BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Baja sebagai Material Struktur Baja merupakan salah satu bahan bangunan yang unsur utamanya terdiri dari besi. Baja ditemukan ketika dilakukan penempaan dan pemanasan yang menyebabkan tercampurnya besi dengan bahan karbon pada proses pembakaran, sehingga membentuk baja yang mempunyai kekuatan yang lebih besar dari pada besi Kelebihan dan Kekurangan Beberapa keunggulan dan Kelemahan baja sebagai material konstruksi, antara Lain: 1) Kelebihan material baja sebagai material konstruksi, antara lain: Kekuatan Tinggi Baja memiliki kekuatanyang kinggi, sehingga dapat menguragi ukuran struktur serta mengurangi pula berat sendiri dari struktur. Keseragaman dan Keawetan yang Tinggi Baja memiliki keseragaman dan keawetan yang tinggi, tidak seperti halnya material beton bertulang yang terdiri dari berbagai macam bahan penyusun, material baja lebih seragam/homogen serta memiliki tingkat keawetan yang jauh lebih tinggi jika prosedur perawatan dilakukan sebagaimana mestinya. 7

2 Elastisitas Baja berperilaku mendekati asumsi perancang teknik dibandingkan dengan material lain karena baja mengikuti hukum Hooke hingga mencapai tegangan yang cukup tinggi. Momen inersia untuk penampang baja dapat ditentukan dengan pasti dibandingkan dengan penampang beton bertulang. Daktilitas Daktilitas baja cukup tinggi, karena suatu batang baja yang menerima tegangan tarik yang tinggi akan mengalami regangan tarik cukup besar sebelum terjadi keruntuhan. Keuntungan Lain Beberapa keuntungan lain pemakaian baja sebagai material konstruksi adalah kemudahan penyambungan antarelemen yang satu dengan yang lainnya menggunakan alat sambung las dan baut. Pembuatan baja melalui proses gilas panas mengakibatkan baja mudah dibentuk menjadi penampang-penampang yang diinginkan. Kecepatan pelaksanaan konstruksi baja juga menjadi suatu keunggulan material baja. 2) Kelemahan Baja sebagai Material Struktur Secara umum baja mempunyai kekurangan seperti dijelaskan dibawah ini. Biaya pemeliharaan umumnya material baja sangat rentan terhadap korosi jika dibiarkan terjadi kontak dengan udara dan air sehingga perlu dicat secara periodik. 8

3 Biaya perlindungan terhadap kebakaran meskipun baja tidak mudah terbakar tetapi kekuatannya menurun drastis jika terjadi kebakaran. Selain itu baja juga merupakan konduktor panas yang baik sehingga dapat menjadi pemicu kebakaran pada komponen lain. Akibatnya, portal dengan kemungkinan kebakaran tinggi perlu diberi pelindung. Ketahanan material baja terhadap api dipersyaratkan dalam Pasal 14 SNI (anonim2, 2002). Rentan Terhadap Buckling Semakin langsung suatu elemen tekan, semakin besar pula bahaya terhadap buckling (tekuk). Sebagaimana telah disebutkan bahwa baja mempunyai kekuatan yang tinggi per satuan berat dan jika digunakan sebagai kolom seringkali tidak ekonomis karena banyak material yang perlu digunakan untuk memperkuat kolom terhadap buckling. Fatik Kekuatan baja akan menurun jika mendapat beban siklis. Dalam perancangan perlu dilakukan pengurangan kekuatan jika pada elemen struktur akan terjadi beban siklis Sifat Mekanik Baja Standar SNI Menurut SNI (anonim2, 2002) sifat mekanis baja struktural yang digunakan dalam perencanaan harus memenuhi persyaratan minimum yang diberikan pada Tabel

4 Tabel 2.1 Persyaratan Sifat Mekanis Baja Struktural Standar SNI (Anonim2, 2002) Tegangan putus Tegangan Leleh Peregangan c Minimum f u Minimum f y Minimum (Mpa) (Mpa) (%) BJ BJ BJ BJ BJ Tegangan Leleh Tegangan leleh untuk perencanaan ( f y ) tidak boleh diambil melebihi nilai yang diberikan pada tabel sifat mekanisme baja struktural. Tegangan Putus Tegangan putus untuk perencanaan ( f u ) tidak boleh diambil melebihi nilai yang diberikan pada tabel sifat mekanisme baja struktural. Sifat-sifat mekanis lainnya Sifat-sifat mekanisme lainnya baja struktural untuk perencanaan adalah sebagai berikut : Modulus elastis Modulus geser : E = Mpa : G = Mpa Nisbah poisson : = 0,3 10

5 Koefisien pemuaian : = / o C Sifat Mekanik Baja Standar JIS Jepang merupakan salah satu produsen baja terbesar di dunia. Para perusahaan baja asal jepang menggunakan standar JIS seperti Nippon Steel & Sumitomo Metal Corporation (NSSMC). Berikut merupakan tabel material baja standar JIS. Tabel 2.2 Persyaratan Sifat Mekanis Baja Struktura Standar JIS (Wiryanto Dewobroto, 2015) Kategor i Kuat Standar Mutu Kuat Leleh Kuat Tarik (MPa) (MPa) Min. Maks. Min. Maks. Rasio Leleh (%) Elongasi (%) 400 N/mm 2 JIS G 3101 (SS Steel) JIS G SS SM400A (SM Steel) SM 400B SM 400C JIS G SM400A (SN Steel) SM 400B SM

6 400 N/mm 2 JIS G 3101 (SS Steel) JIS G 400C SS SM490A (SM Steel) JIS G 3136 (SM Steel) SM 490B SM 490C SM 490B SM 490C Nippon Steel Nippon Steel & Sumitomo Metal Corporation (NSSMC) didirikan pada Oktober 2012 yang merupakan kerja sama antara Nippon Steel Corporation dan Sumitomo Metal Industries, Ltd adalah salah satu perusahaan Jepang penghasil baja terdepan di dunia yang berpartisipasi dalam pembuatan material struktur inovatif yang bersifat tahan kerusakan dan memiliki masa layan yang panjang. Nippon Steel & Sumitomo Metal Corporation telah mengembangkan baja mutu tinggi kelas 1000 N (kuat tarik 950 N/mm 2 ). PT Krakatau Steel Tbk (KRAS) dan Nippon Steel Corporation (NSC) bekerjasama untuk mengembangkan infrastruktur dan bangunan tahan gempa 12

