Teori 1. A. Fenomena Buckling

Ukuran: px
Mulai penontonan dengan halaman:

Download "Teori 1. A. Fenomena Buckling"

Transkripsi

1 Teori 1. A. Fenomena Buckling Sebagian besar struktur yang memiliki dimensi langsing atau tipis dan mengalami tegangan tekan akan mengalami masalah instabiltas tekuk atau buckling. Buckling merupakan suatu proses dimana suatu struktur tidak mampu mempertahankan bentuk aslinya, sedemikian rupa berubah bentuk dalam rangka menemukan keseimbangan baru. Konsekuensi buckling pada dasarnya adalah masalah geometrik dasar, dimana terjadi lendutan besar sehingga akan mengubah bentuk struktur. Fenomena tekuk atau buckling dapat terjadi pada sebuah kolom, lateral buckling balok, pelat dan cangkang (shell), seperti diperlihatkan pada Gambar 2.6. Gambar 2.1 : Fenomena buckling pada struktur : (a)kolom langsing, (b)lateral buckling balok, (c)pelat tipis, (d)cangkang silindris dibebani aksial sumbu, dan (e)cangkang silindris dibebani tegak lurus sumbu. Perilaku buckling beberapa jenis struktur dapat dilihat dari kurva hubungan bebanperpindahan. Perbedaan perilaku kurva beban-lendutan struktur kolom, pelat dan cangkang dapat diilustrasikan pada Gambar 2.7. Pada pelat, jika mekanisme pasca beban kritis dapat dipenuhi maka peningkatan beban di atas beban kritis dapat dicapai dengan meningkatnya perpindahan. Sedangkan pada cangkang beban maksimum terjadi pada beban kritis, setelah itu terjadi penurunan kekakuan secara signifikan, (Kuleuven, 2005). Analisis buckling merupakan teknik yang digunakan untuk menghitung beban buckling beban kritis pada struktur yang menjadikan kondisi tidak stabil dan ragam buckling (mode shape) karakteristik bentuk yang berhubungan dengan respon struktur yang mengalami buckling (ANSYS R.9.0, 2004). Ada dua teknik analisis buckling untuk memprediksi beban buckling dan ragam struktur buckling, yaitu analisis nonliiear buckling dan analisis eigenvalue linear buckling. Metode analisis instabilitas secara umum ada dua jenis yaitu bifurcation (eigenvalue, linear) buckling dan snap-through (nonlinear) buckling seperti diilustrasikan pada Gambar 2.8, (Lagace, 2002). Pada metode pertama, analisis bifurcation buckling, beban kritis buckling dianalisis pada titik bifurkasi dari idealisasi struktur elastis linier dengan penyelesaian masalah nilai eigen. Meskipun analisis pendekatan dengan nilai eigen ini hasilnya tidak konservatif, akan tetapi karena lebih cepat metode ini dapat digunakan sebagai pendekatan awal. Sedangkan metode kedua, snap-through (nonlinear) buckling, biasanya lebih akurat dengan teknik analisis nonlinier. Pada analisis nonlinier snap-through buckling struktur dianalisis terhadap beban yang meningkat secara gradual tahap demi tahap sampai beban batas.

2 1. B. Definisi Buckling Peristiwa buckling dapat terjadi pada batang langsing yang mendapatkan tekanan aksial. Batang plat tipis adalah batang yang mempunyai perbandingan panjang dan jari-jari girasi penampang yang besar. 1. C. Pengertian Kolom Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang peranan penting dari suatu bangunan, sehingga keruntuhan pada suatu kolom merupakan lokasi kritis yang dapat menyebabkan runtuhnya (collapse) lantai yang bersangkutan dan juga runtuh total (total collapse) seluruh struktur (Sudarmoko, 1996). SK SNI T mendefinisikan kolom adalah komponen struktur bangunan yang tugas utamanya menyangga beban aksial tekan vertikal dengan bagian tinggi yang tidak ditopang paling tidak tiga kali dimensi lateral terkecil. Fungsi kolom adalah sebagai penerus beban seluruh bangunan ke pondasi. Bila diumpamakan, kolom itu seperti rangka tubuh manusia yang memastikan sebuah bangunan berdiri. Kolom termasuk struktur utama untuk meneruskan berat bangunan dan beban lain seperti beban hidup (manusia dan barang-barang), serta beban hembusan angin. Kolom berfungsi sangat penting, agar bangunan tidak mudah roboh. Beban sebuah bangunan dimulai dari atap. Beban atap akan meneruskan beban yang diterimanya ke kolom. Seluruh beban yang diterima kolom didistribusikan ke permukaan tanah di bawahnya. Kesimpulannya, sebuah bangunan akan aman dari kerusakan bila besar dan jenis pondasinya sesuai dengan perhitungan. Namun, kondisi tanah pun harus benar-benar sudah mampu menerima beban dari pondasi. Kolom menerima beban dan meneruskannya ke pondasi, karena itu pondasinya juga harus kuat, terutama untuk konstruksi rumah bertingkat, harus diperiksa kedalaman tanah kerasnya agar bila tanah ambles atau terjadi gempa tidak mudah roboh. Struktur dalam kolom dibuat dari besi dan beton. Keduanya merupakan gabungan antara material yang tahan tarikan dan tekanan. Besi adalah material yang tahan tarikan, sedangkan beton adalah material yang tahan tekanan. Gabungan kedua material ini dalam struktur beton memungkinkan kolom atau bagian struktural lain seperti sloof dan balok bisa menahan gaya tekan dan gaya tarik pada bangunan. Jenis-jenis Kolom Menurut Wang (1986) dan Ferguson (1986) jenis-jenis kolom ada tiga: 1.Kolom ikat (tiecolumn) 2.Kolom spiral (spiralcolumn) 3.Kolom komposi(compositcolumn) Dalam buku struktur beton bertulang (Istimawan dipohusodo, 1994) ada tiga jenis kolom beton bertulang yaitu:

