PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP
|
|
|
- Sukarno Suparman Pranata
- 8 tahun lalu
- Tontonan:
Transkripsi
1 PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP Teguh Pradana 1) 1) Program Studi/Prodi Teknik Informatika, STMIK Yadika, Abstrak: Perkembangan teknologi informasi telah mengalami kemajuan yang sangat pesat, termasuk penggunaannya di sektor pemasaran. Namun pada umumnya digunakan sebatas penyimpanan data yang hanya digunakan untuk pencatatan transaksi dan mengolah data transaksi tersebut untuk pembuatan laporan pembelian atau penjualan perusahaan. Bagi penjualan yang hanya menjual beberapa jenis produk atau toko-toko kecil, laporan seperti itu mungkin cukup bagi pemilik untuk melakukan analisis pada pasar dan mengambil keputusan. Hal ini dapat berpengaruh dalam penjualan suatu jenis produk tertentu, tetapi karena banyaknya data yang harus diolah, informasi tersebut menjadi bias atau bahkan tidak akan ditemukan jika dilakukan secara manual. Oleh karena itu, perusahaan seperti ini perlu menggunakan konsep data mining dengan market basket analysis untuk mengetahui buying habits dari konsumen sehingga dapat membantu pengambilan keputusan. Dengan menggunakan data mart yang ada dapat dijadikan sebagai pendukung untuk diolah dengan menggunakan teknik-teknik yang ada pada data mining. Multi level association rule bisa memberikan aturan asosiasi pada tingkatan yang berbeda, yang menggunakan data mart yang memiliki data multi dimensi, sehingga dapat memberikan informasi pada tingakatan yang berbeda. Keywords: Multilevel Association Rule 1. Pendahuluan Swalayan Asgap, sejak didirikan pada tahun 1997 telah melakukan komputerisasi di bidang penjualannya. Analisis telah dilakukan sejauh ini berdasarkan laporan transaksi setiap bulannya. Besarnya volume data yang perlu diolah, menyebabkan swalayan Asgap mengalami kesulitan dalam memantau asosiasi antara penjualan yang satu dengan yang lain. Terkadang hasil pengolahan data dengan cara sederhana tidak memberikan hasil yang mendukung. Kebijakan akhirnya ditempuh berdasarkan informasi singkat berupa laporan yang didukung dengan intiusi manajer. Keberadaan informasi dapat mempengaruhi segala keputusan dan strategi yang akan diambil oleh manajer. Melihat bahwa diperlukan adanya berbagai aspek yang menjadi pertimbangan dalam pengambilan keputusan, sehingga dapat dilihat atribut seperti waktu, produk sebagai variabel yang berpengaruh pada informasi yang ingin diperoleh dan dengan konsep multi-level untuk pencarian frequent itemset dalam pembentukan association rule. Single level umumnya hanya melihat dari satu konsep level, tidak menawarkan informasi item dari berbagai abstraksi, sedangkan multi-level dapat memberikan informasi dari tingkatan yang berbeda, misalnya berdasarkan katagori barang dan nama barang. Association Rules yang dihasilkan disertai dengan tingkat dukungan 15
2 data berdasarkan history data perusahaan (support dan confidence). Misalkan ketika konsumen membeli produk A, maka swalayan dapat menawarkan pula produk B. Keputusan ini diambil berdasarkan history data transaksi swalayan, terdapat dukungan data dengan confidence 80%, bahwa kebutuhan akan produk B akan meningkat seiring dengan permintaan produk A, maka diharapkan dapat membantu pengambilan keputusan untuk market basket analysis perusahaan. 