7 berbahan dasar baja di Indonesia. Produsen baja asal Jepang ini menggandeng PT Krakatau Steel dalam mengembangkan Nittetsu Super Frame atau struktur tahan gempa. Produk buatan Nippon Steel Corporation ini punya keunggulan dibanding konstruksi konvensional karena tahan gempa bumi, biaya lebih murah, konstruksi singkat dan hemat energi. Dalam bidang infrastruktur, Nippon Steel & Sumitomo Metal Corporation mempromosikan perkembangan dari produk baru baja Hollow tube untuk menjawab kebutuhan akan struktur yang lebih tahan terhadap gempa, dan biaya yang lebih murah dalam pembangunan dan perbaikan. Nippon steel memiliki spesifikasi sendiri, dimana Sifat fisik dari Nippon Steel memiliki beberapa tipe (Lampiran 1) dan Nippon steel mengacu pada JIS (Japan Industrial Standard). 2.3 Profil Baja Baja tersedia dalam berbagai bentuk penampang yang sering dikenal dengan profil. Berdasarkan cara pembentukan penampang profil baja, dikenal 2 macam baja, yaitu Hot Rolled Sections dan Cold Rolled Sections. Baja tipe hot rolled section dibentuk (rolled) pada kondisi panas sedangkan baja tipe cold rolled section dibentuk pada kondisi dingin. Baja Hot Rolled Sections memiliki beberapa penampang, yaitu dapat dilihat pada gambar

8 Gambar 2.1 Strandar tipe penampang profil baja canai panas (Macdonad, 2002) Secara teoritis terdapat jumlah bentuk yang tidak terbatas dapat digunakan untuk memikul beban tekan dalam suatu struktur. Tetapi dari segi praktis, jumlah bentuk penampang elemen tekan menjadi terbatas karena beberapa pertimbangan yaitu: profil yang tersedia, masalah sambungan, tipe struktur. Berikut merupakan inersia dari penampang WF dan Hollow Tub: 14

9 Tabel 2.2 Inersia Penampang WF dan Hollow Tub (Wiryanto Dewobroto, 2015) Tampang Tub untuk pekerjaan konstruksi bangunan Nippon Steel & Sumitomo Metal Corporation terus melakukan perkembangan akan produk-produknya, dalam menciptakan baja yang memiliki kekuatan tinggi dan biaya yang lebih ekonomis. Karena itu Nippon Steel & Sumitomo Metal Corporation menciptakan dan menyuplai baja tabung yang unik dan metode penyambungannya untuk memenuhi kebutuhan ini. 15

10 Beberapa kelebihan tampang tube antara lain : a) Radius girasi yang konstan b) Tidak memerlukan bracing c) Lebih mudah dalam pengecatan d) Permukaan yang lebih sedikit untuk dicat dengan lapisan tahan api e) Mempunyai tegangan torsi yang baik f) Permukaan yang lebih baik dari segi estetika g) Profil bulat baja hollow memiliki ketahanan yang lebih baik terhadap angin. h) Tidak mudah kotor seperti pada bagian sayap dari profil terbuka WF. i) Untuk beban dinamis, baja tabung memiliki frekuensi getar yang lebih tinggi dari penampang baja lain. For tubular sections, higher strength to weight ratio could result in upto 30% savings in steel ( Comparison Between Conventional Steel Structures And Tubular Steel Structures, M.G.Kalyanshetti, G.S. Mirajkar; 2012). Beberapa kelemahan dari penampang pipa dan persegi atau segi empat adalah: 1. Memerlukan penutup pada ujung penampang untuk mencegah korosi. 2. Mempunyai berat yang lebih besar dibandingkan dengan profil IWF untuk modulus penampang yang sama. 3. Dalam hal sambungan dengan rivet atau baut, tetapi dapat diatasi dengan alat penyambung las. 16

11 Ada beberapa jenis sambungan yang digunakan untuk kolom tampang hollow dengan balok baja WF. Berikut merupakan beberapa jenis sambungan yang digunakan, yaitu: (a) Internal diaphragm (b) Eksternal diaphragm (c) Through diaphragm Gambar 2.2. Detail Sambungan (Ying Qin, 2013) 17

12 2.4 Alat sambung Baut Pendahuluan Setiap struktur baja merupakan gabungan dari beberapa komponen batang yang disatukan dengan alat pengencang (Agus Setiawan, 2008)..Beberapa alat sambung yang sering digunakan adaah: Baut, mur dan ring Alat sambung mutu tinggi Las Penghubung geser jenis paku yang dilas Baut angker Salah satu alat pengencang di samping las yang cukup populer adalah baut terutama baut mutu tinggi. Ada dua tipe baut mutu tinggi yang distandarkan oleh ASTM adalah tipe A325 dan A490. Baut ini memiliki kepala berbentuk segi enam. Baut A325 terbuat dari baja karbon yang memiliki kuat leleh Mpa, baut A490 terbuat daari baja alloy dengan kuat leleh Mpa, tergantung pada diameternya (Agus Setiawan, 2008) Tahanan Nominal Baut Suatu baut yang memikul beban terfaktor, Ru, sesuai persyaratan LRFD harus memenuhi (Agus Setiawan, 2008) : R u ϕ. R n...(2.1) Dimana: R u = Tahanan nominal baut 18

13 ϕ = Faktor reduksi Tahanan Geser Baut Tahanan nominal satu baut yang memikul gaya geser memenuhi persamaan: R n m. r 1. f b u. A b...(2.2) Dimana: r1 = 0,5 untuk baut tanpa ulir pada bidang geser r1 = 0,4 untuk baut dengan ulir pada bidang geser f b u = Kuat tarik baut (MPa) A b = Luas bruto penampang baut pada daerah tak berulir m = jumlah bidang geser Tahanan Tarik Baut Baut yang memikul gaya tarik tahanan nominalnya dihitung menurut: R n 0,75. f u b. A b...(2.3) Dimana: f u b = Kuat tarik baut (MPa) A b = Luas bruto penampang baut pada daerah tak berulir Tahanan Tumpu Baut Tahanan tumpu nominal tergantung kondisi yang terlemah dari baut atau komponen pelat yang disambung. Besarnya ditentukan sebagai berikut: R n = 2,4. d b. t p. f u...(2.4) 19

14 Dimana: d b = Diameter baut pada daerah tak berulir t p = Tebat pelat f u = Kuat tarik putus terendah dari baut atau pelat Jarak dan spasi baut Bambar 2.3 Jarak dan spasi baut (Wiryanto Dewobroto, 2015) Dimana: S = Spasi minimum antar lubang (S 2,667d 3d) S t = Jarak antara pusat lubang ke tepi bagian sambungan (S 1,25d) 20