3 1. Kolom menggunakan pengikat sengkang lateral. Kolom ini merupakan kolom brton yang ditulangi dengan batang tulangan pokok memanjang, yang pada jarak spasi tertentu diikat dengan pengikat sengkang ke arah lateral. Tulangan ini berfungsi untuk memegang tulangan pokok memanjang agar tetap kokoh padatempatnya. 2. Kolom menggunakan pengikat spiral. Bentuknya sama dengan yang pertama hanya saja sebagai pengikat tulangan pokok memanjang adalah tulangan spiral yang dililitkan keliling membentuk heliks menerus di sepanjang kolom. Fungsi dari tulangan spiral adalah memberi kemampuan kolom untuk menyerap deformasi cukup besar sebelum runtuh, sehingga mampu mencegah terjadinya kehancuran seluruh struktur sebelum proses redistribusi momen dan tegangan terwujud. 2. Struktur kolom komposit seperti tampak pada gambar 1.(c). Merupakan komponen struktur tekan yang diperkuat pada arah memanjang dengan gelagar baja profil atau pipa, dengan atau tanpa diberi batang tulangan pokok memanjang. Hasil berbagai eksperimen menunjukkan bahwa kolom berpengikat spiral ternyata lebih tangguh daripada yang menggunakan tulangan sengkang, seperti yang terlihat pada diagram di bawah ini. Untuk kolom pada bangunan sederhan bentuk kolom ada dua jenis yaitu kolom utama dan kolom praktis. Yang dimaksud dengan kolom utama adalah kolom yang fungsi utamanya menyanggah beban utama yang berada diatasnya. Untuk rumah tinggal disarankan jarak kolom utama adalah 3.5 m, agar dimensi balok untuk menompang lantai tidak tidak begitu besar, dan apabila jarak antara kolom dibuat lebih dari 3.5 meter, maka struktur bangunan harus dihitung. Sedangkan dimensi kolom utama untuk bangunan rumah tinggal lantai 2 biasanya dipakai ukuran 20/20, dengan tulangan pokok 8d12mm, dan begel d 8-10cm ( 8 d 12 maksudnya jumlah besi beton diameter 12mm 8 buah, 8 10 cm maksudnya begel diameter 8 dengan jarak 10 cm). Adalah kolom yang berpungsi membantu kolom utama dan juga sebagai pengikat dinding agar dinding stabil, jarak kolom maksimum 3,5 meter, atau pada pertemuan pasangan bata, (sudut-sudut). Dimensi kolom praktis 15/15 dengan tulangan beton 4 d 10 begel d Letak kolom dalam konstruksi. Kolom portal harus dibuat terus menerus dari lantai bawah sampai lantai atas, artinya letak kolom-kolom portal tidak boleh digeser pada tiap lantai, karena hal ini akan menghilangkan sifat kekakuan dari struktur rangka portalnya. Jadi harus dihindarkan denah kolom portal yang tidak sama untuk tiap-tiap lapis lantai. Ukuran kolom makin ke atas boleh makin kecil, sesuai dengan beban bangunan yang didukungnya makin ke atas juga makin kecil. Perubahan dimensi kolom harus dilakukan pada lapis lantai, agar pada suatu lajur kolom mempunyai kekakuan yang sama. Prinsip penerusan gaya pada kolom pondasi adalah balok portal merangkai kolom-kolom menjadi satu kesatuan. Balok menerima seluruh beban dari plat lantai dan meneruskan ke kolom-kolom pendukung. Hubungan balok dan kolom adalah jepit-jepit, yaitu suatu sistem dukungan yang dapat menahan momen, gaya vertikal dan gaya horisontal. Untuk menambah kekakuan balok, di bagian pangkal pada pertemuan dengan kolom, boleh ditambah tebalnya.