2. Tinjauan Pustaka a. Market Basket Analysis Market Basket Analysis adalah suatu cara yang digunakan untuk menganalisis data penjualan dari suatu perusahaan. Proses ini menganalisis buyinghabits konsumen dengan menemukan asosiasi antar item-item yang berbeda yang diletakkan konsumen dalam shopping basket (Gregorius S Budhi, 2007). Hasil yang telah didapatkan ini nantinya dapat dimanfaatkan oleh perusahaan retail seperti toko atau swalayan untuk mengembangkan strategi pemasaran dengan melihat item-item mana saja yang sering dibeli secara bersamaan oleh konsumen. Untuk beberapa kasus, pola dari item-item yang dibeli secara bersamaan oleh konsumen mudah ditebak, misalnya susu dibeli secara bersamaan dengan roti, Namun, mungkin saja terdapat suatu pola pembelian item yang tidak terpikirkan sebelumnya, misalnya pembelian minyak goreng dengan deterjen. Mungkin saja pola ini tidak pernah terpikirkan sebelumnya karena minyak goreng dan deterjen tidak ada hubungan sama sekali, baik sebagai barang pelengkap maupun barang pengganti. Hal ini mungkin tidak terpikirkan sebelumnya sehingga tidak dapat diantisipasi jika terjadi sesuatu, seperti kekurangan stok deterjen misalnya. Inilah salah satu manfaat yang dapat diperoleh dari melakukan market basket analysis. Dengan melakukan proses ini secara otomatis seorang manajer tidak perlu mengalami kesulitan untuk menemukan pola item apa saja yang mungkin dibeli secara bersamaan. b. Association rule Association Rule Mining meliputi dua tahap (Ulmer, David, 2002) : 1. Mencari kombinasi yang paling sering terjadi dari suatu itemset. 2. Mendefinisikan Condition dan Result (untuk conditional association rule). Dalam menentukan suatu association rule, terdapat suatu interestingness measure (ukuran kepercayaan) yang didapatkan dari hasil pengolahan data dengan perhitungan tertentu. Umumnya ada dua ukuran, yaitu a. Support, yaitu suatu ukuran yang menunjukkan seberapa besar tingkat dominasi suatu itemset dari keseluruhan transaksi. Ukuran ini menentukan apakah suatu itemset layak untuk dicari confidence-nya (misalnya, dari keseluruhan transaksi yang ada, seberapa besar tingkat dominasi yang menunjukkan bahwa item A dan B dibeli bersamaan). b. Confidence, yaitu suatu ukuran yang menunjukkan hubungan antar dua item secara conditional (misal, seberapa sering item B dibeli jika orang membeli item A). Kedua ukuran ini nantinya berguna dalam menentukan interesting association rules, yaitu untuk dibandingkan dengan batasan (threshold) yang ditentukan oleh user. Batasan tersebut umumnya terdiri dari minimum support dan minimum confidence. c. Algoritma Apriori Apriori adalah suatu algoritma yang sudah sangat dikenal dalam melakukan frequent itemset dengan association rule. Sesuai dengan namanya, algoritma ini menggunakan knowledge mengenai frequent itemset yang telah diketahui sebelumnya, untuk memproses informasi selanjutnya. 16
3 Algoritma inilah yang biasanya dipakai dalam proses data mining untuk market basket analysis. Algoritma apriori menggunakan pendekatan iterative (levelwise search), dimana k-itemset dipakai untuk menyelidiki (k+1)-itemset. Langkahlangkah dari algoritma ini adalah sebagai berikut (Ulmer, David, 2002) : 1. Set k=1 (menunjuk pada itemset ke- 1) 2. Hitung semua k-itemset (itemset yang mempunyai k item) 3. Hitung support dari semua calon itemset-filteritemset tersebut berdasarkan perhitungan minimum support. 4. Gabungkan semua k-sized itemset untuk menghasilkan calon itemset k Set k=k Ulangi langkah 3-5 sampai tidak ada itemset yang lebih besar yang dapat dibentuk. 