BAB VI RANGKAIAN ARITMATIKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB VI RANGKAIAN ARITMATIKA"

Transkripsi

1 BAB VI RANGKAIAN ARITMATIKA 6.1 Pendahuluan Pada saat ini banyak dihasilkan mesin-mesin berteknologi tinggi seperti komputer atau kalkulator yang mampu melakukan fungsi operasi aritmatik yang cukup kompleks (misalnya penjumlahan, pengurangan, perkalian, pembagian pembandingan dan sebagainya) atau operasi logika (misalnya Or, And, Not, Nor, Nand, Exclusive-Or dan sebagainya), dengan ketelitian dan kecepatan yang sangat luar biasa. Untuk itu pada bab ini akan dibahas beberapa rangkaian digital yang dapat melakukan operasi aritmatika dalam bilangan biner. 6.2 Penjumlah Paruh (Half Adder) Bilangan biner hanya mempunyai dua bilangan yaitu 0 dan 1, untuk itu jika dua bilangan biner (masing-masing satu bit) yaitu antara yang dijumlahkan (augend) dan penjumlah (addend) dijumlahkan, maka diperoleh hasil jumlah (sum) dan luapan (overflow/carry) seperti ditunjukkan pada tabel 6.1 dibawah. Augend A Tabel 6.1 Penjumlahan ua Bit Bilangan Biner Addend B S Luapan (Overflow/Carry) C ari tabel 5.1 tersebut dapat diperoleh persamaan kedua keluaran, yaitu : : S = AB + AB atau S = A B Luapan (Overflow/Carry) : C = AB Sehingga dari persamaan tersebut didapatkan rangkaian sebagai berikut : AER 106 HALF

2 107 Masukan B C Keluaran (a) Blok iagram Penjumlah Paruh (Half Adder) Masukan A B Sum Carry Keluaran (b) Rangkaian Logika Penjumlah Paruh (Half Adder) Gambar 6.1 Penjumlah Paruh (Half Adder) 6.3 Penjumlah Penuh (Full-Adder) Penjumlah penuh (Full-Adder) merupakan rangkaian penjumlah yang 3 bit bilangan biner A, B dan masukan luapan C in dengan keluaran hasil jumlah (sum) dan luapan (overflow/carry) C out. Augend A Addend B Tabel 6.2 Penjumlahan Tiga Bit Bilangan Biner Carry input C in S Luapan (Overflow/Carry) C Out ari tabel 6.2 tersebut dapat diperoleh persamaan kedua keluaran, yaitu : S = ABC in + ABC in + ABC in + ABC in = A B C in Luapan / Carry Cout = ABC in + ABC in + ABC in + ABCin = BCin + ACin + AB Sehingga dari persamaan tersebut didapatkan rangkaian sebagai berikut : Masukan A B C in FULL AER S C out Keluaran

3 108 (a) Blok iagram Full Adder Masukan A B Sum C in Keluaran Carry (b) Rangkaian Logika Full Adder Gambar 6.2 Penjumlah Penuh (Full Adder) Masukan B 3 A 3 B 2 A 2 B 1 A 1 B 0 A 0 C 3 C 2 C 1 C 0 C 4 FA 3 FA 2 FA 1 FA 0 S 3 S 2 S 1 S 0 Keluaran Gambar 6.3 Penjumlah Paralel 4-Bit Untuk mendapatkan jumlah bit yang lebih banyak, maka beberapa Penjumlah Penuh (FA) diparalel. Misalnya bilangan biner 4-bit (A 0, A 1, A 2, A 3 ) ditambah 4-bit (B 0, B 1, B 2, B 3 ) dengan keluaran (S 0, S 1, S 2, S 3 ) dan luapan C 4, sehingga diperlukan 4 FA yang diparalel seperti ditunjukkan pada gambar 4.3, yang menjumlahan tiap bit yang bersesuaian secara serentak relatif cepat, tetapi dibatasi oleh luapan (carry) yang dihasilkan tiap bit, agar dapat dijumlahkan dengan bit

4 109 berikutnya dan diperoleh hasil penjumlahan yang benar, efek ini dinamakan perambatan luapan (carry propagation atau carry ripple), yang disebabkan oleh penundaan perambatan tiap FA. Contoh : Yang dijumlah (Augend) Penjumlah (Addend) Luapan / Carry (ditambahkan ke posisi berikutnya) Untuk mengatasinya, diperlukan rangkaian yang dapat mengetahui jika terjadi luapan dan menjumlahkannya dengan bit berikutnya dengan waktu yang lebih cepat dari penundaan perambatan tiap FA, yaitu Generator Look Ahead Carry. alam penerapan penjumlahan menggunakan IC, biasanya sudah disertai dengan Generator Look Ahead Carry, contohnya IC Penjumlah 4-bit adalah B 4 S 4 C 4 C 0 GN B 1 A 1 S A 4 S 3 A 3 B 3 V CC S 3 B 2 A 2 Gambar 6.4 IC Penjumlah Paralel 4-Bit Penjumlahan Sistem Komplemen Ke-2

5 110 Pada sistem bilangan biner untuk menyatakan bilangan negatif atau pengurangan digunakan sistem komplemen ke-2, yaitu (yaitu dengan cara menambah nilai sebenarnya dengan komplemen 1 (diperoleh dari membalik nilai sebenarnya) dan ditambah 1 pada bit yg bernialai paling rendah. isini bit tanda negatif menggunakan biner 1, sedangkan besarannya dibalik (komplemen ke-1) lalu ditambah 1 pada bit yang bernilai paling rendah (Least Significant Bit / LSB) untuk mendapatkan komplemen ke-2. Contoh : - 6 = nilai sebenarnya (True Magnitude Form / TMF) komplemen ke komplemen ke-2 Gambar 6.5 dibawah adalah contoh rangkaian penjumlah atau pengurang untuk bilangan positif pada tertambah / terkurang dan bilangan negatif pada penambah / pengurang dalam sistem komplemen ke-2 beserta bit tandanya, untuk operasi penjumlahan menggunakan bit 0 dan untuk operasi pengurangan menggunakan bit 1. Bentuk komplemen ke-1 menggunakan Gate Ex-Or sebagai pembalik. Apabila hasil penjumlahan / pengurangan adalah positif, maka hasil jumlah yang ditampilkan sudah benar, sedangkan apabila hasil penjumlahan / pengurangan adalah negatif, maka hasil jumlah yang ditampilkan masih dalam bentuk komplemen ke-2, agar mendapatkan hasil yang sesungguhnya dijadikan ke komplemen ke-1 (dibalik) lalu ditambah 1 pada LSBnya, untuk itu diperlukan rangkaian tambahan pada keluaran hasil jumlah / selisih, demikian juga apabila diinginkan pada masukan tertambah / terkurang untuk bilangan negatif.

6 111 Tertambah / Terkurang Penambah / Pengurang A 3 A 2 A 1 A 0 B 3 B 2 B 1 B 0 Bit tanda 0 Penjumlahan 1 Pengurangan Luapan / Pinjaman C 4 FA 4-Bit C 0 S 3 S 2 / Selisih S 1 S 0 Gambar 6.5 Penjumlah Komplemen Ke Penjumlahan Serial Kecepatan dalam menjumlahkan dua bilangan biner pada Penjumlah Paralel relatif tinggi, karena semua bit dijumlahkan secara serentak. Tetapi kecepatannya dibatasi oleh waktu perambatan luapan (carry), yang dapat diatasi dengan menggunakan Generator Look Ahead Carry, untuk itu diperlukan rangkaian tambahan sebanding dengan banyaknya bit yang dijumlahkan. Pada Penjumlah Serial, proses penjumlahannya dilakukan seperti diatas kertas, yaitu dijumlahkan per bit, sehingga rangkaiannya lebih sederhana tetapi kecepatannya lebih rendah. Gambar 6.6 menunjukkan rangkaian Penjumlah (Adder) Serial 4 bit yang menggunakan FF- sebagai Register, Register A untuk data yang dijumlahkan (Augend) dan juga sebagai hasil penjumlahan (Sum) serta Register B untuk data penjumlahnya (Addend). Proses penjumlahannya dilakukan di FA dimulai dari LSB yaitu A 0, B 0 dan keluaran dari FF carry yang sudah direset sebelumnya. FF carry digunakan untuk menyimpan luapan/carry dari FA, sehingga dapat dijumlahkan dengan bit berikutnya pada kedua Register.