4 1. D. Plane Truss System (Sistem Rangka Batang 2 Dimensi) Struktur terbentuk dari elemen-elemen batang lurus yang dirangkai dalam bidang datar, dengan sambungan antar ujung-ujung batang diasumsikan sendi sempurna. Beban luar yang bekerja harus berada di titik-titik buhul (titik sambungan) dengan arah sembarang namun harus sebidang dengan bidang struktur tersebut. Posisi tumpuan, yang dapat berupa sendi atau rol, juga harus berada pada titik-titik buhul. Berdasarkan pertimbangan stabilitas struktur, bentuk dasar dari rangkaian batangbatang tersebut umumnya adalah berupa bentuk segitiga. Apabila semua persyaratan tersebut dipenuhi maka dapat dijamin bahwa semua elemen-elemen pembentuk sistem rangka batang 2-dimensi (plane truss system) tersebut hanya akan mengalami gaya aksial desak atau tarik. Berbagai contoh struktur di lapangan yang dapat diidealisasikan menjadi sistem rangka batang 2-dimensi antara lain adalah: - Struktur kuda-kuda penyangga atap bangunan - Struktur jembatan rangka. 1. E. Penurunan Rumus Euler Rumus yang digunakan untuk beban kritis P cr dapat dibuktikan dengan persamaan diferensial kurva relatif. Analisis beban kritis menurut Euler adalah : Jenis-jenis tumpuan yang digunakan dalam pengujian buckling adalah : Kondisi Jepit Jepit Kondisi Engsel Jepit Kondisi Engsel Engsel Solusi umum untuk persamaan Euler di atas adalah : Boundary condition (syarat batas) untuk kasus di atas adalah: u/x = 0, maka y = 0 x = L, maka y = 0, dengan memasukkan nilai BC diperoleh : 0 = C 1 sin 0 + C 2 cos 0 Dengan memasukkan nilai syarat batas kedua diperoleh dengan nilai C 2 = 0 adalah :

5 Persamaan di atas benar jika C 1 0 atau dan arc sin = 0 (n = 0,1,2,3, ) L (P / El) 1/2 = pn Maka : (P / El) 1/2 = pn / L Untuk tumpuan Engsel Engsel dimana L e = L, diperoleh : Untuk tumpuan Engsel Jepit dimana L e = 0,7L, diperoleh : Untuk tumpuan Jepit Jepit dimana L e = 0,5L, diperoleh : 1. F. Jenis-Jenis Tumpuan 1. Tumpuan Engsel Jepit Dari gambar diatas terlihat bahwa pada ujung yang ditumpu dengan tumpuan jepit bekerja 3 buah gaya sehingga daerah defleksi lebih mendekati tumpuan engsel yang cuma mendapat 1 gaya. 1. Tumpuan Engsel Engsel Pada tumpuan engsel engsel kedua ujung spesimen ditumpu oleh engsel. Pada tumpuan ini spesimen / material sangat mudah patah. Karena tegangan kritisnya kecil. Hal ini disebabkan karena pada tumpuan ini, yaitu pada ujung bagian spesimen / pada tumpuan hanya bekerja gaya yang sejajar dengan sumbu batang dan gaya horisontal. 1. Tumpuan Jepit Jepit Pada tumpuan ini spesimen memiliki tegangan kritis yang besar (kemampuan terima beban yang besar) dibandingkan dengan tumpuan engsel engsel / engsel jepit. Karena pada kedua ujung spesimen bekerja tiga gaya yaitu gaya yang sejajar dengan sumbu batang, gaya horisontal, dan momen gaya. 1. G. Diagram Tegangan Regangan Keterangan : 1. Titik proporsional (p), daerah batas berlakunya hokum Hooke dimana t dan e berbanding lurus. 2. Titik elastisitas (E), kondisi dimana dihilangkan maka spesimen kembali ke bentuk semula 3. Titik yelding (y), pada keadaan ini terjadi perpanjangan dan pengecilan titik. 4. Titik ultimate (u), titik dimana tegangan maksimum dapat diterima.

6 5. Titik break (B), titik dimana spesimen patah. 1. H. Modulus Elastisitas Modulus elastisitas adalah penjabaran matematis dari suatu kecenderungan objek atau bentuk untuk berubah bentuk ketika diberikan suatu gaya. Modulus elastisitas dari suatu objek ditentukan sebagai puncak dari kurva tegangan-regangan-nya: Dimana: Lamda = modulus elastisitas tegangan = gaya yang menyebabkan perubahan dibagi dengan luas permukaan dimana gaya itu diberikan regangan = rasio perubahan yang disebabkan oleh tegangan pada bentuk asli dari suatu objek. Karena tegangan diukur dalam pascal dan regangan adalah perbandingan tanpa satuan, satuan untuk lambda adalah pascal. definisi alternatif adalah modulus elastisitas adalah regangan yang dibutuhkan untuk memperpanjang material dua kalinya. Hal ini tidaklah selalu benar untuk seluruh material karena terkadang nilainya jauh lebih besar daripada tegangan batas (yield stress) dari suatu material atau suatu titik dimana perpanjangan menjadi tidak lagi linear (seimbang). Konsep dari modulus elastisitas yang konstan tergantung pada perkiraan bahwa kurva tegangan regangan selalu lurus. Pada kenyataannya, kurva tersebut hanya lurus hingga batas tertentu. Karena benda yang ditarik atau ditekan secara berlebihan akhirnya akan gagal (patah), dan benda pada tekanan tinggi dapat menanggung proses yang akan mempengaruhi kurva tegangan regangan, misalnya reaksi kimia atau penekukan (buckling). Ada tiga modulus elastisitas primer yang masing-masing menjelaskan bentuk deformasi yang berbeda, seperti di bawah ini : Modulus Young (E) menjelaskan elastisitas kekakuan, atau kecenderungan suatu benda untuk berubah sepanjang suatu sumbu ketika gaya yang berlawanan diberikan sepanjang sumbu tersebut; hal ini dijelaskan sebagai perbandingan tegangan tekan terhadap tegangan tarik. karena modulus elastisitas yang lain dapat dijelaskan dari ini, Modulus Young sering dianggap sebagai modulus elastisitas. modulus Young adalah persamaan matematika dari prinsip pengecualian Pauli. Modulus geser atau modulus kekakuan (G) menjelaskan kecenderungan suatu objek untuk bergeser (perubahan bentuk pada volume konstan) ketika bergerak pada gaya yang berlawanan; hal ini ditentukan sebagai tegangan geser dan regangan geser. modulus geser adalah bagian dari perubahan viskositas. Modulus bulk (kepadatan/ K) menunjukkan elastisitas secara volumetric, atau kecenderungan suatu volume objek untuk berubah akibat suatu penekanan; Hal ini didefinisikan sebagai tegangan volumetrik, dan sebagai kebalikan dari kemampuan untuk ditekan. modulus bulk adalah penurunan dari modulus Young secara tiga dimensi.