7. Buat final set dari itemset dengan menciptakan suatu union dari semua k-itemset. d. Algoritma FP-Growth Algoritma FP-Growth merupakan pengembangan dari algoritma apriori, sehingga kekurangan dari algoritma apriori diperbaiki oleh algoritma FP-Growth. Frequent Pattern Growth (FP-Growth) adalah salah satu alternatif algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sekumpulan data [8]. Struktur data yang digunakan untuk mencari frequent itemset dengan algoritma FP- Growth adalah perluasan dari sebuah pohon prefix, yang biasa disebut FP-Tree. e. Data Mart Data mart adalah suatu bagian pada data warehouse yang mendukung pembuatan laporan dan analisa data pada suatu unit, bagian atau operasi pada suatu perusahaan. Dalam beberapa implementasi data warehouse, data mart adalah miniature data warehouse. Data mart sering digunakan untuk memberikan informasi kepada segmen fungsional organisasi. Contoh umum data mart adalah untuk departemen penjualan, departemen persediaan dan pengiriman, departemen keuangan, manajemen tingkat atas, dan seterusnya. Karakterisitik Data mart : Data mart memfokuskan hanya pada kebutuhan-kebutuhan pemakai yang terkait dalam sebuah departemen atau fungsi bisnis. Data mart biasanya tidak mengandung data operasional yang rinci seperti pada data warehouse. Data mart hanya mengandung sedikit informasi dibandingkan dengan data warehouse. Data mart lebih mudah dipahami. Kadang kala sulit untuk membedakan antara datawarehouse dan data mart karena keduanya hampir sama. Namun, jika dikaji lebih jauh ada beberapa perbedaan yang dimiliki keduanya. Datawarehouse merupakan gabungan dari beberapa data mart dan levelnya berada pada perusahaan atau organisasi. Sedangkan data mart merupakan bagian dari datawarehouse dan berada level departemen pada perusahaan atau organisasi tersebut. Data mart menangani sebuah business proses, misalkan penjualan, maka hanya proses penjualan saja yang ditangani pada data mart. Tiga fungsi utama yang perlu dilakukan untuk membuat data siap digunakan pada 17
4 datawarehouse adalah extraction, transformation dan loading (ETL). Ketiga fungsi ini terdapat pada staging area. Pada data staging ini, disediakan tempat dan area dengan beberapa fungsi seperti data cleansing, change, convert, dan menyiapkan data untuk disimpan serta digunakan oleh datawarehouse. f. Multilevel Association Rule Banyak aplikasi data mining asosiasi yang membutuhkan pemrosesan pada multilevel abstraksi. Dibandingkan dengan singlelevel, multi-level dapat memberikan informasi yang lebih spesifik dan lebih fokus karena dapat memberikan informasi dari tingkatan abstraksi yang berbeda [11]. Pada penelitian sebelumnya yang dilakukan oleh Scott Fortin, Ling Liu, Randy Goebel (June 1996) [13]. Untuk mendapatkan multilevel association rule, perlu terlebih dahulu dibentuk suatu concept hierarchy tree dari data - data yang ada, seperti terlihat pada Gambar 1 dan menyusunnya ke dalam sebuah generalized description table, seperti terlihat pada Tabel 1. Selanjutnya data transaksi yang akan di-mining dirubah / ditransformasi menjadi encoded transaction table, dimana item - item yang ada pada sebuah transaksi dikodekan sesuai dengan nilai GID-nya pada generalized description table [11]. Sebagai contoh, lihat Tabel 1. Root Level 1 Produk Lokasi Waktu Level 2 Makanan... Level 3.. Susu Galon Teh Minuman Krian Driyo Jan..Des Gambar 1. Contoh Concept Hierarchy Tree Tabel 1. Contoh Generalized Description Table TID Items T 1 {111, 121, 211, 221} T 2 {111, 211, 222, 323} T 3 {112, 122, 221, 411} T 4 { } T 5 {111, 122, 211, 221, 413} T 6 {211, 323, 524} T 7 {323, 411, 524, 713} 3. Implementasi Sistem Dataset yang akan digunakan dalam studi kasus ini adalah dataset retail yang diambil dari swalayan Asgap. Swalayan Asgap yang berlokasi di Krian berdiri pada tahun 1997 dan yang berlokasi di Driyorejo berdiri tahun Aplikasi penjualan menggunakan bahasa pemrograman Clipper (under DOS). Database yang digunakan terdiri dari master penjualan item barang. Setiap periode baru aplikasi akan mencreate tabel penjualan berdasarkan periode, sehingga tabel akan semakin banyak berdasarkan berjalannya waktu periode. Konsumen yang membeli barang dengan katagori ROKOK dan PASTA cenderung