7 112 Register Geser LSB A 3 A 0 A 2 A 1 FA Sum Carry out Register Geser LSB Carry in B 3 B 2 B 1 B 0 Clock Pulsa clear Gambar 6.6 Penjumlah Serial Hasil jumlahnya (Sum) diberikan ke masukan dari Register A 3, dan akan muncul pada keluaran A 3 saat pemberian pulsa Clock. emikian pula keluaran B 0 dihubungkan ke masukan dari Register B 3, dan akan muncul pada keluaran B 3 bersamaan dengan pemberian pulsa Clock. engan cara ini maka Register B tetap setelah operasi pergeseran selesai. Pulsa Clock Tabel 6.3 Proses Penjumlah Serial Register A Register B Carry in (Keluaran ) A 3 A 2 A 1 A 0 B 3 B 2 B 1 B 0 Keluaran Sum Keluaran Carry Awal Pertama Kedua Ketiga Keempat akhir Operasi Adder serial ini dapat dengan mudah dipahami dengan contoh berikut, misalnya Augend = 0111 yang disimpan di Register A dan Addend =

8 di Regsiter B, dengan mereset FF carry ke 0, sehingga Carry-in = 0 dan urutan prosesnya ditunjukkan pada tabel 6.3 diatas. Gambar 6.6 diatas juga bisa digunakan untuk pengurangan atau penjumlahan dalam sistem komplemen ke-2, yaitu yang dikurangi (minuend) disimpan di Register A dan pengurang (subtrachend) di Register B yang menggunakan keluaran untuk dihubungkan ke FA agar diperoleh bentuk komplemen ke-1 (kebalikannya) serta Carry in = 1 (bentuk komplemen ke-2) sebelum dijumlahkan. Setelah itu dilakukan proses yang sama seperti penjumlahan bilangan biner biasa. 6.6 Penjumlahan BC (Binary Coded ecimal) Pada sistem digital seringkali beroperasi dalam kode desimal yang dikodekan dalam biner (Binary Coded ecimal/bc) dari pada kode biner biasa. Yang memerlukan 4 bit kode biner untuk menyatakan tiap digit desimal dalam kode BC. Misalnya desimal 478 dalam kode BC adalah : Kode esimal Kode BC Ada beberapa prosedur dalam menjumlahkan dua bilangan BC, yaitu : Jumlahkan kelompok kode BC untuk tiap posisi digit desimal Apabila hasil jumlahnya (sum) 9 atau kurang, itu adalah hasil penjumlahan bentuk BC yang benar tetapi apabila hasil jumlahnya lebih besar dari 9, maka perlu dikoreksi, yaitu menambahkan faktor koreksi (0110) pada hasil penjumlahan tersebut dan ini menghasilkan luapan (carry) untuk dijumlahkan dengan kode BC berikutnya. Tabel 6.4 Hasil Penjumlahan ua Bilangan BC BC Heksa BC Tanpa Koreksi desi Terkoreksi C 4 S 3 S 2 S 1 S 0 mal C n Σ 3 Σ 2 Σ 1 Σ 0 BC

9 tanpa koreksi A B C harus E dikoreksi F S 3 S 2 S 1 S Persamaan Koreksi = C 4 + S 2 S 3 + S 1 S 3 = C 4 + S 3 (S 1 + S 2 ) (a) K map Untuk Persamaan Koreksi (Penambah 0110)

10 115 Bilangan BC Bilangan BC B 3 B 2 B 1 B 0 A 3 A 2 A 1 A 0 C 4 C 0 S 3 S 2 S 1 S 0 C 4 B 3 B 2 B 1 B 0 A 3 A 2 A 1 A 0 C 0 diabaikan C n S 3 S 2 S 1 S 0 BC (b) Rangkaian Penjumlah BC Gambar 6.7 Penjumlah BC Rangkaian Adder BC harus mampu mendeteksi hasil jumlahnya kurang dari 9 (1001), lebih besar dari 9 atau lebih besar dari 15, untuk dikoreksi menjadi bilangan BC yang benar. Untuk mendapatkan rangkaian pengkoreksinya tabel 6.4 menunjukkan semua kemungkinan hasil penjumlahan dua bilangan BC. ari Tabel 6.4 tersebut tampak bahwa yang harus dikoreksi adalah hasil penjumlahan 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. ari sini jika dimasukkan pada K map diperoleh rangkaian pengkoreksi seperti yang ditunjukkan pada gambar 6.7.b. 6.7 Perkalian Bilangan Biner

11 116 Perkalian dalam bilangan biner dikerjakan seperti menggunakan kertas dan pensil, yaitu dengan melakukan penjumlahan dan penggeseran berturut-turut seperti contoh berikut : 1011 Yang dikalikan (Multiplicand) = Pengali (Multiplier) = Hasil Perkalian (Product) = 143 Proses pengulangan bit bilangan Pengali berturut-turut dimulai dari LSB. Jika bit Pengali adalah 1, bilangan yang dikalikan ditulis, tetapi apabila bit Pengali adalah 0, maka ditulis 0. Baris berikutnya digeser kekiri satu bit dari baris sebelumnya. Apabila semua bit Pengali sudah habis lalu dijumlahkan untuk memperoleh hasil perkalian akhir. Pada sistem digital, proses penjumlahannya dilakukan tiap dua bilangan dan hasil penjumlahan akhirnya ditempatkan pada Penyimpan (Register). Untuk efisiensi, apabila bit Pengali bernilai 0 tidak diperlukan penulisan 0 sehingga tidak berakibat pada hasil akhir. Contoh yang lalu dapat dituliskan sebagai berikut : Multiplicand : 1011 Multiplier : Bit pertama Multiplier = 1, Multiplicand ditulis Multiplicand digeser kekiri satu bit (10110) 1011 Bit kedua Multiplier = 0, hasil yang ditulis Multiplicand yang baru digeser kekiri satu bit (101100) Bit ketiga Multiplier = 1, tulis Multiplicand yang baru Jumlahkan Multiplicand yang baru digeser kekiri satu bit ( ) Bit keempat Multiplier = 1, tulis Multiplicand yang baru Jumlahkan untuk mendapat Hasil Perkalian akhir (Product) = 143 Proses perkalian ini dapat diterapkan seperti ditunjukkan pada gambar 6.8 dengan 3 Register, yaitu Register X digunakan untuk menyimpan bit-bit Pengali/Multiplier yang merupakan Register geser kanan, Register B digunakan

12 117 untuk menyimpan bit-bit yang dikalikan / Multiplicand yang merupakan Register geser kiri dan Register A / Accumulator digunakan untuk menyimpan Hasil Perkalian (Product). Operasi rangkaian Perkalian dapat dijelaskan dengan gambar 6.9 dibawah yang menunjukkan isi semua Register dan keluaran Adder oleh setiap pemberian pulsa Clock. Langkah-langkah prosesnya sebagai berikut : 1. Reset Register A ( ), set yang dikali (Multiplicand) pada Register B ( ) dan Pengali (Multiplier) pada Register X (1101), sehingga keluaran Adder adalah hasil penjumlahan isi Register A dan B yaitu , yang ditunjukkan pada gambar 6.9(a). 2. Pada pulsa Clock pertama, LSB Pengali (keluaran X 0 ) adalah 1, sehingga pulsa Clock tersebut keluar pada Gate And dan sisi positifnya menyebabkan Register A berisi data dari keluaran Adder yang berasal dari penjumlahan isi Register B dengan isi Register A yaitu Sedangkan sisi negatif pulsa Clock menyebabkan isi Register B bergeser kekiri menjadi dan isi Register X bergeser kekanan menjadi 0110, sehingga keluaran Adder adalah hasil penjumlahan isi Register A ( ) dan isi Register B ( ) yaitu Kondisi ini ditunjukkan pada gambar 6.9(b). 3. Pulsa Clock kedua, LSB Pengali (keluaran X 0 ) adalah 0, sehingga keluaran Gate And juga 0 dan isi Register A tetap. Sedangkan sisi negatif pulsa Clock menyebabkan isi Register B bergeser kekiri menjadi dan isi Register X bergeser kekanan menjadi 0011, keluaran Adder adalah hasil penjumlahan isi Register A ( ) dan isi Register B ( ) yaitu , yaitu gambar 6.9(c).