7 1. I. Hukum Newton I, II, III dan Hukum Hooke Hukum Newton I Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan gaya (F) yang bekerja pada benda itu, jadi: SF = 0 a = 0 karena v = 0 (diam), atau v = konstan (GLB) Hukum Newton II a = F/m SF = ma S F = jumlah gaya-gaya pada benda m a = massa benda = percepatan benda Rumus ini sangat penting karena pada hampir sema persoalan gerak {mendatar/ translasi (GLBB) dan melingkar (GMB/GMBB)}yang berhubungan dengan percepatan dan massa benda dapat diselesaikan dengan rumus tersebut. Hukum Newton III Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut men gerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan. F aksi N dan T1 T2 dan W = F reaksi = aksi reaksi (bekerja pada dua benda) = bukan aksi reaksi (bekerja pada tiga benda) Hukum Hooke Hukum ooke adalah hukum atau ketentuan mengenai gaya dalam bidang ilmu fisika yang terjadi karena sifat elastisitas dari sebuah pir atau pegas. Besarnya gaya Hooke

8 ini secara proporsional akan berbanding lurus dengan jarak pergerakan pegas dari posisi normalnya, atau lewat rumus matematis dapat digambarkan sebagai berikut: di mana : F = gaya (dalam unit newton) k = konstante pegas (dalam newton per meter) x = jarak pergerakan pegas dari posisi normalnya (dalam unit meter). 1. J. Karakteristik Baja & Kuningan Karakteristik Baja 1. Baja merupakan logam terkuat dimana baja terdiri atas Fe + C. Bahan terbagi atas : Baja karbon rendah = C < 0,2 % Baja karbon sedang = 0,2 % < C > 0,5 % Baja karbon tinggi = 0,5 % < C > 1,2 % Semakin tinggi kadar karbon pada baja maka akan semakin keras baja tersebut, tetapi getas. 1. Daya hantar panas dan listrik tinggi karena sifatnya yang disebabkan oleh beberapa elektron yang terdislokasi dan dapat meninggalkan logam dan induknya. 2. Sifat kedap cahaya dan daya pantul disebabkan oleh tanggap elektron yang terdislokasi terhadap getaran elektron magnetik frekuensi tinggi. 3. Pada suhu diatas setengah cair, pertumbuhan butir lebih cepat pada suhu rendah. Batas butir mengalami deformasi oleh karena itu baja berbutir halus lebih kuat dari bahan berbutir besar. 4. Pada baja dalam suhu tinggi besi berubah struktur dan karbon didalamnya menjadi rapuh. Karakteristik Kuningan Paduan kuningan yaitu antara tembaga dan seng. Biasanya kandungan seng sampai kira-kira 40%. Dalam ketahanan terhadap korosi dan aus, kurang baik dibandingkan dengan bronze. Tetapi lebih murah dan mampu cor lebih baik dari bronze. Kuningan kekuatan tinggi merupakan kuningan yang khusus ditambah mangan, nikel, aluminium, timah, dan sebagainya untuk memperbaiki sifat-sifat mekaniknya. 1. K. Aplikasi Buckling Perancangan Pipa Bawah Laut