15 2.5 Beban Pada Struktur Beban Mati Menurut Peraturan Pembebanan Indonesia Untuk Gedung (Anonim3,1983), beban mati adalah berat dari semua bagian suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian-penyelesaian, mesin-mesin serta peralatan tetap yang merupakan bagian yang tidak terpisahkan dari gedung itu. Oleh karena itu, beban mati terdiri atas: a. Beban sendiri dari bahan-bahan bangunan penting dan dari beberapa komponen gedung yang harus ditinjau di dalam suatu gedung. b. Berat sendiri dari bahan bangunan dan dari komponen gedung yang tidak tercantum dalam persyaratan. Beban mati atau berat sendiri bahan bangunan dan komponen gedung yang dipakai berdasarkan tabel: Tabel 2.4 Berat Sendiri Bahan Bangunan dan Komponen Gedung (Anonim3, 1983) Bahan Bangunan Berat Baja Batu alam Batu belah, batu bulat, batu gunung Batu pecah Beton Beton bertulang Katu (kelas I) Kerikil, koral 7850 kg/m³ 2600 kg/m³ 1500 kg/m³ 1450 kg/m³ 2200 kg/m³ 2400 kg/m³ 1000 kg/m³ 1650 kg/m³ 21

16 Pasangan batu merah Pasangan batu belah, batu bulat, batu 1700 kg/m³ 2200 kg/m³ gunung Pasangan batu cetak Komponen Gedung 2200 kg/m³ Berat Adukan, per cm tebal: - dari semen - dari kapur, semen merah atau tras 21 kg/m 2 17 kg/m 2 Aspal, termasuk bahan mineral penambah per cm tebal 14 kg/m 2 Dinding pasangan batu merah: - satu bata - setengah bata 450 kg/m kg/m 2 Dinding pasangan batako berlubang: - tebal dinding 20 cm (HB 20) - tebal dinding 10 cm (HB 10) 200 kg/m kg/m 2 Langit-langit dan dinding (termasuk rusuk-rusuknya tanpa penggantung langit-langit atau pengaku), yaitu: - semen asbes (eternit dan bahan lain 11 kg/m 2 sejenisnya) dengan tebal maksimum 4 mm - kaca dengan tebal 3-5 mm 10 kg/m 2 Penggantung langit-langit (dari kayu) 22

17 dengan bentang maksimum 5 m 7 kg/m 2 Penutup atap genteng dengan reng dan usuk/kaso per m 2 bidang atap 50 kg/m Beban Hidup Beban hidup adalah beban yang terjadi akibat penghunian atau penggunaan suatu gedung, dan di dalamnya termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah, mesin-mesin serta peralatan yang tidak merupakan bagian yang tidak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan lantai dan atap tersebut (Anonim3, 1983) pada Bab 3. Beban hidup terdiri dari beban yang diakibatkan oleh pemakaian gedung dan tidak termasuk beban mati, beban konstruksi dan beban akibat lingkungan (alam) seperti beban angin, beban salju, beban hujan, beban gempa, atau beban banjir. Beban hidup pada lantai bangunan yang digunakan terdapat dalam tabel: 23

18 Tabel 2.5 Beban Hidup pada Lantai Gedung (Anonim3, 1983) Kegunaan Bangunan - Lantai dan tangga rumah tinggal Berat 125 kg/m 2 sederhana - Lantai sekolah, ruang kuliah, 250 kg/m 2 kantor, toko, toserba, restoran, hotel, asrama dan rumah sakit. - Lantai ruang olah raga - Lantai pabrik, bengkel, gudang, 400 kg/m kg/m 2 perpustakaan, ruang arsip, toko buku, ruang mesin dan lain-lain. - Lantai gedung parkir bertingkat 800 kg/m 2 untuk lantai bawah. - Tangga, bordes tangga 300 kg/m Beban Gempa (Quake Load) Analisis struktur terhadap beban gempa mengacu pada Standar Perencanaan Ketahanan Gempa untuk Rumah dan Gedung (Anonim1, 2002). Analisis struktur terhadap beban gempa pada gedung dilakukan dengan Metode Analisis Dinamik Spektrum Respon. Besarnya beban gempa nominal pada struktur bangunan dihitung dengan rumus: 24

19 berikut: Perhitungan gaya geser dasar total, V, pada suatu arah, ditetapkan sebagai V C. I R W t... (2.5) Dan harus memenuhi persamaan berikut ini:... (2.6) Dimana: V = gaya geser dasar rencana total Vmax = gaya geser dasar rencana maksimum C = faktor respons gempa yang didapat dari spektrum respons gempa rencana untuk waktu getar alami fundamental T dilihat dari gambar II.13 I = I 1 I 2 I 1 = faktor keutamaan untuk menyesuaikan periode ulang gempa berkaitan dengan penyesuaian probabilitas terjadinya gempa itu selama umur gedung I 2 = faktor keutamaan untuk menyesuaikan perioda ulang gempa berkaitan dengan penyesuaian umur gedung tersebut. Faktor keutamaan untuk berbagai-bagai jenis gedung harus diambil menurut tabel 2.1. R = faktor reduksi gempa 1,6 < R < 8,5 25

20 R = 1,6 faktor reduksi gempa untuk struktur gedung yang berperilaku elastik penuh. R = 8,5 faktor reduksi gempa untuk struktur gedung yang berperilaku daktail penuh (Sistem Rangka Pemikul Momen Khusus/SRPMK). Wt = berat total gedung 26

21 Gambar 2.4 Respons Spektrum Gempa Rencana (Anonim1, 2002) Tabel 2.6 Faktor Keutamaan untuk berbagai kategori gedung dan bangunan 27

22 (Anonim1, 2002) Faktor Kategori Gedung Keutamaan I 1 I 2 I Gedung umum seperti untuk penghunian, perniagaan dan 1,0 1,0 1,0 perkantoran Monumen dan bangunan monumental 1,0 1,6 1,6 Gedung penting pasca gempa seperti rumah sakit, instalasi air bersih, pembangkit tenaga listrik, pusat 1,4 1,0 1,4 penyelamatan dalam keadaan darurat, fasilitas radio dan televisi Gedung untuk menyimpan bahan berbahaya seperti gas, produk minyak 1,6 1,0 1,6 bumi, asam, bahan beracun. Cerobong, tangki di atas menara 1,5 1,0 1,5 Catatan : Untuk semua struktur bangunan gedung yang ijin penggunaannya diterbitkan sebelum berlakunya Standar ini maka Faktor Keutamaam, I, dapat dikalikan 80% 28