13 118 Penyimpan (Accumulator) A7 A6 A A A 4 2 A 5 A 3 1 A C 0 = 0 Ke masukan 4-7 FF - A S 4 S 5 S 6 S 1 S0 S 7 Adder Paralel 8-Bit S 3 S 2 Ke masukan 0-3 FF - A Yang dikalikan (Multiplicand) B 7 B 6 B 5 B 4 B 3 B 2 B 1 B Pengali (Multiplier) X 3 X 2 X 1 X 0 Gambar 6.8 Rangkaian Pengali Bilangan Biner Clock

14 Pulsa Clock ketiga, LSB Pengali (keluaran X 0 ) adalah 1, sehingga sisi positif pulsa Clock menyebabkan Register A berisi data dari keluaran Adder yang berasal dari penjumlahan isi Multiplicand dengan isi Register A (Accumulator) yaitu Sedangkan pada sisi negatif pulsa Clock menyebabkan isi Register B bergeser kekiri menjadi dan isi Register X bergeser kekanan menjadi 0001, menyebabkan keluaran Adder adalah hasil penjumlahan isi Register A ( ) dan isi Register B ( ) yaitu Kondisi ini ditunjukkan pada gambar 6.9(d). 5. Pulsa Clock ketiga, LSB Pengali (keluaran X 0 ) adalah 1, sehingga sisi positif pulsa Clock menyebabkan Register A berisi data dari keluaran Adder yaitu penjumlahan isi Register B dengan isi Register A yaitu Sedangkan pada sisi negatif pulsa Clock menyebabkan isi Register B bergeser kekiri menjadi dan isi Register X bergeser kekanan menjadi 0000, menyebabkan keluaran Adder adalah hasil penjumlahan isi Register A ( ) dan isi Register B ( ) yaitu Kondisi ini ditunjukkan pada gambar 6.9(e). Jadi Hasil perkalian (product) disimpan di Register A (Accumulator). Register A Register B Register X Sebelum pulsa Clock pertama

15 (a) Register A Register B Register X Setelah pulsa Clock pertama (b) Register A Register B Register X Setelah pulsa Clock kedua (c) Register A Register B Register X Setelah pulsa Clock ketiga (d) Register A Register B Register X Setelah pulsa Clock keempat (e) Gambar 6.9 Isi Register Pada Proses Perkalian 1011 engan Permasalahan Tunjukkanlah bagaimana Full Adder disusun dari Half Adder! ari gambar 6.5, berapakah keluaran FA untuk menjumlahkan : (a) 7 + ( 7) (b) (c) 5 + (-10) (d) 10 + (-5)

16 Ubahlah gambar 6.5 sehingga dapat digunakan untuk menjumlahkan dua bilangan negatif dan hasil jumlahnya dalam bentuk TMF! Rancanglah rangkain Look Ahead Carry untuk Adder 4-bit yang membangkitkan Carry C 3 agar bisa dijumlahkan dengan MSB FA yang didasarkan oleh nilai A 0, B 0, A 1, B 1, A 2 dan B 2 (Petunjuk : mulai dengan menulis ekspresi C 1 dalam fungsi A 0, B 0 dan C 0, lalu tuliskan ekspresi C 2 dalam fungsi A 1, B 1 dan C 1, kemudian substitusilah C 1 kedalam ekspresi C 2. Tulislah ekspresi C 3 dalam fungsi A 2, B 2 dan C 2, lalu substitusilah ekspresi C 2 kedalam C 3. Sederhanakan ekspresi akhir C 3 dalam bentuk hasil penjumlahan dari hasil perkalian (Sum Of Product / SOP) dan buatlah rangkaiannya! Berapakah waktu penundaan perambatan maksimum untuk Adder 8-bit yang tersusun dari Gate-Gate logika, apabila waktu penundaan perambatan tiap Gate adalah 20 ndetik? Penjumlah serial gambar 6.6 mempunyai waktu penundaan propagasi FA adalah 50 ndetik dan FF adalah 20 ndetik, hitunglah frekuensi maksimum pulsa Clock! Gambarkanlah urutan keadaan tiap FF dan keluaran FA pada Penjumlah serial gambar 6.6 untuk menjumlahkan 10 dan 7! Serta bagaimanakah caranya apabila digunakan untuk penjumlahan 10 dan 7? Rancanglah Penjumlah BC 3 digit dan tentukanlah keluaran Sum untuk menjumlahkan kode BC 376 dan 469! Tunjukkanlah isi Register A, B dan X serta keluaran Adder S 0 S 7 setelah tiap pulsa setelah proses perkalian 0111 (Multiplicand) dan 1001 (Multiplier) dengan menggunakan rangkaian Pengali gambar 6.8!

BAB V RANGKAIAN ARIMATIKA

BAB V RANGKAIAN ARIMATIKA BAB V RANGKAIAN ARIMATIKA 5.1 REPRESENTASI BILANGAN NEGATIF Terdapat dua cara dalam merepresentasikan bilangan biner negatif, yaitu : 1. Representasi dengan Tanda dan Nilai (Sign-Magnitude) 2. Representasi

Lebih terperinci

RANGKAIAN PEMBANDING DAN PENJUMLAH

RANGKAIAN PEMBANDING DAN PENJUMLAH RANGKAIAN PEMBANDING DAN PENJUMLAH Gerbang-gerbang logika digunakan dalam peralatan digital dan sistem informasi digital untuk : a. mengendalikan aliran informasi, b. menyandi maupun menerjemahkan sandi

Lebih terperinci

BAB VI RANGKAIAN-RANGKAIAN ARITMETIK

BAB VI RANGKAIAN-RANGKAIAN ARITMETIK A VI RANGKAIAN-RANGKAIAN ARITMETIK Fungsi terpenting dari hampir semua computer dan kalkulator adalah melakukan operasi-operasi aritmetik. Operasi-operasi ini semuanya dilaksanakan di dalam unit aritmetik

Lebih terperinci

Dari tabel diatas dapat dibuat persamaan boolean sebagai berikut : Dengan menggunakan peta karnaugh, Cy dapat diserhanakan menjadi : Cy = AB + AC + BC

Dari tabel diatas dapat dibuat persamaan boolean sebagai berikut : Dengan menggunakan peta karnaugh, Cy dapat diserhanakan menjadi : Cy = AB + AC + BC 4. ALU 4.1. ALU (Arithmetic and Logic Unit) Unit Aritmetika dan Logika merupakan bagian pengolah bilangan dari sebuah komputer. Di dalam operasi aritmetika ini sendiri terdiri dari berbagai macam operasi

Lebih terperinci

Rangkaian ALU (Arithmetic and Logic Unit) yang digunakan untuk menjumlahkan bilangan dinamakan dengan Adder. Adder juga sering disebut rangkaian