9 Metode pengiriman minyak dan gas bumi lepas pantai dapat dengan menggunakan kapal tanker dan pipa bawah laut. Metode pengiriman dengan menggunakan pipa dianggap lebih handal dan murah. Keandalan metode ini salah satunya karena tidak terpengaruh cuaca, baik terjadi badai ataupun tidak, pengiriman minyak dan gas tidak akan mengalami gangguan. Kelebihan lain adalah biaya operasional yang murah, investasi mahal hanya pada saat penginstalan pertama dan bersifat jangka panjang. Apabila dengan menggunakan tanker maka biaya sewa akan sangat mahal, belum lagi tidak beroperasinya kapal pada saat badai juga akan menyebabkan kenaikan biaya yang signifikan. Oleh karena itu, penggunaan pipa merupakan pilihan yang tepat dan efisien untuk investasi jangka panjang. Perencanaan dalam perancangan pipa bawah laut harus matang agar pada saat beroperasi nanti tidak akan terjadi kegagalan akibat kesalahan perancangan. Kesalahan dalam perancangan akan mengakibatkan kerugian yang besar baik finansial maupun material. Secara umum alur dalam perancangan pipa bawah laut dapat dilihat pada flowchart berikut ini: 1. Cek ketebalan pipa Pada proses desain ketebalan pipa hawah laut pipa yang digunakan harus memenuhi syarat kearnanan, dengan tidak mengabaikan pertimbangan ekonomi dalarn pemilihan material pipa. Pipa yang berada pada dasar laut akan mengalami gaya-gaya yang bekerja baik dari dalam pipa maupun gaya lingkungan dan luar pipa. 1. Cek buckling Pipa bawah laut akan mengalami tekanan hidrostatis. Semakin dalam pipa berada maka tekanan hidrostatis yang diterima pipa akan semakin besar. Kegagalan/keruntuhan pipa bawah laut dapat disebabkan oleh banyak hal, diantaranya adalah perbandingan antara diameter dan ketebalan pipa (D/t), keadaan stress strain pipa, tekanan hidrostatik serta momen bending yang terjadi pada pipa 1. Analisis Span Pipa bawah laut yang terkena beban hidrodinamis suatu ketika akan mengalami kelelahan, karena akibatkan beban tersebut yang bersifat siklis. Kelelahan pada struktur akan memicu terjadinya kegagalan. Tujuan dari analisa span dinamis adalah untuk menentukan panjang span maksimum yang diijinkan agar pipa terhindar dari respon-respon alami yang bisa menyebabkan kelelahan. 1. Stablitas pipa bawah laut Pada saat proses desain pipeline lepas pantai dilakukan, hal penting yang harus diperhatikan adalah kestabilan pipa pada saat berada di dasar laut selama masa operasi atau sebelum pipa tersebut mendapatkan kestabilan lainnya (trenching, burial, self burial). Ada beberapa cara untuk menstabilkan pipa di dasar laut, diantaranya adalah dengan mengurangi gaya-gaya yang bekerja pada pipa seperti dengan melakukan penguburan pipa (burial), penggalian parit atau saluran untuk pipa (trenching).

10 1. Metode instalasi Guo et al (2005) mengatakan bahwa metode instalasi pipa bawah laut yang umum antara lain: #S-lay (Shallow to Deep) Biasa digunakan untuk instalasi pipa pada laut dangkal menuju dalam. Dengan kedalaman laut kurang dari 500 ft (Guo et al, 2005). Umumnya digunakan instalasi pipa pada kedalaman laut menengah yaitu 500 ft 1000 ft (Guo et al, 2005). #Reel lay (Intermediate to Deep) Umumnya digunakan instalasi pipa pada kedalaman laut menengah yaitu 500 ft 1000 ft (Guo et al, 2005). 1. L. Momen Inersia Momen inersia (Satuan SI : kg m2) adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Besaran ini adalah analog rotasi daripada massa. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain.

BAB VI KONSTRUKSI KOLOM

BAB VI KONSTRUKSI KOLOM BAB VI KONSTRUKSI KOLOM 6.1. KOLOM SEBAGAI BAHAN KONSTRUKSI Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang

Lebih terperinci

BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) pada suatu kolom merupakan lokasi kritis yang dapat menyebabkan

BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) pada suatu kolom merupakan lokasi kritis yang dapat menyebabkan BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) 7.1 Uraian umum Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang peranan

Lebih terperinci

BAB I PENDAHULUAN. tipis dan mengalami tegangan tekan akan mengalami masalah. instabiltas tekuk atau buckling. Buckling merupakan suatu proses

BAB I PENDAHULUAN. tipis dan mengalami tegangan tekan akan mengalami masalah. instabiltas tekuk atau buckling. Buckling merupakan suatu proses BAB I PENDAHULUAN 1.1. Latar Belakang Sebagian besar struktur yang memiliki dimensi langsing atau tipis dan mengalami tegangan tekan akan mengalami masalah instabiltas tekuk atau buckling. Buckling merupakan

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15 Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk

Lebih terperinci

BAB I PENDAHULUAN. membutuhkan penanganan yang serius, terutama pada konstruksi yang terbuat

BAB I PENDAHULUAN. membutuhkan penanganan yang serius, terutama pada konstruksi yang terbuat BAB I PENDAHULUAN 1.1. Umum dan Latar Belakang Pembangunan terhadap gedung gedung bertingkat pada umumnya sangat membutuhkan penanganan yang serius, terutama pada konstruksi yang terbuat dari beton, baja

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pembebanan Struktur bangunan yang aman adalah struktur bangunan yang mampu menahan beban-beban yang bekerja pada bangunan. Dalam suatu perancangan struktur harus memperhitungkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini BAB I PENDAHULUAN I.1 Latar Belakang Pada saat ini kolom bangunan tinggi banyak menggunakan material beton bertulang. Seiring dengan berkembangnya teknologi bahan konstruksi di beberapa negara, kini sudah