membeli barang dengan katagori KOPI [support : 0.27% confidence : 3.70%] Konsumen yang membeli barang di wilayah DRIYOREJO cenderung membeli barang dengan katagori MIE INSTANT dan KOPI [support : 3.42% confidence : 2.94%] Konsumen yang membeli barang di bulan JANUARI cenderung membeli barang dengan katagori MINUMAN dan SABUN CUCI [support : 3.97% confidence : 0.38%] Konsumen yang membeli barang dengan merk GG SURYA cenderung membeli barang dengan merk ROMA [support : 9.98% confidence : 0.45%] Dan seterusnya 4. Penutup Data mart dan data mining dapat membantu manajemen dalama pengambilan tindakan-tindakan bisnis dengan membekali pengetahuan berupa pola yang berasal dari data-data masa lalu. Dalam penelitian ini diperoleh pengetahuan berupa pola asosiasi 18
5 antara satu produk dengan produk yang lain. Aturan yang dihasilkan harus dievaluasi terlebih dahulu sebelum diaplikasikan. Hasil dari evaluasi memberikan hasil yang memuaskan, di mana aturan asosiasi memberikan manfaat yang lebih besar daripada tidak menggunakan aturan sama sekali. 5. Kesimpulan dan Saran 1. Data mart bisa digunakan untuk menentukan frequent itemset, dan data mart bisa mendukung data mining khususnya multi level association rule, dengan memberikan dimensi data yang berbeda yang dibutuhkan oleh data mining. 2. Multi Level Association Rule bisa menghasilkan kombinasi item dari tingkatan level yang berbeda, seperti produk, waktu, serta wilayah. 3. Dari hasil kombinasi item, yang mempunyai nilai confidence yang besar, bisa dijadikan sebagai pedoman dalam meningkatkan penjualan, misalnya manajemen dapat menginstruksikan kepada tenaga penjual untuk selalu mengingatkan konsumen yang membeli item untuk membeli item yang lain yang mempunyai nilai confidence yang besar terhadap item yang lain. Saran yang bisa diberikan berkaitan dengan penelitian ini untuk pengembangan selanjutnya adalah : - Adanya pengembangan penelitian dengan menggunakan dimensi yang lebih banyak dari penelitian ini (produk, waktu dan wilayah). Multi-level Association Rules from Primitive Level Frequent Patterns Tree. Vol. 3 No. 1, July 2010 (ISSN ). 3. Berlin Chen (2006). Association Rules. 4. Pratima Gautam, Dr. K. R. Pardasani. Algorithm for Efficient Multilevel Association Rule Mining. Vol. 02, No. 05, 2010, Scott Fortin, Ling Liu. An Object- Oriented Approach to Multi-Level Association Rule Mining. Daftar Pustaka 1.Yinbo WAN, Yong LIANG, Liya DING. Mining Association Rules From Primitive Frequent Itemset. Vol. 3 No. 1. June 30, Virendra Kumar Shrivastava, Parveen Kumar, K. R. Pardasani. Discovery of 19
PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP KRIAN
PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP KRIAN Agung Santoso 1, Teguh Pradana 1, dan Olyontang 2 1 Teknik Informatika Universitas Maarif Hasyim Latif Sidoarjo 2 Teknik
BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan
6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan
PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA
PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA Margi Cahyanti 1), Maulana Mujahidin 2), Ericks Rachmat Swedia 3) 1) Sistem Informasi Universitas Gunadarma
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang
DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI
DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki
BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan
BAB II TINJAUAN PUSTAKA 2.1 Decision Support System Turban mendefinisikan Decision Support System sebagai sekumpulan prosedur berbasis model untuk data pemrosesan dan penilaian guna membantu para pengambilan
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database
Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris.