Rangkaian ALU (Arithmetic and Logic Unit) yang digunakan untuk menjumlahkan bilangan dinamakan dengan Adder. Adder juga sering disebut rangkaian Rangkaian ALU (Arithmetic and Logic Unit) yang digunakan untuk menjumlahkan bilangan dinamakan dengan Adder. Adder juga sering disebut rangkaian kombinasional aritmetika Ada 3 jenis Adder : Rangkaian Adder

Lebih terperinci

PERCOBAAN 8. RANGKAIAN ARITMETIKA DIGITAL DASAR

PERCOBAAN 8. RANGKAIAN ARITMETIKA DIGITAL DASAR PERCOBAAN 8. TUJUAN: Setelah menyelesaikan percobaan ini mahasiswa diharapkan mampu Memahami rangkaian aritmetika digital : adder dan subtractor Mendisain rangkaian adder dan subtractor (Half dan Full)

Lebih terperinci

RANGKAIAN ARITMETIKA 3

RANGKAIAN ARITMETIKA 3 RANGKAIAN ARITMETIKA 3 Pokok Bahasan :. Bilangan biner bertanda (positif dan negatif) 2. Sistim st dan 2 s-complement 3. Rangkaian Aritmetika : Adder, Subtractor 4. Arithmetic/Logic Unit Tujuan Instruksional

Lebih terperinci

Arithmatika Komputer. Pertemuan 3

Arithmatika Komputer. Pertemuan 3 Arithmatika Komputer Pertemuan 3 2.3. Aritmetika Integer Membahas operasi aritmetika (Sistem Komplemen Dua) Penjumlahan Pengurangan Perkalian Pembagian Penjumlahan dan Pengurangan Penambahan pada complement

Lebih terperinci

Perancangan Rangkaian Digital, Adder, Substractor, Multiplier, Divider

Perancangan Rangkaian Digital, Adder, Substractor, Multiplier, Divider Perancangan Rangkaian Digital, Adder, Substractor, Multiplier, Divider Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom

Lebih terperinci

Rangkaian Digital Kombinasional. S1 Informatika ST3 Telkom Purwokerto

Rangkaian Digital Kombinasional. S1 Informatika ST3 Telkom Purwokerto Rangkaian Digital Kombinasional S1 Informatika ST3 Telkom Purwokerto Logika kombinasi Comparator Penjumlah Biner Multiplexer Demultiplexer Decoder Comparator Equality Non Equality Comparator Non Equality

Lebih terperinci

LAPORAN PRAKTIKUM DIGITAL

LAPORAN PRAKTIKUM DIGITAL LAPORAN PRAKTIKUM DIGITAL NOMOR PERCOBAAN : 10 JUDUL PERCOBAAN : Half / Full Adder, Adder Subtractor KELAS / GROUP : Telkom 2-A / 6 NAMA PRAKTIKAN : 1. Nur Aminah (Penanggung Jawab) 2. M. Aditya Prasetyadin

Lebih terperinci

BAB II SISTEM-SISTEM BILANGAN DAN KODE

BAB II SISTEM-SISTEM BILANGAN DAN KODE BAB II SISTEM-SISTEM BILANGAN DAN KODE Didalam sistem-sistem digital informasi numerik biasanya dinyatakan dalam sistem bilangan biner (atau kode biner lain yang bersangkutan). Sistem biner telah diperkenalkan

Lebih terperinci

ARITHMETIC & LOGICAL UNIT (ALU) Arsitektur Komputer

ARITHMETIC & LOGICAL UNIT (ALU) Arsitektur Komputer ARITHMETIC & LOGICAL UNIT (ALU) Arsitektur Komputer PENDAHULUAN Empat metoda komputasi dasar yang dilakukan oleh ALU komputer : penjumlahan, pengurangan, perkalian, dan pembagian. Rangkaian ALU dasar terdiri

Lebih terperinci

Review Kuliah Sebelumnya

Review Kuliah Sebelumnya TEKNIK DIGITAL Review Kuliah Sebelumnya Konversikan Bilangan di Bawah ini 1. 89 10 = 16 2. 367 8 = 2 3. 11010 2 = 10 4. 7FD 16 = 8 5. 29A 16 = 10 6. 110111 2 = 8 7. 359 10 = 2 8. 472 8 = 16 Tujuan Perkuliahan

Lebih terperinci

Jobsheet Praktikum PARALEL ADDER

Jobsheet Praktikum PARALEL ADDER 1 PARALEL ADDER A. Tujuan Kegiatan Praktikum 3-4 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : 1) Merangkai rangkaian PARALEL ADDER. ) Mempelajari penjumlahan dan pengurangan bilangan

Lebih terperinci

BAB II ARITMATIKA DAN PENGKODEAN

BAB II ARITMATIKA DAN PENGKODEAN TEKNIK DIGITAL/HAL. 8 BAB II ARITMATIKA DAN PENGKODEAN ARITMATIKA BINER Operasi aritmatika terhadap bilangan binari yang dilakukan oleh komputer di ALU terdiri dari 2 operasi yaitu operasi penambahan dan

Lebih terperinci

Kuliah#11 TKC205 Sistem Digital. Eko Didik Widianto. 11 Maret 2017

Kuliah#11 TKC205 Sistem Digital. Eko Didik Widianto. 11 Maret 2017 Kuliah#11 TKC205 Sistem Digital Eko Didik Widianto Departemen Teknik Sistem Komputer, Universitas Diponegoro 11 Maret 2017 http://didik.blog.undip.ac.id/buku/sistem-digital/ 1 Review Kuliah Di kuliah sebelumnya

Lebih terperinci

9.3. ARITMATIKA INTEGER

9.3. ARITMATIKA INTEGER 9.3. ARITMATIKA INTEGER Pada representasi sign-magnitude aturan pembentukan bilangan negatif (negation) bilangan integer cukup sederhana yaitu : Ubahlah bit tanda. Pada notasi komplemen dua, pengurangan

Lebih terperinci

Gerbang AND Gerbang OR Gerbang NOT UNIT I GERBANG LOGIKA DASAR DAN KOMBINASI. I. Tujuan

Gerbang AND Gerbang OR Gerbang NOT UNIT I GERBANG LOGIKA DASAR DAN KOMBINASI. I. Tujuan I. Tujuan UNIT I GERBANG LOGIKA DASAR DAN KOMBINASI 1. Dapat membuat rangkaian kombinasi dan gerbang logika dasar 2. Memahami cara kerja dari gerbang logika dasar dan kombinasi 3. Dapat membuat table kebenaran

Lebih terperinci

Representasi Bilangan dan Operasi Aritmatika

Representasi Bilangan dan Operasi Aritmatika Bilangan Bilangan dan Operasi Aritmatika Kuliah#8 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Review Kuliah Bilangan Sebelumnya telah dibahas tentang

Lebih terperinci

ARSITEKTUR SISTEM KOMPUTER. Wayan Suparta, PhD https://wayansuparta.wordpress.com/ Maret 2018

ARSITEKTUR SISTEM KOMPUTER. Wayan Suparta, PhD https://wayansuparta.wordpress.com/ Maret 2018 ARSITEKTUR SISTEM KOMPUTER Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 12-13 Maret 2018 Materi 6: Aritmatika Komputer Arithmetic and Logic Unit (ALU) ALU merupakan bagian komputer yang berfungsi

Lebih terperinci

8. TRANSFER DATA. I. Tujuan

8. TRANSFER DATA. I. Tujuan 8. TRANSFER DATA I. Tujuan 1. Membuat rangkaian transfer data seri dan transfer data secara paralel dengan menggunakan IC yang berisi JK-FF dan D-FF. 2. Mengamati operasi transfer data seri dan dan transfer

Lebih terperinci

Representasi Bilangan dan Operasi Aritmatika

Representasi Bilangan dan Operasi Aritmatika Bilangan Bilangan dan Operasi Aritmatika Kuliah#8 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Review Kuliah Bilangan Sebelumnya telah dibahas tentang

Lebih terperinci

OPERASI DALAM SISTEM BILANGAN

OPERASI DALAM SISTEM BILANGAN OPERASI DALAM SISTEM BILANGAN Pertemuan Kedua Teknik Digital Yus Natali, ST.,MT SISTEM BILANGAN Sistem bilangan adalah cara untuk mewaikili besaran dari suatu item fisik. Sistem bilangan yang banyak dipergunakan

Lebih terperinci

Dari tabel kebenaran half adder, diperoleh rangkaian half adder sesuai gambar 4.1.