Lebih terperinci

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perancangan struktur suatu bangunan gedung didasarkan pada besarnya kemampuan gedung menahan beban-beban yang bekerja padanya. Disamping itu juga harus memenuhi

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMK Negeri 6 Bandung Mata Pelajaran : Gambar Konstruksi Beton Program Keahlian : Teknik Gambar Bangunan Kelas / Semester : XI / 3 (Eksperimen) Kompetensi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2] BAB II TEORI DASAR 2.1. Metode Elemen Hingga Analisa kekuatan sebuah struktur telah menjadi bagian penting dalam alur kerja pengembangan desain dan produk. Pada awalnya analisa kekuatan dilakukan dengan

Lebih terperinci

BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) beban dari balok. Kolom merupakan suatu elemen struktur tekan yang

BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) beban dari balok. Kolom merupakan suatu elemen struktur tekan yang BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) 7.1 Uraian umum Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang peranan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan BAB I PENDAHULUAN 1.1 Umum Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan oleh kebutuhan ruang yang selalu meningkat dari tahun ke tahun. Semakin tinggi suatu bangunan, aksi gaya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul Sistem Struktur 2ton y Sambungan batang 5ton 5ton 5ton x Contoh Detail Sambungan Batang Pelat Buhul a Baut Penyambung Profil L.70.70.7 a Potongan a-a DESAIN BATANG TARIK Dari hasil analisis struktur, elemen-elemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB I PENDAHULUAN. runtuh total (total collapse) seluruh struktur (Sudarmoko,1996).

BAB I PENDAHULUAN. runtuh total (total collapse) seluruh struktur (Sudarmoko,1996). BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini, banyak kita temukan fenomena konstruksi bangunan yang dinyatakan layak huni namun pada kenyataannya bangunan tersebut mengalami kegagalan dalam pelaksanaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Pembebanan merupakan faktor penting dalam merancang stuktur bangunan. Oleh karena itu, dalam merancang perlu diperhatikan beban-bean yang bekerja pada struktur agar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gempa di Indonesia Tahun 2004, tercatat tiga gempa besar di Indonesia yaitu di kepulauan Alor (11 Nov. skala 7.5), gempa Papua (26 Nov., skala 7.1) dan gempa Aceh (26 Des.,skala

Lebih terperinci

Meliputi pertimbangan secara detail terhadap alternatif struktur yang

Meliputi pertimbangan secara detail terhadap alternatif struktur yang BAB II TINJAUAN PIISTAKA 2.1 Pendahuluan Pekerjaan struktur secara umum dapat dilaksanakan melalui 3 (tiga) tahap (Senol,Utkii,Charles,John Benson, 1977), yaitu : 2.1.1 Tahap perencanaan (Planningphase)

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perencanaan merupakan langkah awal dari suatu pembangunan fisik berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman oleh perencana agar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Beban Struktur Pada suatu struktur bangunan, terdapat beberapa jenis beban yang bekerja. Struktur bangunan yang direncanakan harus mampu menahan beban-beban yang bekerja pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan konstruksi bangunan menggunakan konstruksi baja sebagai struktur utama. Banyaknya penggunaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Suatu struktur bangunan yang direncanakan harus sesuai dengan peraturan - peraturan yang berlaku, sehingga mendapatkan suatu struktur bangunan yang aman secara kontruksi.

Lebih terperinci

BAB 1 PENDAHULUAN...1

BAB 1 PENDAHULUAN...1 DAFTAR ISI HALAMAN JUDUL...i HALAMAN PENGESAHAN...ii HALAMAN PERNYATAAN...iii KATA PENGANTAR...iv DAFTAR ISI...v DAFTAR TABEL...ix DAFTAR GAMBAR...xi DAFTAR PERSAMAAN...xiv INTISARI...xv ABSTRACT...xvi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

Pengenalan Kolom. Struktur Beton II

Pengenalan Kolom. Struktur Beton II Bahan Kuliah Ke-I Pengenalan Kolom Struktur Beton II Jurusan Teknik Sipil Fakultas Teknik Universitas Malikussaleh September 2008 Materi Kuliah Definisi Pembuatan Kolom Apa yang dimaksud dengan Kolom?

Lebih terperinci

V. BATANG TEKAN. I. Gaya tekan kritis. column), maka serat-serat kayu pada penampang kolom akan gagal

V. BATANG TEKAN. I. Gaya tekan kritis. column), maka serat-serat kayu pada penampang kolom akan gagal V. BATANG TEKAN Elemen struktur dengan fungsi utama mendukung beban tekan sering dijumpai pada struktur truss atau frame. Pada struktur frame, elemen struktur ini lebih dikenal dengan nama kolom. Perencanaan

Lebih terperinci

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax: Kuliah ke-6 Bar (Batang) digunakan pada struktur rangka atap, struktur jembatan rangka, struktur jembatan gantung, pengikat gording dn pengantung balkon. Pemanfaatan batang juga dikembangkan untuk sistem