23 Untuk keperluan analisis pendahuluan struktur dan pendimensian pendahuluan dari unsur-unsurnya, waktu getar alami struktur gedung, T, dalam arah masing-masing smbu utama dapat ditentukan dengan menggunakan rumus Rayleigh seperti berikut ini:... (2.7) Atau menggunakan rumus:... (2.8) Dimana: T Wi di g Fi H = waktu getar alami struktur gedung = berat bangunan pada tingkat i = defleksi (simpangan) pada tingkat i = percepatan gravitasi = gaya gempa horizontal = tinggi struktur L = panjang bangunan dalam arah yang ditinjau (memanjang/melintang) 29

24 Beban geser dasar akibat gempa (V) yang dibagikan ke sepanjang tinggi struktur menjadi beban-beban horizontal terpusat yang bekerja pada masingmasing tingkat lantai dengan menggunakan rumus:... (2.9) Dimana: Wi hi V = berat bangunan pada tingkat i = ketinggian bangunan pada tingkat i = gaya geser dasar akibat beban gempa 30

25 Tabel 2.7 Faktor daktilitas maksimum, faktor reduksi gempa maksimum, faktor tahanan lebih struktur dan faktor tahanan lebih total beberapa jenis sistem dan subsistem struktur gedung (Anonim1, 2002) Sistem dan subsistem Uraian sistem pemikul beban gempa μ m R m f 1. Sistem dinding penumpu (Sistem struktur yang tidak memiliki rangka ruang pemikul beban gravitasi secara lengkap. 2. Sistem rangka gedung (Sistem struktur yang pada dasarnya memiliki rangka ruang pemikul beban gravitasi secara lengkap. Beban lateral dipikul dinding geser atau rangka 3. Sistem rangka pemikul momen (Sistem struktur yang pada dasarnya memiliki rangka ruang pemikul beban gravitasi secara lengkap. 4. Sistem ganda (Terdiri dari: 1) rangka ruang yang memikul seluruh beban gravitasi; 2) pemikul beban lateral berupa dinding geser atau rangka bresing dengan rangka pemikul momen. Rangka pemikul momen harus direncanakan secara terpisah 5. mampu Sistem memikul struktur sekurang- gedung kurangnya kolom 25% dari seluruh kantilever: beban 6. Sistem lateral; (Sistem interaksi 3) kedua struktur dinding sistem yang harus 7. memanfaatkan direncanakan Subsistem geser tunggal kolom untuk (Subsistem memikul kantilever secara struktur dengan untuk bersama-sama memikul bidang rangka yang membentuk seluruh beban beban struktur lateral) gedung dengan memperhatikan secara keseluruhan) interaksi /sistem ganda) 1. Dinding geser beton bertulang 2,7 4,5 2,8 2. Dinding penumpu dengan rangka baja ringan 1,8 2,8 2,2 3. Rangka bresing di mana dan bresingnya memikul beban a.baja 2,8 4,4 2,2 b.beton bertulang (tidak untuk Wilayah 5 & 6) 1,8 2,8 2,2 1. Rangka bresing eksentris baja (RBE) 4,3 7,0 2,8 2. Dinding geser beton bertulang 3,3 5,5 2,8 3. Rangka bresing biasa a.baja 3,6 5,6 2,2 b.beton bertulang (tidak untuk Wilayah 5 & 6) 3,6 5,6 2,2 4. Rangka bresing konsentrik khusus a.baja 4,1 6,4 2,2 5. Dinding geser beton bertulang berangkai daktail 4,0 6,5 2,8 6. Dinding geser beton bertulang kantilever 3,6 6,0 2,8 7. Dinding geser daktail beton bertulang kantilever 3,3 5,5 2,8 1. Rangka pemikul daktail momen khusus (SRPMK) a.baja 5,2 8,5 2,8 b.beton bertulang 5,2 8,5 2,8 2. Rangka pemikul momen menengah beton (SRPMM) 3,3 5,5 2,8 3. Rangka pemikul momen biasa (SRPMB) a.baja 2,7 4,5 2,8 b.beton bertulang 2,1 3,5 2,8 4. Rangka batang baja pemikul momen 4,0 6,5 2,8 1. Dinding khusus geser a.beton bertulang dengan SRPMK beton bertulang 5,2 8,5 2,8 b.beton bertulang dengan SRPMB baja 2,6 4,2 2,8 c. Beton bertulang dengan SRPMM beton bertulang 4,0 6,5 2,8 2. RBE baja a.dengan SRPMK baja 5,2 8,5 2,8 b.dengan SRPMB baja 2,6 4,2 2,8 3. Rangka bresing biasa a.baja dengan SRPMK baja 4,0 6,5 2,8 b.baja dengan SRPMB baja 2,6 4,2 2,8 c.beton bertulang dengan SRPMK beton bertulang 4,0 6,5 2,8 d.beton bertulang (tidak dengan untuk Wilayah SRPMM 5 beton & 6) bertulang 2,6 4,2 2,8 4. Rangka (tidak bresing untuk konsentrik Wilayah 5 khusus & 6) a.baja dengan SRPMK baja 4,6 7,5 2,8 b.baja dengan SRPMB baja 2,6 4,2 2,8 Sistem struktur kolom kantilever 1,4 2,2 2 Beton bertulang biasa (tidak untuk Wilayah 3, 4, 5 & 6) 3,4 5,5 2,8 1. Rangka terbuka baja 5,2 8,5 2,8 2. Rangka terbuka beton bertulang 5,2 8,5 2,8 3. Rangka terbuka beton bertulang dengan balok 3,3 5,5 2,8 4. Dinding geser beton bertulang berangkai pratekan (bergantung daktail pada indeks baja total) penuh. 4,0 6,5 2,8 31

26 2.5.4 Kombinasi Pembebanan Peraturan pembebanan menggunakan SNI Oleh karena itu, struktur baja harus mampu memikul semua kombinasi pembebanan berikut ini 1,4D...(2.10) 1,2D + 1,6 L + 0,5 (La atau H)...(2.11) 1,2D + 1,6 (La atau H) + (γ L L atau 0,8W)...(2.12) 1,2D + 1,3 W + γ L L + 0,5 (La atau H)...(2.13) 1,2D ± 1,0E + γ L L...(2.14) 0,9D ± (1,3W atau 1,0E)...(2.15) Dimana: D = beban mati yang diakibatkan oleh berat konstruksi permanen, termasuk dinding, lantai, atap, plafond, partisi tetap, tangga, dan peralatan layan tetap. L = beban hidup yang ditimbulkan oleh penggunaan gedung. La = beban hidup di atap yang ditimbulkan selama perawatan oleh pekerja, peralatan, dan material, atau selama penggunaan biasa oleh orang dan benda bergerak. W = beban angin E = beban gempa 2.6 Kinerja Batas Layan Kinerja batas layan ( s) struktur gedung ditentukan oleh simpangan antartingkat akibat pengaruh Gempa Rencana, yaitu untuk membatasi terjadinya 32