Dari tabel kebenaran half adder, diperoleh rangkaian half adder sesuai gambar 4.1. PERCOBAAN DIGITAL 03 PENJUMLAH (ADDER) 3.1. TUJUAN PERCOBAAN Mahasiswa mengenal, mengerti, dan memahami: 1. Operasi half adder dan full adder. 2. Operasi penjumlahan dan pengurangan biner 4 bit. 3.2. TEORI

Lebih terperinci

Sistem Digital. Sistem Angka dan konversinya

Sistem Digital. Sistem Angka dan konversinya Sistem Digital Sistem Angka dan konversinya Sistem angka yang biasa kita kenal adalah system decimal yaitu system bilangan berbasis 10, tetapi system yang dipakai dalam computer adalah biner. Sistem Biner

Lebih terperinci

BAB 7 REGISTER Register

BAB 7 REGISTER Register BAB 7 - REGISTER/HAL. 98 BAB 7 REGISTER 7.. Register Sebuah flip flop dapat digunakan untuk menyimpan data bit, sehingga jika ada sederetan dari n buah FF, maka dapat dipergunakan untuk menyimpan data

Lebih terperinci

Muhammad Adri Abstrak

Muhammad Adri  Abstrak Pengantar Arsitektur Komputer 4 Rangkaian Aritmatika Muhammad Adri mhd.adri@unp.ac.id http://muhammadadri.wordpress.com Abstrak Rangkaian aritmatika merupakan salah satu inti pembahasan dalam pengantar

Lebih terperinci

RANGKAIAN ARITMETIKA

RANGKAIAN ARITMETIKA RANGKAIAN ARITMETIKA Materi :. Sistim Bilangan : Desimal, Biner, Oktal, Hexadesimal 2. Konversi Sistim Bilangan 3. Sistim Coding 4. Fungsi-fungsi Aritmetika Biner : penjumlahan, pengurangan, perkalian,

Lebih terperinci

A0 B0 Σ COut

A0 B0 Σ COut A. Judul : PARALEL ADDER B. Tujuan Kegiatan Belajar 8 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : ) Merangkai rangkaian PARALEL ADDER. ) Mempelajari penjumlahan dan pengurangan bilangan

Lebih terperinci

Rangkaian Kombinasional

Rangkaian Kombinasional 9/9/25 Tahun Akademik 25/26 Semester I DIGB3 Konfigurasi Perangkat Keras Komputer Rangkaian Kombinasional Mohamad Dani (MHM) E-mail: mohamaddani@gmailcom Hanya dipergunakan untuk kepentingan pengajaran

Lebih terperinci

BAB VII REGISTER. Keluar dan masuknya data ke dalam register dapat dilakukan dengan 2 cara:

BAB VII REGISTER. Keluar dan masuknya data ke dalam register dapat dilakukan dengan 2 cara: TEKNIK IGITAL-REGISTER/HAL. BAB VII REGISTER REGISTER Sebuah flip flop dapat digunakan untuk menyimpan data bit, sehingga jika ada sederetan dari n buah FF, maka dapat dipergunakan untuk menyimpan data

Lebih terperinci

DIKTAT SISTEM DIGITAL

DIKTAT SISTEM DIGITAL DIKTAT SISTEM DIGITAL Di Susun Oleh: Yulianingsih Fitriana Destiawati UNIVERSITAS INDRAPRASTA PGRI JAKARTA 2013 DAFTAR ISI BAB 1. SISTEM DIGITAL A. Teori Sistem Digital B. Teori Sistem Bilangan BAB 2.

Lebih terperinci

BAHAN AJAR SISTEM DIGITAL

BAHAN AJAR SISTEM DIGITAL BAHAN AJAR SISTEM DIGITAL JURUSAN TEKNOLOGI KIMIA INDUSTRI PENDIDIKAN TEKNOLOGI KIMIA INDUSTRI MEDAN Disusun oleh : Golfrid Gultom, ST Untuk kalangan sendiri 1 DASAR TEKNOLOGI DIGITAL Deskripsi Singkat

Lebih terperinci

LEMBAR TUGAS MAHASISWA ( LTM )

LEMBAR TUGAS MAHASISWA ( LTM ) LEMBAR TUGAS MAHASISWA ( LTM ) RANGKAIAN DIGITAL Program Studi Teknik Komputer Jenjang Pendidikan Program Diploma III Tahun AMIK BSI NIM NAMA KELAS :. :.. :. Akademi Manajemen Informatika dan Komputer

Lebih terperinci

BAB I : APLIKASI GERBANG LOGIKA

BAB I : APLIKASI GERBANG LOGIKA BAB I : APLIKASI GERBANG LOGIKA Salah satu jenis IC dekoder yang umum di pakai adalah 74138, karena IC ini mempunyai 3 input biner dan 8 output line, di mana nilai output adalah 1 untuk salah satu dari

Lebih terperinci

Pertemuan Ke-6 ARITMATIKA KOMPUTER

Pertemuan Ke-6 ARITMATIKA KOMPUTER Pertemuan Ke-6 ARITMATIKA KOMPUTER Pendahuluan Aritmetika komputer dibentuk dua jenis bilangan yang sangat berbeda integer dan floating point. Pada kedua jenis bilangan tersebut, pemilihan representasi

Lebih terperinci

BAB VII DASAR FLIP-FLOP

BAB VII DASAR FLIP-FLOP 89 BAB VII ASAR FLIP-FLOP 1. Pendahuluan Pada bagian sebelumnya telah dibahas tentang rangkaian kombinasional, yang merupakan rangkaian dengan keluaran yang dikendalikan oleh kondisi masukan yang ada.

Lebih terperinci

Sistem Bilangan. Rudi Susanto

Sistem Bilangan. Rudi Susanto Sistem Bilangan Rudi Susanto 1 Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan

Lebih terperinci

ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL

ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL Oleh : Kelompok 3 I Gede Nuharta Negara (1005021101) Kadek Dwipayana (1005021106) I Ketut Hadi Putra Santosa (1005021122) Sang Nyoman Suka Wardana (1005021114) I

Lebih terperinci

RANGKAIAN ARITMETIKA 2

RANGKAIAN ARITMETIKA 2 RANGKAIAN ARITMETIKA 2 Pokok Bahasan : 1. Sistim Coding 2. Fungsi-fungsi Aritmetika Biner : penjumlahan, pengurangan, perkalian, pembagian 3. Implementasi fungsi Aritmetika pada sistim Bilangan yang lain

Lebih terperinci

LAPORAN PRAKTIKUM DIGITAL

LAPORAN PRAKTIKUM DIGITAL LAPORAN PRAKTIKUM DIGITAL NO. PERCOBAAN : 10 KELAS/GROUP : TT3A/08 NAMA PRAKTIKAN : ADE ZASKIATUN NABILA NAMA PARTNER : -SEVTHIA NUGRAHA -SOCRATES PUTRA N TGL PERCOBAAN : 3 OKTOBER 2016 TGL PENYERAHAN

Lebih terperinci

Sistem. Bab 6: Combinational 09/01/2018. Bagian

Sistem. Bab 6: Combinational 09/01/2018. Bagian Sistem ab 6: Combinational Prio Handoko, S. Kom., M.T.I. agian Capaian Pembelajaran Mahasiswa mampu menjelaskan prinsip kerja rangkaian logika kombinasional ADDER, SUSTRACTOR. Mahasiswa mampu menjelaskan