Penerapan Algoritma Apriori dan Algoritma FP-Growth Dalam Menemukan Hubungan Data Nilai Ijazah Matematika dan Bahasa Inggris Dengan Nilai Mata Pelajaran Pemrograman dan Web Programming (Studi Kasus SMK
BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan
Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang
Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Tia Arifatul Maulida Fakultas Ilmu Komputer, Universitas Dian Nuswantoro,
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam periode enam tahun terakhir (tahun 2007 2012), jumlah gerai ritel modern di Indonesia mengalami pertumbuhan rata-rata 17,57% per tahun. Pada tahun 2007, jumlah
2.2 Data Mining. Universitas Sumatera Utara
Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record
PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH
PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A Swalayan USING ASSOCIATION RULE BY FP-GROWTH ALGORITHM Ardi Wijaksono
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Penelitian ini menggunakan beberapa sumber pustaka yang berhubungan dengan kasus yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup
PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN
PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)
Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung
Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung Gregorius Satia Budhi 1, Yulia 2, Budiwati Abadi 3 1 Universitas Kristen Petra Surabaya, [email protected]
Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket
Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia perdagangan di Indonesia, khususnya pada industri grosir dan retail semakin ramai dan menuntut adanya inovasi tinggi. Ritel merupakan mata rantai
BAB II TINJAUAN PUSTAKA
6 BAB II TINJAUAN PUSTAKA Pada kajian literatur ini berisi studi pustaka terhadap buku, jurnal ilmiah, penelitian sebelumnya yang berkaitan dengan topik penelitian. Uraian tinjauan pustaka diarahkan untuk
ANALISIS MARKET BASKET DENGAN ALGORITMA APRIORI (STUDY KASUS TOKO ALIEF)
ANALISIS MARKET BASKET DENGAN ALGORITMA APRIORI (STUDY KASUS TOKO ALIEF) Hernawati STMIK Nusa Mandiri Jl. Kramat Raya No. 18 Rt. 01/Rw. 07 Kwitang, Senen, Jakarta Pusat [email protected] ABSTRAK Dalam
BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,
BAB II LANDASAN TEORI. Anindita Dwi Respita,2015. a. Penelitian ini menjelaskan tentang tujuan : menggunakan metode market basket analysis.
BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Penelitian Terkait 1) Penelitian terdahulu dengan judul Online Shop kecantikan dan kosmetik dengan pemberian saran pembelian produk menggunakan Market Basket
IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART)
IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) Rizka Nurul Arifin Program Studi Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula
BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang
1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data
BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data
BAB IV HASIL DAN PEMBAHASAN A. Pengumpulan Data Sumber data utama yang digunakan dalam penelitian ini berasal dari data transaksi 3 bulan terakhir yaitu bulan Maret, April, Mei tahun 2012 di swalayan XYZ
RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang)
RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) Naufal Farras Hilmy 1, Banni Satria Andoko 2 Program Studi Teknik
Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3)
Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #7: Association Rules Mining (Bagian 1) Gunawan Jurusan Teknik Informatika Link Analysis (Superset) Tujuan: Mencari hubungan antara
ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A
PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A Swalayan USING ASSOCIATION RULE BY FP-GROWTH ALGORITHM Ardi Wijaksono
PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FP-TREE DAN FP-GROWTH PADA DATA TRANSAKSI PENJUALAN OBAT
PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FP-TREE DAN FP-GROWTH PADA DATA TRANSAKSI PENJUALAN OBAT Yuyun Dwi Lestari Program Studi Teknik Informatika, Sekolah Tinggi Teknik Harapan Jl. H. M. Jhoni No.
