR Pusat Sains dan Teknologi Akselerator Yogyakarta, 28 November 2017 PENGUKURAN SCAN REFERENSI PADA KOLOM GASOLINE FRACTIONATION MENGGUNAKAN Co-60 Wibisono Pusat Aplikasi Isotop dan Radiasi-Batan Jl. Raya Lemabk Bulus no 49 Jakarta 12440 E-mail: wibi@batan.go.id ABSTRAK PENGUKURAN SCAN REFERENSI PADA KOLOM GASOLINE FRACTIONATION MENGGUNAKAN Co-60. Aplikasi teknik nuklir telah dilakukan untuk mendapatkan scan profile kolom sebagai referensi untuk pekerjaan inspeksi secara periodik. Kolom yang memiliki diameter shell 900cm dan tinggi 4.800 cm ini sering kali mengalami masalah serius sejak hilangnya 350m 3 pall ring dari posisi bed #1. Unit gasoline fractinasi ini direkonstruksi pada segmen atasnya packing bed menjadi tray. Eksperimen ketika unit proses telah mengalami rekonstruksi dan beroperasi dengan kapasitas produksi 75%. Unit ini discan menggunakan sumber gama 200 mci, scan step lima cm dan waktu sampling tiga detik. Orientasi pengukuran mencakup 10 bidang scan dengan jarak antara grid scan sejauh 150 cm. Data pengukuran menunjukan level liquid pada dasar kolom 1.590-1.780 cm dan tray #1-#32 berada pada posisinya. Kata kunci : radiasi, gama, industri, petrokimia, nuklir ABSTRACT SCAN REFERENCE MEASUREMENT ON GASOLINE FRACTIONATION USING Co-60. Application nuclear technique has been performed to get scan profile as reference for further inspection periodically. The column has a shell diameter 900 cm and a high 4.800 cm got serious problem frequently since it missed 350 m 3 pall ring on bed #1. The gasoline fractionation unit reconstructed packing bed become trays. An experiment performed when production capacity was 75%. The column scanned using gama source has an activity 200 mci, scan step five cm and counting time three seconds. Scan orientation decided 10 scans within 150 cm grid scan. Measurement result explained level liquid at the bottom was 1.590-1.780 cm and tray #1-#32 on their position properly. Keywords: Radiation, gamma, industry, petrochemical, nuclear. PENDAHULUAN S etelah beroperasi selama 23 tahun unit utama pabrik ethylene tower gasoline fraksinasi direkonstruksi pada segmen atasnya [1]. Sebelumnya konstruksi unit ini memiliki dua packed bed berisi pall ring stainless still ukuran dua inch di tempatkan secara random masing-masing pada shell bed#1 dan #2 dengan diameter 900 cm dan tinggi 570 cm. Tahun 2014 pall ring pada bed #1 teridentifikasi tidak berada pada posisinya. 350 m 3 diduga terdorong ke unit proses berikutnya. Indikasi ini berdasarkan investigasi Agustus 2014 mencurigai telah terjadi over flow pada tray distributor bed #1 dan level liquid melewati bed limiternya. Investigasi pada Desember 1014 dilakukan pada saat pabrik tidak beroperasi. Intensitas sinar gama yang diarahkan kedalam segmen bed #1 terbaca masih memiliki intensitas tinggi setelah menembus tower. Pengukuran 18 orientasi menguatkan analisa bahwa bed #1 sudah tidak berisi pall ring sesuai gambar teknisnya. Gambar 1. Kepastian akan hal ini terbukti pada saat dilakukan turn around pada tahun 2015 [2]. Pada saat ini dilakukan bed #1 dan #2 telah di rekonstruksi menjadi tray #20 - #27 untuk melengkapi tray yang telah ada sebelumnya yaitu tray #1- #19. Gambar 2. Mengacu pada investigasi tahun-tahun sebelumnya dianggap perlu memiliki data scan profile awal beroperasi sebagai referensi untuk investigasi pada saat yang akan datang apabila terjadi masalah atau inspeksi rutin secara periodik. Mengacu pada mechanical drawing dan profile densitas relatif objek teknik gamma scanning dapat mendiagnosa terjadinya flow liquid yang melimpah, blockage, collapse tray, mal distribution packed beds, liquid level [3]. Teknik ini telah digunakan secara luas untuk mendeteksi liquid level di dalam vessel dan container [4]. Eksperimen ini bertujuan mendapatkan scan profile sebagai data awal pada saat unit beroperasi dengan kapasitas 75% serta referensi pada saat jadwal inspeksi. Wibisono ISSN 0216-3128 277