Lebih terperinci

Gambar 5(a).Tabel Kebenaran Full Adder

Gambar 5(a).Tabel Kebenaran Full Adder . Full dder Gambar 5 merupakan bentuk singkat dari tabel penambahan biner, dengan situasi 1 + 1 + 1. tabel kebenaran pada gambar 5(a) memperlihatkan semua kombinasi yang mungkin dari,, dan Cin (masukan

Lebih terperinci

SISTEM BILANGAN, OPERASI ARITMATIKA DAN PENGKODEAN

SISTEM BILANGAN, OPERASI ARITMATIKA DAN PENGKODEAN SISTEM BILANGAN, OPERASI ARITMATIKA DAN PENGKODEAN REPRESENTASI DATA Data : bilangan biner atau informasi berkode biner lain yang dioperasikan untuk mencapai beberapa hasil penghitungan penghitungan aritmatik,

Lebih terperinci

Sistem Bilangan dan Pengkodean -2-

Sistem Bilangan dan Pengkodean -2- Sistem Digital Sistem Bilangan dan Pengkodean -2- Missa Lamsani Hal 1 Sistem Bilangan Bilangan Decimal Bilangan Biner Decimal -> biner Aritmatika Binar Komplemen 1 dan 2 Sign Bit Operasi aritmatik dengan

Lebih terperinci

BAB VIII REGISTER DAN COUNTER

BAB VIII REGISTER DAN COUNTER BAB VIII REGISTER DAN COUNTER 8.1 Register Register adalah kumpulan dari elemen-elemen memori yang bekerja bersama sebagai satu unit. Register yang paling sederhana tidak lebih dari sebuah penyimpan kata

Lebih terperinci

Sistem-Sistem Bilangan Sistem-Sistem Bilangan secara matematis: Contoh-2: desimal: biner (radiks=2, digit={0, 1}) Bilangan. Nilai

Sistem-Sistem Bilangan Sistem-Sistem Bilangan secara matematis: Contoh-2: desimal: biner (radiks=2, digit={0, 1}) Bilangan. Nilai Sistem-Sistem Bilangan Sistem-Sistem Bilangan secara matematis: Bilangan : D r d n 1 d n 2 d 1 d 0 d 1 d n Nilai : D r n i 1 n d i r i Contoh-2: desimal: 5185.68 10 = 5x10 3 + 1x10 2 + 8x10 1 + 5x10 0

Lebih terperinci

PENDAHULUAN PULSE TRAIN. GATES ELEMEN LOGIKA

PENDAHULUAN PULSE TRAIN. GATES ELEMEN LOGIKA LOGIKA MESIN PENDAHULUAN Data dan instruksi ditransmisikan diantara berbagai bagian prosesor atau diantara prosesor dan periperal dgn menggunakan PULSE TRAIN. Berbagai tugas dijalankan dgn cara menyampaikan

Lebih terperinci

1). Synchronous Counter

1). Synchronous Counter Counter juga disebut pencacah atau penghitung yaitu rangkaian logika sekuensial yang digunakan untuk menghitung jumlah pulsa yang diberikan pada bagian masukan. Counterdigunakan untuk berbagai operasi

Lebih terperinci

Percobaan 3 RANGKAIAN PENJUMLAH BINER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 3 RANGKAIAN PENJUMLAH BINER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 3 RNGKIN PENJUMLH INER Oleh : umarna, Jurdik Fisika, FMIP, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mengenal cara kerja rangkaian penjumlah biner, 2. Dapat menyusun rangkaian penjumlah Half dder

Lebih terperinci

Soal Latihan Bab Tentukanlah kompelemen 1 dan kompelemen 2 dari bilangan biner berikut:

Soal Latihan Bab Tentukanlah kompelemen 1 dan kompelemen 2 dari bilangan biner berikut: 1 Soal Latihan Bab 1 1. Nyatakanlah bilangan-bilangan desimal berikut dalam sistem bilangan: a. Biner, b. Oktal, c. Heksadesimal. 5 11 38 1075 35001 0.35 3.625 4.33 2. Tentukanlah kompelemen 1 dan kompelemen

Lebih terperinci

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, urdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari cara kerja pencacah biner sinkron dan tak sinkron, 2. Merealisasikan pencacah biner

Lebih terperinci

PERTEMUAN 12 PENCACAH

PERTEMUAN 12 PENCACAH PERTEMUAN 12 PENCACAH Sasaran Pertemuan 12 Mahasiswa diharapkan mengerti tentang Pencacah yang terdiri dari : - Riple Counter - Pencacah Sinkron - Pencacah Lingkar - Pencacah Turun naik - Pencacah Mod

Lebih terperinci

PERTEMUAN 12 PENCACAH

PERTEMUAN 12 PENCACAH PERTEMUAN 12 PENCACAH Sasaran Pertemuan 12 Mahasiswa diharapkan mengerti tentang Pencacah yang terdiri dari : - Riple Counter - Pencacah Sinkron - Pencacah Lingkar - Pencacah Turun naik - Pencacah Mod

Lebih terperinci

SILABUS MATA KULIAH MICROPROCESSOR I Nama Dosen: Yulius C. Wahyu Kurniawan, S.Kom.

SILABUS MATA KULIAH MICROPROCESSOR I Nama Dosen: Yulius C. Wahyu Kurniawan, S.Kom. SILABUS MATA KULIAH MICROPROCESSOR I Nama Dosen: Yulius C. Wahyu Kurniawan, S.Kom. Konsep Dasar Bilangan Pengertian Base (Radix), Absolute Digit, Positional Value Macam-macam Sistem Bilangan Desimal, Oktal,

Lebih terperinci

A. SISTEM DESIMAL DAN BINER

A. SISTEM DESIMAL DAN BINER SISTEM BILANGAN A. SISTEM DESIMAL DAN BINER Dalam sistem bilangan desimal, nilai yang terdapat pada kolom ketiga pada Tabel., yaitu A, disebut satuan, kolom kedua yaitu B disebut puluhan, C disebut ratusan,

Lebih terperinci

8/4/2011. Microprocessor & Microcontroller Programming. Sistem Bilangan. Sistem Bilangan. Sistem Bilangan. Sistem Bilangan

8/4/2011. Microprocessor & Microcontroller Programming. Sistem Bilangan. Sistem Bilangan. Sistem Bilangan. Sistem Bilangan Microprocessor & Microcontroller Programming FORMAT BILANGAN DALAM MIKROPROSESOR FORMAT BILANGAN DALAM MIKROPROSESOR Mikroprosesor sebagai bagian dari sistem digital bekerja dalam format biner. Di dalam

Lebih terperinci

GERBANG LOGIKA & SISTEM BILANGAN

GERBANG LOGIKA & SISTEM BILANGAN GERBANG LOGIKA & SISTEM BILANGAN I. GERBANG LOGIKA Gerbang-gerbang dasar logika merupakan elemen rangkaian digital dan rangkaian digital merupakan kesatuan dari gerbang-gerbang logika dasar yang membentuk

Lebih terperinci

KEGIATAN BELAJAR 1 SISTEM KOMPUTER

KEGIATAN BELAJAR 1 SISTEM KOMPUTER KEGIATAN BELAJAR 1 SISTEM KOMPUTER Capaian Pembelajaran Mata Kegiatan Memahami, menerapkan, menganalisis, dan mengevaluasi tentang sistem komputer Sub Capaian Pembelajaran Mata Kegiatan: 1. Memahami sistem