27 pelelehan baja dan peretakan beton yang berlebihan, di samping untuk mencegah kerusakan non-struktur dan ketidaknyamanan penghuni. Untuk memenuhi persyaratan kinerja batas layan ( s) struktur gedung tidak boleh melampaui: (SNI )...(2.16) Nilai yang digunakan adalah nilai yang terkecil. Kinerja batas ultimit ( m) struktur gedung ditentukan oleh simpangan dan simpangan antar-tingkat maksimum struktur gedung akibat pengaruh gempa rencana dalam kondisi struktur gedung di ambang keruntuhan, yaitu untuk membatasi kemungkinan terjadinya keruntuhan struktur gedung yang dapat menimbulkan korban jiwa. Simpangan dan simpangan antar-tingkat ini harus dihitung dari simpangan struktur gedung akibat pembebanan gempa nominal, dikalikan dengan suatu faktor pengali ξ sebagai berikut: (SNI ) ξ= 0,7 R (untuk struktur gedung beraturan)...(2.17) m = ξx s...(2.18) 2.7 SAP 2000 Program SAP 2000 merupakan pengembangan program SAP yang dibuat oleh Prof. Edward L. Wilson dari University of California at Berkeley, US sekitar tahun Untuk melayani keperlua komersial dari program SAP, pada tahun 1975 dibentuk perusahaan Computer & Structure, lnc. Dipimpin oleh Ashraf 33

28 Habibullah, di mana perusahaan tersebut sampai saat ini masih tetap eksis dan berkembang ( Sebagai program komputer analisa struktur yang dikembangkan cukup lama dari lingkungan universitas sehingga source code pada awal mulanya dapat dengan mudah dipelajari, maka program SAP menjadi cikal bakal programprogram analisa struktur lain di dunia. Dengan reputasi lebih dari 30 tahun, program SAP dikenal secara luas dalam komunitas rekayasa, khususnya di bidang teknik sipil dan secara spesifik lagi adalah para structural engineer. SAP 2000 merupakan salah satu program aplikasi komputer yang paling popular dalam dunia desain struktur konstruksi. Adapun keunggulan program SAP 2000 antara lain memiliki fasilitas desain elemen, baik untuk material baja maupun beton. Disamping itu, SAP 2000 benar-benar mampu membantu penyelesaian pekerjaan analisis struktur karena kita hanya memasukkan data dengan benar, maka proses analisis akan langsung diambil alih oleh SAP 2000 dan prosesnya pun tergolong sangat cepat. Selain itu, kelebihan dari program ini adalah kita tidak hanya dapat menganalisis struktur (untuk mengetahui gaya-gaya dalam yang timbul), tetapi juga bisa melanjutkannya sampai kebagian check/design struktur untuk mengetahui dimensi dan jumlah tulangan. 34

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Bidang konstruksi memiliki peran yang sangat penting dalam pembangunan prasarana yang diperlukan dalam mempertahankan dan mengembangkan peradaban manusia. Di era globalisasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan BAB II TINJAUAN PUSTAKA 2.1 Umum Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan suatu kombinasi antara beton dan baja tulangan. Beton bertulang merupakan material yang kuat

Lebih terperinci

DAFTAR PUSTAKA. Budiono, Bambang, Diktat Kuliah Struktur Beton I, Penerbit ITB, Bandung, 1998.

DAFTAR PUSTAKA. Budiono, Bambang, Diktat Kuliah Struktur Beton I, Penerbit ITB, Bandung, 1998. Laporan ugas Akhir Perencanaan Struktur Gedung Apartemen Salemba Residences DAFAR PUSAKA Budiono, Bambang, Diktat Kuliah Struktur Beton I, Penerbit IB, Bandung, 1998. Budiono, Bambang, Diktat Kuliah Analisa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. itu sendiri adalah beban-beban baik secara langsung maupun tidak langsung yang. yang tak terpisahkan dari gedung.

BAB II TINJAUAN PUSTAKA. itu sendiri adalah beban-beban baik secara langsung maupun tidak langsung yang. yang tak terpisahkan dari gedung. BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri adalah

Lebih terperinci

3.1. Penyajian Laporan BAB III METODE KAJIAN. Gambar 3.1 Bagan alir metode penelitian

3.1. Penyajian Laporan BAB III METODE KAJIAN. Gambar 3.1 Bagan alir metode penelitian 3.1. Penyajian Laporan BAB III METODE KAJIAN Gambar 3.1 Bagan alir metode penelitian 7 3.2. Data Yang Diperlukan Untuk kelancaran penelitian maka diperlukan beberapa data yang digunakan sebagai sarana

Lebih terperinci

RANGKUMAN Peraturan Pembebanan Indonesia untuk Gedung

RANGKUMAN Peraturan Pembebanan Indonesia untuk Gedung RANGKUMAN Peraturan Pembebanan Indonesia untuk Gedung - 1983 Kombinasi Pembebanan Pembebanan Tetap Pembebanan Sementara Pembebanan Khusus dengan, M H A G K = Beban Mati, DL (Dead Load) = Beban Hidup, LL

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 Sub Pokok Bahasan : Perilaku Mekanis Baja Pengantar LRFD Untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur BAB II TINJAUAN PUSTAKA.. Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri adalah

Lebih terperinci

Interpretasi dan penggunaan nilai/angka koefisien dan keterangan tersebut sepenuhnya menjadi tanggung jawab pengguna.