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang

2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang BAB II TINJAUAN PUSTAKA 2.1. Pendahuiuan Menurut Nawi, (1990) kolom adalah batang tekan vertikal dari rangka (frame) struktur yang memikul beban dari balok, kolom meneruskan beban-beban dari elevasi atas

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Dalam perencanaan bangunan tinggi, struktur gedung harus direncanakan agar kuat menahan semua beban yang bekerja padanya. Berdasarkan Arah kerja

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tengah sekitar 0,005 mm 0,01 mm. Serat ini dapat dipintal menjadi benang atau

BAB II TINJAUAN PUSTAKA. tengah sekitar 0,005 mm 0,01 mm. Serat ini dapat dipintal menjadi benang atau BAB II TINJAUAN PUSTAKA 2.1. Fiber Glass Fiber glass adalah kaca cair yang ditarik menjadi serat tipis dengan garis tengah sekitar 0,005 mm 0,01 mm. Serat ini dapat dipintal menjadi benang atau ditenun

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

ANALISA KOLOM STRUKTUR PADA PEKERJAAN PEMBANGUNAN LANTAI 1 KAMPUS II SD MUHAMMADIYAH METRO PUSAT KOTA METRO

ANALISA KOLOM STRUKTUR PADA PEKERJAAN PEMBANGUNAN LANTAI 1 KAMPUS II SD MUHAMMADIYAH METRO PUSAT KOTA METRO ANALISA KOLOM STRUKTUR PADA PEKERJAAN PEMBANGUNAN LANTAI 1 KAMPUS II SD MUHAMMADIYAH METRO PUSAT KOTA METRO Agus Surandono 1),Desmawan 2) Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Metro

Lebih terperinci

struktur. Pertimbangan utama adalah fungsi dari struktur itu nantinya.

struktur. Pertimbangan utama adalah fungsi dari struktur itu nantinya. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pekerjaan struktur secara umum dilaksanakan melalui 3 (tiga) tahap {senol utku, Charles, John Benson, 1977). yaitu : 1. Tahap Perencanaan (Planning phase) Meliputi

Lebih terperinci

VII ELASTISITAS Benda Elastis dan Benda Plastis

VII ELASTISITAS Benda Elastis dan Benda Plastis VII EASTISITAS Kompetensi yang diharapkan dicapai oleh mahasiswa setelah mempelajari bab elastisitas adalah kemampuan memahami, menganalisis dan mengaplikasikan konsep-konsep elastisitas pada kehidupan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB 4 PENGUJIAN LABORATORIUM

BAB 4 PENGUJIAN LABORATORIUM BAB 4 PENGUJIAN LABORATORIUM Uji laboratorium dilakukan untuk mengetahui kekuatan dan perilaku struktur bambu akibat beban rencana. Pengujian menjadi penting karena bambu merupakan material yang tergolong

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan BAB 1 PENDAHULUAN 1.1. Latar Belakang Dengan semakin pesatnya perkembangan dunia teknik sipil di Indonesia saat ini menuntut terciptanya sumber daya manusia yang dapat mendukung dalam bidang tersebut.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki daerah dengan tingkat kerawanan gempa yang tinggi. Hal ini disebabkan karena wilayah kepulauan Indonesia berada di antara

Lebih terperinci

Pengertian Kolom, Balok, dan Dinding untuk Bangunan Berlantai 2 Atau Lebih

Pengertian Kolom, Balok, dan Dinding untuk Bangunan Berlantai 2 Atau Lebih Pengertian Kolom, Balok, dan Dinding untuk Bangunan Berlantai 2 Atau Lebih A. KOLOM I. Pendahuluan Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan

Lebih terperinci

A. Struktur Balok. a. Tunjangan lateral dari balok

A. Struktur Balok. a. Tunjangan lateral dari balok A. Struktur Balok 1. Balok Konstruksi Baja Batang lentur didefinisikan sebagai batang struktur yang menahan baban transversal atau beban yang tegak lurus sumbu batang. Batang lentur pada struktur yang

Lebih terperinci

BAB I KOLOM BAJA, BALOK BAJA DAN PLAT LANTAI

BAB I KOLOM BAJA, BALOK BAJA DAN PLAT LANTAI BAB I KOLOM BAJA, BALOK BAJA DAN PLAT LANTAI 1.1 Pengertian Kolom dan Balok Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus menerus mengalami peningkatan, kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA

ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA Andina Prima Putri Jurusan Teknik Sipil, Fakultas Teknik, Universitas 17 Agustus 1945 andina.putri@uta45jakarta.ac.id Cantya

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

STRUKTUR CANGKANG I. PENDAHULULUAN

STRUKTUR CANGKANG I. PENDAHULULUAN STRUKTUR CANGKANG I. PENDAHULULUAN Cangkang adalah bentuk struktural berdimensi tiga yang kaku dan tipis serta yang mempunyai permukaan lengkung. Permukaan cangkang dapat mempunyai bentuk sembarang. Bentuk

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. Dinamika Page 1/11 Gaya Termasuk Vektor DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah salah satu bahan konstruksi yang paling banyak digunakan. Sifat-sifatnya yang penting dalam penggunaan konstruksi adalah kekuatannya yang tinggi dibandingkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komponen struktur yang harus diperhatikan. penggunaan suatu gedung, dan ke dalamnya termasuk beban-beban pada lantai