Lebih terperinci

BAB 4 RANGKAIAN LOGIKA DIGITAL SEKUENSIAL. 4.1 Flip-Flop S-R

BAB 4 RANGKAIAN LOGIKA DIGITAL SEKUENSIAL. 4.1 Flip-Flop S-R BAB 4 RANGKAIAN LOGIKA IGITAL SEKUENSIAL Telah kita pelajari tentang unit logika kombinasional yang keluarannya hanya tergantung pada masukan saat itu atau dengan kata lain keluarannya merupakan fungsi

Lebih terperinci

=== PENCACAH dan REGISTER ===

=== PENCACAH dan REGISTER === === PENCACAH dan REGISTER === Pencacah Pencacah adalah sebuah register yang mampu menghitung jumlah pulsa detak yang masuk melalui masukan detaknya, karena itu pencacah membutuhkan karakteristik memori

Lebih terperinci

MODUL I GERBANG LOGIKA

MODUL I GERBANG LOGIKA MODUL PRAKTIKUM ELEKTRONIKA DIGITAL 1 MODUL I GERBANG LOGIKA Dalam elektronika digital sering kita lihat gerbang-gerbang logika. Gerbang tersebut merupakan rangkaian dengan satu atau lebih dari satu sinyal

Lebih terperinci

BAB 5. Sistem Digital

BAB 5. Sistem Digital DIKTAT KULIAH Elektronika Industri & Otomasi (IE-204) BAB 5. Sistem Digital Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja

Lebih terperinci

REGISTER DAN COUNTER.

REGISTER DAN COUNTER. REGISTER DAN COUNTER www.st3telkom.ac.id Register Register adalah rangkaian yang tersusun dari satu atau beberapa flip-flop yang digabungkan menjadi satu. Flip-Flop disebut juga sebagai register 1 bit.

Lebih terperinci

Arsitektur Komputer. Rangkaian Logika Kombinasional & Sekuensial

Arsitektur Komputer. Rangkaian Logika Kombinasional & Sekuensial Arsitektur Komputer Rangkaian Logika Kombinasional & Sekuensial 1 Rangkaian Logika Rangkaian Logika secara garis besar dibagi menjadi dua, yaitu : Rangkaian Kombinasional adalah rangkaian yang kondisi

Lebih terperinci

ARSITEKTUR SISTEM KOMPUTER. Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 3 9 April 2018

ARSITEKTUR SISTEM KOMPUTER. Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 3 9 April 2018 ARSITEKTUR SISTEM KOMPUTER Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 3 9 April 2018 Penjumlahan dan Pengurangan Operasi Penjumlahan Operasi Pengurangan Aturan umum 0 + 0 = 0 0 + 1 = 1 1 +

Lebih terperinci

Kuliah#9 TKC205 Sistem Digital - TA 2013/2014. Eko Didik Widianto. 21 Maret 2014

Kuliah#9 TKC205 Sistem Digital - TA 2013/2014. Eko Didik Widianto. 21 Maret 2014 Kuliah#9 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro 21 Maret 2014 http://didik.blog.undip.ac.id 1 Review Kuliah Di kuliah sebelumnya dibahas tentang: Representasi

Lebih terperinci

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock ABSTRAK Counter (pencacah) adalah alat rangkaian digital yang berfungsi menghitung banyaknya pulsa clock atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner Gray. Pada counter asinkron,

Lebih terperinci

JENIS-JENIS REGISTER (Tugas Sistem Digital)

JENIS-JENIS REGISTER (Tugas Sistem Digital) JENIS-JENIS REGISTER (Tugas Sistem Digital) Oleh: EKO SARIYANTO 0917041026 SITI KHOLIFAH 1017041042 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2013 Register adalah

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS TEKNIK No. LST/EKO/DEL 214/11 Revisi : 01 Tgl : 28 Maret 2010 Hal 1 dari 6 1. Kompetensi Memahami cara kerja beberapa jenis register 2. Sub Kompetensi Memahami cara kerja dan bisa membuat rangkaian

Lebih terperinci

1). Synchronous Counter

1). Synchronous Counter Counter juga disebut pencacah atau penghitung yaitu rangkaian logika sekuensial yang digunakan untuk menghitung jumlah pulsa yang diberikan pada bagian masukan. Counter digunakan untuk berbagai operasi

Lebih terperinci

BAB V UNTAI NALAR KOMBINATORIAL

BAB V UNTAI NALAR KOMBINATORIAL TEKNIK DIGITAL-UNTAI NALAR KOMBINATORIAL/HAL. BAB V UNTAI NALAR KOMBINATORIAL Sistem nalar kombinatorial adalah sistem nalar yang keluaran dari untai nalarnya pada suatu saat hanya tergantung pada harga

Lebih terperinci

BAB VIII REGISTER DAN COUNTER

BAB VIII REGISTER DAN COUNTER BAB VIII REGISTER DAN OUNTER 8.1 Register Dalam elektronika digital seringkali diperlukan penyimpan data sementara sebelum data diolah lebih lanjut. Elemen penyimpan dasar adalah flip-flop. Setiap flip-flop

Lebih terperinci

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1 TEORI DASAR DIGITAL Leterature : (1) Frank D. Petruzella, Essentals of Electronics, Singapore,McGrraw-Hill Book Co, 1993, Chapter 41 (2) Ralph J. Smith, Circuit, Devices, and System, Fourth Edition, California,

Lebih terperinci

Representasi Bilangan dan Operasi Aritmatika

Representasi Bilangan dan Operasi Aritmatika Representasi Bilangan dan Operasi Aritmatika Eko Didik Widianto (didik@undip.ac.id) Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto (http://didik.blog.undip.ac.id) TSK205 Sistem Digital

Lebih terperinci

LAB SHEET TEKNIK DIGITAL. Dibuat oleh : Dilarang memperbanyak sebagian atau seluruh isi dokumen

LAB SHEET TEKNIK DIGITAL. Dibuat oleh : Dilarang memperbanyak sebagian atau seluruh isi dokumen No. LST/EKO/DEL 214/09 Revisi : 02 Tgl : 5 Mei 2010 Hal 1 dari 6 1. Kompetensi Memahami cara kerja rangkaian adder dan rangkaian subtractor. 2. Sub Kompetensi Memahami cara kerja rangkaian adder. Memahami

Lebih terperinci

Kegiatan Belajar 4 : Sistem Elektronika Digital Capaian Pembelajaran Mata Kegiatan Memahami Dasar-Dasar Elektronika Digital Sub Capaian Pembelajaran

Kegiatan Belajar 4 : Sistem Elektronika Digital Capaian Pembelajaran Mata Kegiatan Memahami Dasar-Dasar Elektronika Digital Sub Capaian Pembelajaran Kegiatan Belajar 4 : Sistem Elektronika Digital Capaian Pembelajaran Mata Kegiatan Memahami Dasar-Dasar Elektronika Digital Sub Capaian Pembelajaran Mata Kegiatan Menganalisis Rangkaian Logika Menganalisis

Lebih terperinci

Register & Counter -7-

Register & Counter -7- Sistem Digital Register & Counter -7- Missa Lamsani Hal 1 Register dan Pencacah Register adalah kumpulan elemen-elemen memori yang bekerja bersama sebagai satu unit. Pencacah (counter) adalah merupakan

Lebih terperinci

Representasi Bilangan dan Operasi Aritmatika

Representasi Bilangan dan Operasi Aritmatika Representasi Bilangan dan Operasi Aritmatika Eko Didik Widianto (didik@undip.ac.id) Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto (http://didik.blog.undip.ac.id) TSK205 Sistem Digital

Lebih terperinci

MAKALAH. Mata Kuliah. Arsitektur dan Organisasi Komputer

MAKALAH. Mata Kuliah. Arsitektur dan Organisasi Komputer MAKALAH Mata Kuliah Arsitektur dan Organisasi Komputer Kelompok 1 1. M. Dwi setiyo (14670015) 2. Bima Setya N. (14670018) 3. Yan Ari Firmansyah (14670021) 4. Lia Ayu K. (14670024) Program Studi Informatika