Interpretasi dan penggunaan nilai/angka koefisien dan keterangan tersebut sepenuhnya menjadi tanggung jawab pengguna. DISCLAIMER Seluruh nilai/angka koefisien dan keterangan pada tabel dalam file ini didasarkan atas Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung (SKBI-1.3.5.3-1987), dengan hanya mencantumkan nilai-nilai

Lebih terperinci

PERHITUNGAN BEBAN GEMPA PADA BANGUNAN GEDUNG BERDASARKAN STANDAR GEMPA INDONESIA YANG BARU 1

PERHITUNGAN BEBAN GEMPA PADA BANGUNAN GEDUNG BERDASARKAN STANDAR GEMPA INDONESIA YANG BARU 1 PERHITUNGAN BEBAN GEMPA PADA BANGUNAN GEDUNG BERDASARKAN STANDAR GEMPA INDONESIA YANG BARU 1 Himawan Indarto ABSTRAK Dengan adanya standar gempa Indonesia yang baru yaitu Perencanaan Ketahanan Gempa Untuk

Lebih terperinci

PERANCANGAN STRUKTUR TAHAN GEMPA

PERANCANGAN STRUKTUR TAHAN GEMPA PERANCANGAN STRUKTUR TAHAN GEMPA SNI.03-1726-2002 TATA CARA PERENCANAAN KETAHANAN GEMPA UNTUK BANGUNAN GEDUNG FILOSOFI GEMPA 1. MENGHIDARI TERJADINYA KORBAN JIWA MANUSIA 2. MEMBATASI KERUSAKAN, SEHINGGA

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL Oleh : Fajar Nugroho Jurusan Teknik Sipil dan Perencanaan,Institut Teknologi Padang fajar_nugroho17@yahoo.co.id

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Dalam perencanaan bangunan tinggi, struktur gedung harus direncanakan agar kuat menahan semua beban yang bekerja padanya. Berdasarkan Arah kerja

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Perencanaan suatu struktur bangunan gedung didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Pengertian

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA Alderman Tambos Budiarto Simanjuntak NRP : 0221016 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS KRISTEN

Lebih terperinci

PERANCANGAN STRUKTUR KUBAH GEODESIK BAJA SEBAGAI HUNIAN SEMI PERMANEN KORBAN BENCANA ALAM. Oleh : CHRISTIANTO CHANDRA KUSUMA NPM :

PERANCANGAN STRUKTUR KUBAH GEODESIK BAJA SEBAGAI HUNIAN SEMI PERMANEN KORBAN BENCANA ALAM. Oleh : CHRISTIANTO CHANDRA KUSUMA NPM : PERANCANGAN STRUKTUR KUBAH GEODESIK BAJA SEBAGAI HUNIAN SEMI PERMANEN KORBAN BENCANA ALAM Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2) 8 BAB III LANDASAN TEORI 3.1. Elemen Struktur 3.1.1. Kuat Perlu Kuat yang diperlukan untuk beban-beban terfaktor sesuai pasal 4.2.2. dan pasal 7.4.2 SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2.

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR Diajukan sebagai salah satu persyaratan menyelesaikan Tahap Sarjana pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Struktur Atas Bangunan MULAI Skematik struktur 1. Penentuan spesifikasi material Input : 1. Beban Mati 2. Beban Hidup 3. Beban Angin 4. Beban

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

3. BAB III LANDASAN TEORI

3. BAB III LANDASAN TEORI 3. BAB III LANDASAN TEORI A. Pembebanan 1. Super Imposed Dead Load (SIDL) Beban mati adalah beban dengan besar yang konstan dan berada pada posisi yang sama setiap saat. Beban ini terdiri dari berat sendiri

Lebih terperinci

PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA

PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA Oleh: Agus 1), Syafril 2) 1) Dosen Jurusan Teknik Sipil,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

1- PENDAHULUAN. Baja Sebagai Bahan Bangunan

1- PENDAHULUAN. Baja Sebagai Bahan Bangunan 1- PENDAHULUAN Baja Sebagai Bahan Bangunan Sejak permulaan sejarah, manusia telah berusaha mencari bahan yang tepat untuk membangun tempat tinggalnya, jembatan untuk menyeberangi sungai dan membuat peralatan-peralatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Umum Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman terhadap dari segala kemungkinan

Lebih terperinci

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya,

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka. Dalam merancang suatu struktur bangunan harus diperhatikan kekakuan, kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, serta bagaimana

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

MODIFIKASI PERENCANAAN MENGGUNAKAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS PADA GEDUNG APARTEMEN METROPOLIS

MODIFIKASI PERENCANAAN MENGGUNAKAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS PADA GEDUNG APARTEMEN METROPOLIS TUGAS AKHIR MODIFIKASI PERENCANAAN MENGGUNAKAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS PADA GEDUNG APARTEMEN METROPOLIS Oleh : AAN FAUZI 3109 105 018 Dosen Pembimbing : DATA IRANATA, ST. MT. PhD PENDAHULUAN

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Mulai Studi Literatur Konstruksi Baja Untuk Struktur Atas bangunan Spesifikasi Bangunan - Pembebanan - Data-data fisik - Data-data struktur Konfigurasi

Lebih terperinci

DAFTAR PUSTAKA. 1. SNI , Tata Cara Penghitungan Struktur Beton untuk. Bangunan Gedung. Badan Standarisasi Nasional. Jakarta.

DAFTAR PUSTAKA. 1. SNI , Tata Cara Penghitungan Struktur Beton untuk. Bangunan Gedung. Badan Standarisasi Nasional. Jakarta. Daftar Pustaka DAFTAR PUSTAKA 1. SNI 03 2847 2002, Tata Cara Penghitungan Struktur Beton untuk Bangunan Gedung. Badan Standarisasi Nasional. Jakarta. 2002 2. SNI 03 1727 1989, Tata Cara Perencanaan Pembebanan

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung BAB III METODOLOGI PERANCANGAN 3.1 Data Perencanaan Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung bertingkat 5 lantai dengan bentuk piramida terbalik terpancung menggunakan struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Struktur bangunan yang aman adalah struktur bangunan yang mampu menahan beban-beban yang bekerja pada bangunan. Dalam suatu perancangan struktur harus memperhitungkan

Lebih terperinci

BAB III STUDI KASUS 3.1 UMUM

BAB III STUDI KASUS 3.1 UMUM BAB III STUDI KASUS 3.1 UMUM Tahap awal adalah pemodelan struktur berupa desain awal model, yaitu menentukan denah struktur. Kemudian menentukan dimensi-dimensi elemen struktur yaitu balok, kolom dan dinding

Lebih terperinci

BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR

BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR 31 BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR 5.1 DATA STRUKTUR Apartemen Vivo terletak di seturan, Yogyakarta. Gedung ini direncanakan terdiri dari 9 lantai. Lokasi proyek lebih jelas dapat dilihat

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Bagan Alir Perencanaan Ulang Bagan alir (flow chart) adalah urutan proses penyelesaian masalah. MULAI Data struktur atas perencanaan awal, As Plan Drawing Penentuan beban