adalah koefisien absorpsi. Tembakan sinar gama pada orientasi yang tepat hanya akan menembus material dengan dua perbedaan densitas. Semakin sedikit variasi densitas yang dilewati semakin mudah untuk dianalisa. Gambar 3. Sebuah sumber gama cobalt-60 memiliki aktivitas 200 mci dan detector sintilasi dari organic NaI/Tl saat ini dianggap paling baik untuk mengukur radiasi sinar gama [7]. Radiasi pengion yang menembus bahan ini akan menghasilkan percikan cahaya [8]. Sumber radiasi dipasang pada scanner yang telah didesain memiliki panoramic window selebar 20 mm. detektor dibungkus dengan kolimator yang juga memiliki panoramic window 20 mm. Detektor gama disuplai tegangan 1000 V dan diset lamanya waktu pencacahan 3 detik [9]. Gambar 1. Scan profiles tahun 2007 dan 2014 Window scanner dan detektor ditempatkan pada posisi 1.000 cm diatas base level pada orientasi bidang scan A dimana sumber 48 o dan detektor 312 o. Gambar 4. Pada posisi ini sinar gama yang telah menembus kolom diukur intensitasnya selama lima detik, kemudian dicatat sebagai intensitas pada posisi 1000 cm. scanner dan detektor dipindahkan ke atas sejauh 5 cm kemudian diukur dan dicatat kembali intensitasnya. Demikian dilakuan berulang-ulang sampai pada posisi 3.200 cm. Dengan cara yang sama pengukuran untuk bidang scan B, C, D, dan E dilakukan pada orientasi seusai table 1. Tabel 1. Scan orientasi. Gambar 2. Rekonstruksi gasoline fractionation tower TATA KERJA Konstruksi kolom gasoline fractionation terdiri dari dinding kolom, tray-tray, nozzle, dan baffle tray. Memahami drawing terbaru unit ini dipertimbangkan melakukan pengukuran dengan cara menscan dari bawah ke atas sebanyak sembilan orientasi [5]. Sinar gama yang ditembakan menembus kolom ini akan terserap sebagian karena berinteraksi dengan material struktur di dalamnya. Intensitas sinar gama akan mengalami menurun secara exponensial sebanding dengan panjang lintasan yang dilaluinya. Secara praktis intensitas yang menembus material mengikuti persamaan (1) [6]. Intensitas awal sinar gama (I o ) yang ditembakan menembus material sejauh (x) intensitasnya akan menurun menjadi (I) dimana (1) No Bidang scan scanner ( o ) Detektor ( o ) 1 A 48 312 2 B 71 739 3 C 90 270 4 D 109 251 5 E 132 228 6 F 138 42 7 G 161 19 8 H 180 0 9 I 199 341 10 J 222 318 Bidang scan F, G, H, I dan J dimulai dari posisi 3.200 cm sampai 4.800 cm. Gambar 5. Gambar 3. Metode pengukuran dan atenuasi sinar gama 278 ISSN 0216-3128 Wibisono

Gambar 4. Scan orientasi segmen bawah. Gambar 5. Scan orientasi segmen atas. HASIL DAN PEMBAHASAN Scan profile A, C, dan E ketiganya menunjukan eksistensi tray pada posisi yang sama tetapi pada orientasi berbeda. Scan ini adalah secan tray nomor genap. Apabila scan profile ini dibuat dalam satu grafik maka scan profile A dan E akan berimpit karena sinar gama mengalami panjang serapan yang sebanding sedangkan C sedikit lebih panjang sehingga mengalami penurunan intensitas lebih rendah dari pada keduanya. Tampak scan profile C warna hijau lebih rendah dari pada merah (E) dan biru (A). pada grafik juga tampak profile stiffener ring #10 - #16 serta eksternal struktur pada posisi 2.550 cm serta pipe distributor pada posisi 2.900 cm. Pengukuran yang terhalang eksternal struktur seperti platform atau pipa mengakibatkan terputusnya scan profile dan pengukuran dilanjutkan pada posisi berikutnya. Pada saat pengukuran ketiga bidang ini liquid level di dasar kolom teramati fluktuatif berturut pada A dan E adalah 1780 cm sedangkan C 1580 cm. Gambar 6. Gambar 6 scan profile bidang A, C, E tray #1 - #19. Eksperimen B dan D mendeteksi posisi liquid level pada dasar kolom 1.590-1.780 cm. Bidang scan B dan D adalah tray-tray ganjil memiliki panjang pelemahan sinar gama sama sehingga intensitas keduanya bisa dikatakan sama. Diatas tray #17 dan #15 terdapat eksternal struktur pada bidang scan B sehingga tampak penuruna intensitas. Pada posisi 2.900 cm juga teramati eksistensi pipe distributor seperti pada A,C, dan E. Tray #1 tidak teramati karena akses pengukuran terhalang eksternal structure. Gambar 7. Gambar 7. Scan profile bidang B dan D tray #1 - #19 Wibisono ISSN 0216-3128 279