Lebih terperinci

2.1 Desimal. Contoh: Bilangan 357.

2.1 Desimal. Contoh: Bilangan 357. 2.Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal, dan heksadesimal. Sistem bilangan desimal merupakan sistem

Lebih terperinci

FORMAT BILANGAN DALAM MIKROPROSESOR

FORMAT BILANGAN DALAM MIKROPROSESOR 177 SISTEM MIKROPROSESOR dan MIKROKONTROLER B A B 8 FORMAT BILANGAN DALAM MIKROPROSESOR Mikroprosesor sebagai bagian dari sistem digital bekerja dalam format biner. Di dalam sistem mikroprosesor operasi

Lebih terperinci

REPRESENTASI DATA DATA REPRESENTATION

REPRESENTASI DATA DATA REPRESENTATION ASSALAMU ALAIKUM ARSITEKTUR KOMPUTER REPRESENTASI DATA DATA REPRESENTATION Disajikan Oleh : RAHMAD KURNIAWAN,S.T., M.I.T. TEKNIK INFORMATIKA UIN SUSKA RIAU Analog vs Digital Ada dua cara dasar untuk merepresentasikan

Lebih terperinci

SISTEM KONVERTER KODE DAN ADDER

SISTEM KONVERTER KODE DAN ADDER MAKALAH SISTEM KONVERTER KODE DAN ADDER Disusun untuk melengkapi Tugas Elektronika kelas A Teknik Fisika - Fakultas Teknologi Industri - ITS Disusun oleh : Kelompok 1. Abu Hamam 2412 100 100 2. Moudy Azura

Lebih terperinci

SISTEM DIGITAL 1. PENDAHULUAN

SISTEM DIGITAL 1. PENDAHULUAN SISTEM DIGITAL Perkembangan teknologi dalam bidang elektronika sangat pesat, kalau beberapa tahun lalu rangkaian elektronika menggunakan komponen tabung hampa, komponen diskrit, seperti dioda, transistor,

Lebih terperinci

PERCOBAAN 11. CODE CONVERTER DAN COMPARATOR

PERCOBAAN 11. CODE CONVERTER DAN COMPARATOR PERCOBAAN 11. TUJUAN: Setelah menyelesaikan percobaan ini mahasiswa diharapkan mampu Memahami prinsip kerja rangkaian Converter dan Comparator Mendisain beberapa jenis rangkaian Converter dan Comparator

Lebih terperinci

Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mengenal beberapa jenis register. 2. Menyusun rangkaian register. 3. Mempelajari cara kerja

Lebih terperinci

LAPORAN RESMI PRAKTIKUM SISTEM DIGITAL 2013 / 2014

LAPORAN RESMI PRAKTIKUM SISTEM DIGITAL 2013 / 2014 LAPORAN RESMI PRAKTIKUM SISTEM DIGITAL 23 / 24 MODUL 4 REGISTER, COUNTER DAN MEMORI OLEH KELOMPOK B ADE ILHAM FAJRI 5358 FRANKY SETIAWAN DALDIRI 5383 KELAS : B ASISTEN PEMBIMBING RISYANGGI AZMI FAIZIN

Lebih terperinci

untuk ASIC tinggi, algoritma harus diverifikasi dan dioptimalkan sebelum implementasi. Namun dengan berkembangnya teknologi VLSI, implementasi perangk

untuk ASIC tinggi, algoritma harus diverifikasi dan dioptimalkan sebelum implementasi. Namun dengan berkembangnya teknologi VLSI, implementasi perangk IMPLEMENTASI SERIAL MULTIPLIERS 8 BIT KE DALAM IC FPGA SEBAGAI PENDUKUNG PERCEPATAN OPERASI PERKALIAN DALAM KOMPRESI CITRA Drs. Lingga Hermanto, MMSi 1 Iman Ilmawan Muharam 2 1. Dosen Universitas Gunadarma

Lebih terperinci

SISTEM DIGITAL Dalam Kehidupan Sehari-hari PADA KALKULATOR

SISTEM DIGITAL Dalam Kehidupan Sehari-hari PADA KALKULATOR SISTEM DIGITAL Dalam Kehidupan Sehari-hari PADA KALKULATOR Salah satu alat dalam kehidupan sehari-hari kita yang menggunakan sistem digital yang paling mudah ditemui adalah kalkulator. Alat yang kelihatannya

Lebih terperinci

PRAKTIKUM RANGKAIAN DIGITAL

PRAKTIKUM RANGKAIAN DIGITAL PRAKTIKUM RANGKAIAN DIGITAL RANGKAIAN LOGIKA TUJUAN 1. Memahami berbagai kombinasi logika AND, OR, NAND atau NOR untuk mendapatkan gerbang dasar yang lain. 2. Menyusun suatu rangkaian kombinasi logika

Lebih terperinci

PENDAHULUAN SISTEM DIGITAL

PENDAHULUAN SISTEM DIGITAL PENDAHULUAN SISTEM DIGITAL a. Representation of Logic Function Sejarah sampai terbentuknya Logic function Pada awalnya saat ingin membuat suatu rangkaian, komponen-komponen yang ada harus dirangkai, kemudian

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKAT PEMBELAJARAN ELEKTRONIKA DIGITAL Yohandri, Ph.D JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSTAS NEGERI PADANG 23 BAHAN AJAR (Hand Out) Bahan Kajian : Elektronika Digital

Lebih terperinci

1. FLIP-FLOP. 1. RS Flip-Flop. 2. CRS Flip-Flop. 3. D Flip-Flop. 4. T Flip-Flop. 5. J-K Flip-Flop. ad 1. RS Flip-Flop

1. FLIP-FLOP. 1. RS Flip-Flop. 2. CRS Flip-Flop. 3. D Flip-Flop. 4. T Flip-Flop. 5. J-K Flip-Flop. ad 1. RS Flip-Flop 1. FLIP-FLOP Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebut Bistobil Multivibrator. Rangkaian flip-flop mempunyai sifat sekuensial karena sistem kerjanya diatur

Lebih terperinci

Operasi Aritmatika Sistem Bilangan Biner & Bilangan Oktal

Operasi Aritmatika Sistem Bilangan Biner & Bilangan Oktal Operasi Aritmatika Sistem Bilangan Biner & Bilangan Oktal Karunia Suci Lestari k.sucilestari97@gmail.com :: http://ksucilestari97.wordpress.com Abstrak Dalam pengolahan data sistem bilangan terdapat juga

Lebih terperinci

Representasi Data. M. Subchan M

Representasi Data. M. Subchan M Representasi Data M. Subchan M DATA Fakta berupa angka, karakter, symbol, gambar, suara yang mepresentasikan keadaan sebenarnya yg selanjutnya dijadikan sbg masukan suatu sistem informasi Segala sesuatu

Lebih terperinci

Fakultas Teknologi Industri Universitas Gunadarma 2013

Fakultas Teknologi Industri Universitas Gunadarma 2013 Penyusun : 1. Imam Purwanto, S.Kom., MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom. ebook REPRESENTASI DATA Fakultas Teknologi Industri Universitas Gunadarma

Lebih terperinci

Sistem Bilangan & Kode Data

Sistem Bilangan & Kode Data Sistem Bilangan & Kode Data Sistem Bilangan (number system) adalah suatu cara untuk mewakili besaran dari suatu item fisik. Sistem bilangan yang banyak digunakan manusia adalah desimal, yaitu sistem bilangan

Lebih terperinci

SISTEM BILANGAN REPRESENTASI DATA

SISTEM BILANGAN REPRESENTASI DATA SISTEM BILANGAN REPRESENTASI DATA Data : bilangan biner atau informasi berkode biner lain yang dioperasikan untuk mencapai beberapa hasil penghitungan penghitungan aritmatik, pemrosesan data dan operasi

Lebih terperinci