Lebih terperinci

BAB 4 STUDI KASUS. Sandi Nurjaman ( ) 4-1 Delta R Putra ( )

BAB 4 STUDI KASUS. Sandi Nurjaman ( ) 4-1 Delta R Putra ( ) BAB 4 STUDI KASUS Struktur rangka baja ringan yang akan dianalisis berupa model standard yang biasa digunakan oleh perusahaan konstruksi rangka baja ringan. Model tersebut dianggap memiliki performa yang

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI Selama gempa bumi, bangunan mengalami gerakan vertikal dan gerakan horizontal. Gaya inersia atau gaya gempa, baik dalam arah vertical maupun horizontal, akan timbul di titik-titik

Lebih terperinci

T I N J A U A N P U S T A K A

T I N J A U A N P U S T A K A B A B II T I N J A U A N P U S T A K A 2.1. Pembebanan Struktur Besarnya beban rencana struktur mengikuti ketentuan mengenai perencanaan dalam tata cara yang didasarkan pada asumsi bahwa struktur direncanakan

Lebih terperinci

PERATURAN MUATAN INDONESIA BAB I UMUM Pasal 1.0 Pengertian muatan 1. Muatan mati (muatan tetap) ialah semua muatan yang berasal dari berat bangunan

PERATURAN MUATAN INDONESIA BAB I UMUM Pasal 1.0 Pengertian muatan 1. Muatan mati (muatan tetap) ialah semua muatan yang berasal dari berat bangunan PERATURAN MUATAN INDONESIA BAB I UMUM Pasal 1.0 Pengertian muatan 1. Muatan mati (muatan tetap) ialah semua muatan yang berasal dari berat bangunan dan atau unsur bangunan, termasuk segala unsur tambahan

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN (1) Maria Elizabeth, (2) Bambang Wuritno, (3) Agus Bambang Siswanto (1) Mahasiswa Teknik Sipil, (2)

Lebih terperinci

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang ABSTRAK Dalam tugas akhir ini memuat perancangan struktur atas gedung parkir Universitas Udayana menggunakan struktur baja. Perencanaan dilakukan secara fiktif dengan membahas perencanaan struktur atas

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Flat Slab Flat Slab adalah pelat beton bertulang yang mentransfer beban langsung ke kolom tanpa adanya balok sepanjang garis kolom dalam, namun balok tepi luar boleh jadi ada

Lebih terperinci

ANALISA PORTAL DENGAN MENGGUNAKAN KOLOM TAMPANG HOLLOW TUBE STANDAR JIS DIBANDINGKAN DENGAN KOLOM TAMPANG WF STANDAR SNI UNTUK HIGH RISE BUILDING

ANALISA PORTAL DENGAN MENGGUNAKAN KOLOM TAMPANG HOLLOW TUBE STANDAR JIS DIBANDINGKAN DENGAN KOLOM TAMPANG WF STANDAR SNI UNTUK HIGH RISE BUILDING ANALISA PORTAL DENGAN MENGGUNAKAN KOLOM TAMPANG HOLLOW TUBE STANDAR JIS DIBANDINGKAN DENGAN KOLOM TAMPANG WF STANDAR SNI UNTUK HIGH RISE BUILDING TUGAS AKHIR Diajukan untuk melengkapi tugas tugas dan memenuhi

Lebih terperinci

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON 03-2847-2002 DAN SNI GEMPA 03-1726-2002 Rinto D.S Nrp : 0021052 Pembimbing : Djoni Simanta,Ir.,MT FAKULTAS TEKNIK JURUSAN

Lebih terperinci

STRUKTUR PELAT. 1. Definisi

STRUKTUR PELAT. 1. Definisi STRUKTUR PELAT 1. Definisi Pelat adalah elemen horizontal struktur yang mendukung beban mati maupun beban hidup dan menyalurkannya ke rangka vertikal dari sistem struktur 2. Tinjauan Umum Pelat Pelat merupakan

Lebih terperinci

BAB I PENDAHULUAN. Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk

BAB I PENDAHULUAN. Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk BAB I PENDAHULUAN 1.1. Latar Belakang Laju pertumbuhan penduduk di Indonesia pada umumnya dan di Daerah Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk yang terus meningkat tentu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA II.1. PEMBEBANAN Dalam melakukan analisis desain suatu struktur, perlu ada gambaran yang jelas mengenai perilaku dan besar beban yang bekerja pada struktur. Beban-beban yang bekerja

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

PERENCANAAN RANGKA ATAP BAJA RINGAN BERDASARKAN SNI 7971 : 2013 IMMANIAR F. SINAGA. Ir. Sanci Barus, M.T.

PERENCANAAN RANGKA ATAP BAJA RINGAN BERDASARKAN SNI 7971 : 2013 IMMANIAR F. SINAGA. Ir. Sanci Barus, M.T. TUGAS AKHIR PERENCANAAN RANGKA ATAP BAJA RINGAN BERDASARKAN SNI 7971 : 2013 Disusun oleh: IMMANIAR F. SINAGA 11 0404 079 Dosen Pembimbing: Ir. Sanci Barus, M.T. 19520901 198112 1 001 BIDANG STUDI STRUKTUR

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Metode Desain LRFD dengan Analisis Elastis o Kuat rencana setiap komponen struktur tidak boleh kurang dari kekuatan yang dibutuhkan yang ditentukan berdasarkan kombinasi pembebanan

Lebih terperinci

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil diajukan

Lebih terperinci

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI TUGAS AKHIR Oleh : I Gede Agus Krisnhawa Putra NIM : 1104105075 JURUSAN TEKNIK

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

B A B I I TINJAUAN PUSTAKA. getaran elastis yang dipancarkan ke segala arah dari titik runtuh (rupture point).