BAB II TINJAUAN PUSTAKA. komponen struktur yang harus diperhatikan. penggunaan suatu gedung, dan ke dalamnya termasuk beban-beban pada lantai BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Perencanaan suatu struktur bangunan harus mengikuti peraturan-peraturan pembebanan yang berlaku. Hal ini dimaksudkan supaya mendapatkan struktur bangunan

Lebih terperinci

4. PERILAKU TEKUK BAMBU TALI Pendahuluan

4. PERILAKU TEKUK BAMBU TALI Pendahuluan 4. PERILAKU TEKUK BAMBU TALI 4.1. Pendahuluan Dalam bidang konstruksi secara garis besar ada dua jenis konstruksi rangka, yaitu konstruksi portal (frame) dan konstruksi rangka batang (truss). Pada konstruksi

Lebih terperinci

KOLOM (ANALISA KOLOM LANGSING) Winda Tri W, ST,MT

KOLOM (ANALISA KOLOM LANGSING) Winda Tri W, ST,MT KOLOM (ANALISA KOLOM LANGSING) Winda Tri W, ST,MT Kolom Pendek : kolom dimana beban ultimate tidak direduksi oleh deformasi lentur karena eksentrisitas tambahan Δ diabaikan atau terjadi jauh dari penampang

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Semakin berkembangnya teknologi dan ilmu pengetahuan dewasa ini, juga membuat semakin berkembangnya berbagai macam teknik dalam pembangunan infrastruktur, baik itu

Lebih terperinci

STRUKTUR DAN KONSTRUKSI BANGUNAN IV

STRUKTUR DAN KONSTRUKSI BANGUNAN IV STRUKTUR DAN KONSTRUKSI BANGUNAN IV STRUKTUR PLAT LIPAT AZRATIH HAIRUN FRILYA YOLANDA EFRIDA UMBU NDAKULARAK AGRIAN RIZKY RINTO HARI MOHAMMAD GIFARI A. PENGERTIAN STRUKTUR PLAT LIPAT Pelat adalah struktur

Lebih terperinci

ELEMEN-ELEMEN STRUKTUR BANGUNAN

ELEMEN-ELEMEN STRUKTUR BANGUNAN ELEMEN-ELEMEN BANGUNAN Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan di atas tanah. Fungsi struktur dapat disimpulkan

Lebih terperinci

Makalah Kolom Beton Bertulang

Makalah Kolom Beton Bertulang Makalah Kolom Beton Bertulang I. Pendahuluan Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang peranan penting

Lebih terperinci

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan INTISARI Konstruksi rangka batang adalah konstruksi yang hanya menerima gaya tekan dan gaya tarik. Bentuk

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

KONSEP DAN METODE PERENCANAAN

KONSEP DAN METODE PERENCANAAN 24 2 KONSEP DAN METODE PERENCANAAN A. Perkembangan Metode Perencanaan Beton Bertulang Beberapa kajian awal yang dilakukan pada perilaku elemen struktur beton bertulang telah mengacu pada teori kekuatan

Lebih terperinci

PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU

PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU Ristinah S., Retno Anggraini, Wawan Satryawan Jurusan Teknik Sipil, Fakultas Teknik, Universitas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Dr. AZ Department of Civil Engineering Brawijaya University Pendahuluan JEMBATAN GELAGAR BAJA BIASA Untuk bentang sampai dengan

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Perencanaan suatu struktur bangunan gedung didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Pengertian

Lebih terperinci

Pertemuan I,II,III I. Tegangan dan Regangan

Pertemuan I,II,III I. Tegangan dan Regangan Pertemuan I,II,III I. Tegangan dan Regangan I.1 Tegangan dan Regangan Normal 1. Tegangan Normal Konsep paling dasar dalam mekanika bahan adalah tegangan dan regangan. Konsep ini dapat diilustrasikan dalam

Lebih terperinci

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi BAB I PENDAHUUAN I. 1 Umum Baja adalah salah satu bahan kontruksi yang paling penting, sifat-sifatnya yang terutama dalam penggunaan konstruksi adalah kekuatannya yang tinggi dan sifat yang keliatannya.

Lebih terperinci

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir Tugas Akhir PERENCANAAN JEMBATAN BRANTAS KEDIRI DENGAN MENGGUNAKAN SISTEM BUSUR BAJA Nama : Mohammad Zahid Alim Al Hasyimi NRP : 3109100096 Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan BAB II TINJAUAN PUSTAKA 2.1 Umum Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan suatu kombinasi antara beton dan baja tulangan. Beton bertulang merupakan material yang kuat

Lebih terperinci

Gambar 2.1 Rangka dengan Dinding Pengisi

Gambar 2.1 Rangka dengan Dinding Pengisi BAB II TINJAUAN PUSTAKA 2.1. Dinding Pengisi 2.1.1 Definisi Dinding pengisi yang umumnya difungsikan sebagai penyekat, dinding eksterior, dan dinding yang terdapat pada sekeliling tangga dan elevator secara

Lebih terperinci