Bidang scan F, G, H, I dan J berbeda 90 derajat dari A,B,C,D, dan E. pengukura dimulai dari posisi 3.200 cm pada posisi 3.250 cm tampak down pipe struktur, tray #27 sampai #32 teramati pada posisinya akan tetapi diantaranya berdekatan dengan stiffener ring. Tray #29, #30, #31 tampak merupakan gabungan kurva tray dan stiffener ring. Scan profile H cenderung memiliki intensitas rendah. Bidang ini berada tepat pada posisi down comer sehingga sinar gama akan selalu mengenai drain liquid yang jatuh dibawah tray-tray ganjil. Gambar 8. Gambar 9. Scan profile bidang G, H, dan I tray #20 - #27. Gambar 8. Scan profile bidang G, H, dan I tray #27 - #32. Profile bidang scan G,H, dan I pada gambar 9 merupakan lanjutan dari gambar 8 pada posisi diatasnya. Tidak banyak eksternal struktur pada segmen ini sehigga scan profile cukup jelas merepresentasikan densitas dialam tower. Scan profile G dan I sangat berimpit karena memang berada pada geometri yang identik. Sedangkan profile C dibawah tray ganjil #21, #23 dan #25 masih tampak rendah karena menembus liquid yang jatuh dari tray tersebut. Pada area dibawah ketiga tray tersebt juga terdapat stiffener ring #2, #3 dan #4. Bidang scan F dan J pada gambar 10 memiliki geometri yang identik akan tetapi pada posisi ini terdapat eksternal struktur berupa stiffener ring sehingga absorpsi sinar gama berimpitan dengan struktur tray didalam kolom. Berbeda dari tray #28 yang tampak sederhana tray #29, #30, #31 tampak cukup komplek. Gambar 10. Scan profile bidang F dan J tray #27 - #32. Pengukuran pada tray #20 - #26 pada gambar 11. Memperlihatkan profile intensitas tray dan stiffener ring pada bidang scan F dan J. Konstruksi stiffener ring #1, #4 dan #5 relatif berdekatan berturut-turut dengan tray #20, #25 dan #27. Akan tetapi profile posisi tray masih dapat dibedakan ekistensinya dengan stiffener ring. Tray #20 - #26 berada pada posisi sesuai gambar mekaniknya. 280 ISSN 0216-3128 Wibisono

Petrochemical Tbk. yang terus sinergi saling menggunakan teknik nuklir dalam bidang industri proses. Secara khusus kami sampaikan terima kasih kepada Bapak Ir. Zulkifli Lubis dan team kerja atas suksesnya eksperimen ini. Gambar 11. Scan profile bidang F dan J tray #20 - #26 KESIMPULAN Eksperimen pengukuran scan referesi pada konstruksi baru kolom gasoline fractionation dapat disimpulkan sebagai berikut: 1. Eksperimen berhasil mengidentifikasi seluruh tray #1 - #32 pada posisinya masing-masing 2. Level liquid pada saat pengukuran berkisar antara 1.590-1.780 cm. 3. Pada jarak grid scan 150cm tidak ditemukan eksistensi benda asing di dalam kolom. 4. Scan profile menjadi referensi untuk inspeksi pada waktu yang akan datang. UCAPAN TERIMA KASIH Terima kasih kepada managemen Pusat Aplikasi Isotope dan Radiasi serta PT. Chandra Asri DAFTAR PUSTAKA [1] Http://Www.Chandra- Asri.Com/About/Milestones 29 Oct 2017. [2] Ir. Zulkifli Lubis Komunikasi Pribadi [3] A.E. Hills, Practical Guidebook For Radioisotope- Based Technology In Industry, Technical Report, Iaea/Rca/8/078 (2001). [4] Aea-Tecdoc-1142, Emerging New Applications Of Nucleonic Control Systems In Industry [5] M. Khorsandi, S.A.H. Feghi, Gama Ct As Complementary Technique For Structural Inspection Of Tray-Type Distillation Columns, Elsevier, Measurement 78, 2016 [6] S. Sugiharto, On-Line Diagnosing On Trayed Column Of Etylene Plant Using Gama Ray Scanning, Atom Indonesia Vol. 38 No. 3 (2012) 13. [7] G.A. Johansen And P. Jackson, Radioisotope, Gauges For Industrial Process Measurements, John Wiley & Sons Ltd, Chichester, England (2004) [8] U. Parasu Veera, Gama Ray Tomography Design For Measurement Of Hold-Up Profiles In Two- Phase Bubble Columns, Elsevier 251-260, 2001. [9] Ludlum Model 2200 Serial Ratemeter, November 2005. TANYA JAWAB Wibisono ISSN 0216-3128 281

282 ISSN 0216-3128 Wibisono