B A B I I TINJAUAN PUSTAKA. getaran elastis yang dipancarkan ke segala arah dari titik runtuh (rupture point). B A B I I TINJAUAN PUSTAKA 2. 1 Umum Gaya gempa sangat berbahaya karena gerakan tiba-tiba pelepasan energi tegangan yang kemudian dipindahkan melalui tanah dalam bentuk gelombang getaran elastis yang dipancarkan

Lebih terperinci

Dinding Penahan Tanah

Dinding Penahan Tanah Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Dinding Penahan Tanah Pertemuan - 7 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK : Mahasiswa dapat mendesain

Lebih terperinci

BAB IV ANALISIS & PEMBAHASAN

BAB IV ANALISIS & PEMBAHASAN BAB IV ANALISIS & PEMBAHASAN 4.1 EKSENTRISITAS STRUKTUR Pada Tugas Akhir ini, semua model mempunyai bentuk yang simetris sehingga pusat kekakuan dan pusat massa yang ada berhimpit pada satu titik. Akan

Lebih terperinci

Contoh Perhitungan Beban Gempa Statik Ekuivalen pada Bangunan Gedung

Contoh Perhitungan Beban Gempa Statik Ekuivalen pada Bangunan Gedung Contoh Perhitungan Beban Gempa Statik Ekuivalen pada Bangunan Gedung Hitung besarnya distribusi gaya gempa yang diperkirakan akan bekerja pada suatu struktur bangunan gedung perkantoran bertingkat 5 yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus menerus mengalami peningkatan, kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BAL KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI Jusak Jan Sampakang R. E. Pandaleke, J. D. Pangouw, L. K. Khosama Fakultas Teknik, Jurusan

Lebih terperinci

STUDI PENGGUNAAN BAJA RINGAN SEBAGAI KOLOM PADA RUMAH SEDERHANA TAHAN GEMPA PRAYOGA NUGRAHA NRP

STUDI PENGGUNAAN BAJA RINGAN SEBAGAI KOLOM PADA RUMAH SEDERHANA TAHAN GEMPA PRAYOGA NUGRAHA NRP STUDI PENGGUNAAN BAJA RINGAN SEBAGAI KOLOM PADA RUMAH SEDERHANA TAHAN GEMPA PRAYOGA NUGRAHA NRP 3105 100 080 Dosen Pembimbing : Endah Wahyuni, ST.MSc.PhD Ir. Isdarmanu MSc JURUSAN TEKNIK SIPIL Fakultas

Lebih terperinci

STANDAR PERENCANAAN KETAHANAN GEMPA UNTUK STRUKTUR BANGUNAN GEDUNG SNI

STANDAR PERENCANAAN KETAHANAN GEMPA UNTUK STRUKTUR BANGUNAN GEDUNG SNI STANDAR PERENCANAAN KETAHANAN GEMPA UNTUK STRUKTUR BANGUNAN GEDUNG SNI 1726-2002 APRIL 2002 DEPARTEMEN PERMUKIMAN DAN PRASARANA WILAYAH BADAN PENELITIAN DAN PENGEMBANGAN PERMUKIMAN DAN PRASARANA WILAYAH

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

EVALUASI KEKUATAN STRUKTUR YANG SUDAH BERDIRI DENGAN UJI ANALISIS DAN UJI BEBAN (STUDI KASUS GEDUNG SETDA KABUPATEN BREBES)

EVALUASI KEKUATAN STRUKTUR YANG SUDAH BERDIRI DENGAN UJI ANALISIS DAN UJI BEBAN (STUDI KASUS GEDUNG SETDA KABUPATEN BREBES) EVALUASI KEKUATAN STRUKTUR YANG SUDAH BERDIRI DENGAN UJI ANALISIS DAN UJI BEBAN (STUDI KASUS GEDUNG SETDA KABUPATEN BREBES) Himawan Indarto & Ferry Hermawan ABSTRAK Gedung Sekretaris Daerah Brebes yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Berdasarkan Pasal 3.25 SNI 03 2847 2002 elemen struktural kolom merupakan komponen struktur dengan rasio tinggi terhadap dimensi lateral terkecil melebihi tiga,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mekanisme Terjadinya Gempa Lapisan bumi terdiri atas lapisan kerak, mantel dan inti bumi seperti terlihat pada gambar 2.1 berikut ini. Gambar 2.1 Struktur Lapisan Dalam Bumi

Lebih terperinci

STUDI KOMPARASI STRUKTUR BAJA MENGGUNAKAN PROFIL WF TERHADAP PROFIL HSS PADA KOLOM STRUKTUR

STUDI KOMPARASI STRUKTUR BAJA MENGGUNAKAN PROFIL WF TERHADAP PROFIL HSS PADA KOLOM STRUKTUR STUDI KOMPARASI STRUKTUR BAJA MENGGUNAKAN PROFIL WF TERHADAP PROFIL HSS PADA KOLOM STRUKTUR Budiman 1*, Heri Khoeri 1 1 Jurusan Teknik Sipil Universitas Muhammadiyah Jakarta Jl. Cempaka Putih Tengah 27

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB 1 PENDAHULUAN...1

BAB 1 PENDAHULUAN...1 DAFTAR ISI HALAMAN JUDUL...i HALAMAN PENGESAHAN...ii HALAMAN PERNYATAAN...iii KATA PENGANTAR...iv DAFTAR ISI...v DAFTAR TABEL...ix DAFTAR GAMBAR...xi DAFTAR PERSAMAAN...xiv INTISARI...xv ABSTRACT...xvi

Lebih terperinci

BAB IV PERENCANAAN STRUKTUR. lantai, balok, kolom dan alat penyambung antara lain sebagai berikut :

BAB IV PERENCANAAN STRUKTUR. lantai, balok, kolom dan alat penyambung antara lain sebagai berikut : BAB IV PERENCANAAN STRUKTUR 4.1 Pendahuluan Pada bab ini menjelaskan tentang perencanaan struktur gedung untuk penempatan mesin pabrik pengolahan padi PT. Arsari Pratama menggunakan profil baja. Pada kajian

Lebih terperinci

BAB I PENDAHULUAN. Seiring dengan perkembangan teknologi dan kebutuhan, struktur sipil. yang mutlak harus dipenuhi seperti aspek ekonomi dan kemudahan

BAB I PENDAHULUAN. Seiring dengan perkembangan teknologi dan kebutuhan, struktur sipil. yang mutlak harus dipenuhi seperti aspek ekonomi dan kemudahan BAB I PENDAHULUAN 1.1 Umum Seiring dengan perkembangan teknologi dan kebutuhan, struktur sipil dituntut untuk menjadi lebih berkualitas disegala aspek selain aspek kekuatan yang mutlak harus dipenuhi seperti

Lebih terperinci

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA ABSTRAK STUDI ANALISIS KINERJA BANGUNAN 2 LANTAI DAN 4 LANTAI DARI KAYU GLULAM BANGKIRAI TERHADAP BEBAN SEISMIC DENGAN ANALISIS STATIC NON LINEAR (STATIC PUSHOVER ANALYSIS) DAN ANALISIS PERKUATAN KAYU

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gempa di Indonesia Tahun 2004, tercatat tiga gempa besar di Indonesia yaitu di kepulauan Alor (11 Nov. skala 7.5), gempa Papua (26 Nov., skala 7.1) dan gempa Aceh (26 Des.,skala

Lebih terperinci