ANALISA PENERAPAN DATAMINING PADA PENJUALAN PRODUK OLI MESIN SEPEDA MOTOR DENGAN ALGORITMA APRIORI
ANALISA PENERAPAN DATAMINING PADA PENJUALAN PRODUK OLI MESIN SEPEDA MOTOR DENGAN ALGORITMA APRIORI Siti Sundari Program Studi Teknik Informatika, Sekolah Tinggi Teknik Harapan Medan Jalan Hm. Joni No 70
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Ketersediaan data sudah bukan hal yang sulit diperoleh lagi dewasa ini apalagi ditunjang dengan banyaknya kegiatan yang sudah dilakukan secara komputerisasi.
1 BAB I 2 PENDAHULUAN
1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah
Metodologi Algoritma A Priori. Metodologi dasar algoritma a priori analisis asosiasi terbagi menjadi dua tahap :
Metodologi Algoritma A Priori 1 Kusrini, 2 Emha Taufiq Luthfi 1 Jurusan Sistem Informasi, 2 Jurusan Teknik Informatika 1, 2 STMIK AMIKOM Yogykakarta 1,2 Jl. Ringroad Utara Condong Catur Sleman Yogyakarta
Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy
Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy (Studi Kasus di PT. Telkom Cabang Wonogiri ) Moch. Yusuf
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan dan persaingan dalam dunia bisnis perdagangan serta kemajuan teknologi informasi merupakan suatu hal yang saling terkait, dalam ketatnya persaingan pasar
IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS
IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS Fitriyani Fakultas Teknik, Universitas BSI Bandung Jalan Sekolah Internasional No. 1-6, Bandung 40282, Indonesia
METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH
METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH Dessy Chaerunnissa 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,
PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA
PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA Domma Lingga Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja
IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA ECLAT
IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA ECLAT Syafina Dwi Arinda 1, Sulastri 2 1,2 Fakultas Teknologi Informasi, Universitas Stikubank Semarang e-mail: 1 [email protected], 2 [email protected]
PENDAHULUAN TINJAUAN PUSTAKA
Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian
TINJAUAN PUSTAKA Data Mining
25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan
ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)
ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Berbagai penemuan terbaru di dalam pengumpulan dan penyimpanan data telah memungkinkan berbagai organisasi untuk mengumpulkan berbagai data (data pembelian, data nasabah,
1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006
Metode Market Basket Analysis menggunakan Algoritma Pincer Search untuk Sistem Pembantu Pengambilan Keputusan Gregorius S. Budhi, Leo W. Santoso, Edward Susanto Jurusan Teknik Informatika, Fakultas Teknologi
IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan)
IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) Sri Rahayu Siregar ( 0911882) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma
ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE
ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab
UKDW BAB I PENDAHULUAN
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Untuk dapat meningkatkan penjualan, pengambil keputusan / manajer toko harus dapat memperhatikan faktor-faktor yang mempengaruhi secara langsung. Salah satu
APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)
Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita
ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM)
ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) Nurani 1, Hamdan Gani 2 1 [email protected], 2 [email protected]
ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.
ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.X) ANALYSIS AND IMPLEMENTATION OF FP-GROWTH ALGORITHM IN SMART
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan
Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis
Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis ANDREAS HANDOJO, GREGORIUS SATIA BUDHI, HENDRA RUSLY Jurusan Teknik Informatika Universitas
DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT.
DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. PHAPROS SEMARANG Frismadani Anggita Priyana 1, Acun Kardianawati 2 1,2
PENERAPAN ALGORITMA APRIORI DALAM MENENTUKAN STRATEGI PENJUALAN MAKANAN RINGAN (Studi Kasus: Toko Pak Herry Templek - Gadungan)
PENERAPAN ALGORITMA APRIORI DALAM MENENTUKAN STRATEGI PENJUALAN MAKANAN RINGAN (Studi Kasus: Toko Pak Herry Templek - Gadungan) SKRIPSI Diajukan Untuk Memenuhi Sebagai Syarat Guna Memperoleh Gelar Sarjana
ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE
ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab
ANALISIS DATA POLA PEMBELIAN KONSUMEN DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN SUPERMARKET PAMELLA YOGYAKARTA 1.
ANALISIS DATA POLA PEMBELIAN KONSUMEN DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN SUPERMARKET PAMELLA YOGYAKARTA M. Didik R. Wahyudi 1) Fusna Failasufa 2) 1) 2) Teknik Informatika FST UIN Sunan Kalijaga
Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth
Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: [email protected]
SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ
SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ Pahridila Lintang 1),Muhammad Iqbal 2), Ade Pujianto 3) 1), 2, 3) Teknik Informatika STMIK AMIKOM Yogyakarta Jl Ring
oleh: Ibnu Sani Wijaya, S.Kom Dosen Tetap Sekolah Tinggi Ilmu Komputer Dinamika Bangsa
Aplikasi Data Mining dengan Konsep Fuzzy c-covering untuk Analisa Market Basket pada pasar swalayan oleh: Ibnu Sani Wijaya, S.Kom ABSTRAK Dosen Tetap Sekolah Tinggi Ilmu Komputer Dinamika Bangsa Sebagai
PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna
PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi
PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI
PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.
PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan
BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal
ASSOCIATION RULE PADA POINT OF SALE SWALAYAN DENGAN MARKET BASKET ANALYSIS
ASSOCIATION RULE PADA POINT OF SALE SWALAYAN DENGAN MARKET BASKET ANALYSIS Rofi Abul Hasani 1), Indah Soesanti 2), Silmi Fauziati 3) 1)2)3) Program Pascasarjana Jurusan Teknik Elektro dan Teknologi Informasi,
Mining Association Rules dalam Basis Data yang Besar
Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep
Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)
Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar [email protected] http://dx.doi.org/10.22202/jei.2014.v1i1.1439
ASSOCIATION RULES PADA TEXT MINING
Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada
Assocation Rule. Data Mining
Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu (Sensuse dan Gunadi, 2012). Pola-pola
BAB II LANDASAN TEORI
4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference
PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK )
PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK ) SARJON DEFIT Fakultas Ilmu Komputer Universitas Putra Indonesia YPTK E-mail :
BAB I PENDAHULUAN. baik. Maka para pengelola harus mencermati pola-pola pembelian yang dilakukan
BAB I PENDAHULUAN I.1. Latar Belakang Jumlah pasar swalayan yang terus berkembang membuat para pengelolaswalayan juga dituntut untuk menerapkan strategi pemasaran yang lebih baik. Maka para pengelola harus
PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI
PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI Disusun sebagai salah satu syarat menyelesaikan Jenjang Strata I pada Jurusan
ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN
ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN Chintia Oktavia Simbolon (0911456) Mahasiswa Program Studi Teknik Informatika,
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Identifikasi Masalah Masalah Umum
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah 1.1.1 Identifikasi Masalah 1.1.1.1. Masalah Umum Situasi kondisi perekonomian yang ada pada saat ini menunjukkan adanya perkembangan dunia usaha semakin pesat
Lili Tanti. STMIK Potensi Utama, Jl. K.L. Yos Sudarso Km. 6,5 No. 3A Tj. Mulia Medan ABSTRACT
Lili, Penerapan Data Mining Untuk 35 PENERAPAN DATA MINING UNTUK MENENTUKAN JUMLAH MAHASISWA PADA SATU DAERAH DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Lili Tanti Email : [email protected] STMIK
PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI
Prediksi Kebutuhan Penomoran Pada Jaringan Telekomunikasi. (Muztafid Khilmi) PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI Mustafid Khilmi 1) Achmad Affandi 2) 1)
2.1 Penelitian Terkait
BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terkait Penelitian yang dilakukan oleh Dinda Setiawati Devi dengan menggunakan metode Apriori untuk analisa keranjang pasar untuk 100 data transaksi dan 55 jenis
PENERAPAN METODE FUZZY C-COVERING UNTUK ANALISIS POLA PEMBELIAN PADA MINIMARKET
PENERAPAN METODE FUZZY C-COVERING UNTUK ANALISIS POLA PEMBELIAN PADA MINIMARKET Nita Arianty, Oni Soesanto 2, Fatma Indriani 3,3Prodi Ilmu Komputer FMIPA UNLAM 2Prodi Matematika FMIPA UNLAM Jl. A. Yani
Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online
Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Irene Edria Devina / 13515038 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan
BAB 1 PENDAHULUAN Latar Belakang
Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada era globalisasi saat ini, perkembangan teknologi tidak dapat dihindarkan dalam kehidupan manusia. Perkembangan teknologi yang ada, memiliki
BAB I PENDAHULUAN. Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi. masyarakat khususnya di daerah perumahan. Bagi sebagian besar
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi masyarakat khususnya di daerah perumahan. Bagi sebagian besar masyarakat kota, mereka lebih cenderung
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kartika Kosmetik merupakan toko penjualan produk kosmetik yang paling besar didaerah Rancaekek. Produk utama yang dijual di Kartika Kosmetik adalah produk-produk
BAB I PENDAHULUAN. Kemajuan teknologi saat ini membuat samartphone hadir dengan berbagai
BAB I PENDAHULUAN I. 1. Latar Belakang Kemajuan teknologi saat ini membuat samartphone hadir dengan berbagai macam model dan fitur, sehingga masyarakat banyak membeli smartphone yang sesuai dengan keinginan
Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p
Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p 22-28 http://ejournal-s1.undip.ac.id/index.php/joint APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA
ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL
Seminar Nasional Sistem Informasi Indonesia, 2-4 Desember 2013 ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL A.A. Gede Bagus Ariana 1), I Made Dwi Putra Asana 2) 1 STMIK STIKOM
IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS)
IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) Dewi Kartika Pane (0911801) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan
Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%)
ASSOCIATION RULE (ALGORITMA A PRIORI) Algoritma A Priori termasuk jenis aturan asosiasi pada data mining. Selain a priori, yang termasuk pada golongan ini adalah metode generalized rule induction dan algoritma
BAB 2 LANDASAN TEORI. paling sering digunakan dalam dunia pemasaran (Megaputer, 2007). Tujuan dari Market
BAB LANDASAN TEORI. Market Basket Analysis Market Basket Analysis atau MBA, merupakan salah satu tipe analisis data yang paling sering digunakan dalam dunia pemasaran (Megaputer, 7). Tujuan dari Market
BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi
IMPLEMENTASI ALGORITMA APRIORI UNTUK MENGANALISA POLA PEMBELIAN PRODUK PADA DATA TRANSAKSI PENJUALAN
IMPLEMENTASI ALGORITMA APRIORI UNTUK MENGANALISA POLA PEMBELIAN PRODUK PADA DATA TRANSAKSI PENJUALAN 1 Wendi Wirasta, 2 Zaki Prasasti 1 Program Studi Teknik Informatika, STMIK LPKIA Bandung 2 Program Studi
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah Proses yang menggunakan
IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI
IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI Ristianingrum 1, Sulastri 2 1,2 Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Stikubank e-mail: 1 [email protected],
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini, informasi merupakan suatu hal yang memegang peranan yang sangat penting di dalam kehidupan manusia. Di setiap aspek kehidupan manusia, baik dalam bisnis,
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN Pada bab ini berisi tentang latar belakang pembuatan dari aplikasi penentuan rekomendasi pencarian buku perpustakaan menggunakan algoritma fp-growth, rumusan masalah, tujuan, batasan
