STUDIO PERANCANGAN II PERENCANAAN GELAGAR INDUK

Ukuran: px
Mulai penontonan dengan halaman:

Download "STUDIO PERANCANGAN II PERENCANAAN GELAGAR INDUK"

Transkripsi

1 PERANCANGAN II PERENCANAAN GELAGAR INDUK DATA PERENCANAAN : Panjang jembatan = 20 m Lebar jembatan = 7,5 m Tebal plat lantai = 20 cm (BMS 1992 K6 57) Tebal lapisan aspal = 5 cm (BMS 1992 K2 13) Berat isi beton = 2.5 t 3 / m (PPPJJR 1987 bab III pasal 1 (1)) Berat isi perkerasan jalan beraspal= t 3 / m (PPPJJR 1987 bab III pasal 1 (1)) Berat isi air = 1.0 t 3 / m (PPPJJR 1987 bab III pasal 1 (1)) Berat sendiri balok (asumsi) = 500 kg/m Jarak antar gelagar induk = 1,5 m Profil diafragma = WF 175 x175 Jarak antar diafragma = 5 m ANALISA PEMBEBANAN Beban Sebelum Komposit (beban yang bekerja ditahan oleh gelagar baja) Beban Primer Beban mati beban merata berat sendiri balok = 500 kg/m berat perlengkapan (sambungan) = 10% berat sendiri balok = 50 kg/m berat pelat beton = 0.20 m 1.5 m 2500 kg/m 3 = 750 kg/m berat bekisting + pekerja (asumsi) = 100 kg/m + DL 1 = 1400 kg/m

2 beban terpusat Beban terpusat yang terjadi adalah akibat beban diafragma, yang direncanakan dipasang setiap 5 m. Untuk perencanaan diafragma dicoba menggunakan profil WF 175 x 175, dengan berat 40.2 kg/m berat sendiri diafragma = 1.5 m 40.2 kg/m, P = 60.3 kg Beban Setelah Komposit (beban yang bekerja ditahan oleh aksi komposit antara balok baja dengan pelat beton) Beban Primer Beban mati beban merata berat aspal = 0.05 m 1,5 m 2500 kg/m 3 = 187,5 kg/m berat sendiri balok = 500 kg/m berat perlengkapan (sambungan) = 10% berat sendiri balok = 50 kg/m berat pelat beton = 0.20 m 1.5 m 2500 kg/m 3 = 750 kg/m DL 2 = 1487,5 kg/m Beban hidup 1) Beban Kendaraan Menurut PPPJJR 87 Bab III Pasal 1 (2) 2.4 a Untuk perhitungan gelagar-gelagar, harus digunakan beban D Beban D atau beban jalur tersusun dari beban merata sebesar q ton / m panjang per jalur dan beban p ton per jalur lalu lintas Skema beban D untuk 1jalur Beban garis P = 12 ton Beban terbagi rata q ton/m q = 2,2 t / m 1 q = 2,2 t / m1-1,1/60 x (L-30) t / m 1 u/ L< 30 m u/ 30 < L< 60 m

3 q = 1,1(1+30/L) t / m 1 u/ L > 60 m Untuk jembatan komposit kelas I dengan bentang 20 m (L < 30 m), maka muatan D untuk jalur lalu lintas sebesar 2.75 m, adalah: beban merata q = beban garis 2.2 t/m 100 % = 0.8 t/m m 12 ton P = 100 % = t/m 2.75 m Perhitungan momen akibat beban hidup untuk gelagar tengah dan gelagar pinggir adalah sama, karena kekuatan gelagar melintang tidak diperhitungkan (PPPJJR 1987 pasal 4 (2) 2.2 a). q = q α s P = P α s dengan : s = jarak antar gelagar yang berdekatan = 1,4 m α = faktor distribusi Sehingga didapatkan... q = q α s = 0.8 t/m m = 1.2 t/m = 1200 kg/m P = P α s = t/m m = t = 6546 kg Menurut PPPJJR 87 Bab III Pasal 1 (3) Untuk memperhitungkan pengaruh-pengaruh getaran-getaran dan pengaruhpengaruh dinamis lainnya, tegangan-tegangan akibat beban garis P harus dikalikan dengan koefisien kejut yang akan memberikan hasil maksimum sedangkan beban merata q dan beban T tidak dikalikan dengan koefisien kejut. Perhitungan Koefisien Kejut 20 K = 1+ L = panjang bentang dalam meter (50 + L) K = 1+ = 1+ = L Sehingga beban P untuk gelagar induk...

4 P = kg = kg 8418 kg Beban Sekunder a. Gaya Rem Menurut PPPJJR 87 Bab III Pasal 2 (4) Gaya rem Pengaruh gaya-gaya dalam arah memanjang jembatan akibat gaya rem, harus ditinjau. Pengaruh ini diperhitungkan senilai dengan pengaruh gaya rem sebesar 5% dari beban D tanpa koefisien kejut yang memenuhi semua jalur lalu lintas yang ada, dan dalam satu jurusan. Gaya rem tersebut dianggap bekerja horisontal dalam arah sumbu jembatan dengan titik tangkap setinggi 1,80 meter di atas permukaan lantai kendaraan. H H = 5% (P+q) = 5% ((4.364 t/m + (0.8 t/m 2 5 m)) 1. 5 m) = ton Momen akibat gaya rem terhadap gelagar induk (tinggi gelagar induk = 100 cm): M = H (1.8 m m m) = ton 2.5 m = tm = 1568,3 kgm b. Beban Angin

5 Menurut PPPJJR 87 Bab III Pasal 2 (1) Pengaruh beban angin sebesar 150 kg / m 2 pada jembatan ditinjau berdasarkan bekerjanya beban angin horisontal terbagi rata pada bidang vertikal jembatan, dalam arah tegak lurus sumbu memanjang jembatan. Jumlah luas bidang vertikal bangunan atas jembatan yang dianggap terkena angin ditetapkan sebesar suatu prosentase tertentu terhadap luas bagianbagian sisi jembatan dan luas bidang vertikal beban hidup. Bidang vertikal beban hidup ditetapkan sebagai suatu permukaan bidang vertikal yang mempunyai tinggi menerus sebesar 2 meter di atas lantai kendaraan Menurut PPPJJR 87 Bab III Pasal 2 (1) 1.1a Keadaan tanpa beban hidup Untuk jembatan gelagar penuh diambil sebesar 100% luas bidang sisi jembatan yang langsung kena angin, ditambah 50% luas bidang sisi lainnya. Menurut PPPJJR 87 Bab III Pasal 2 (1) 1.2 Keadaan dengan beban hidup a. Untuk jembatan diambil sebesar 50% terhadap luas bidang menurut (1.1 a) b. Untuk beban hidup daimbil sebesar 100% luas bidang sisi yang langsung terkena angin. Gaya tekan angin 150 kg / m 2 Beban angin untuk beban hidup diambil 100% Beban angin untuk bidang sisi yang langsung terkena angin 100% Beban angin untuk bidang sisi yang lainnya 50% P1 P2 P3 P4 P5 P6

6 Momen yang bekerja terhadap titik A: M A = [100% 150 kg/m 2 2 m 1m x (1 m m m)] + [100% 150 kg/m m x 1.0m 0.5 m] + [50% 150 kg/m m 1.0m x 0.5 m] = 660 kgm + 75 kgm + 37,5 kgm = 772,5 kgm beban merata M A = 2 ( q1 x 2.5 L) + 2 (1.5L/2.5L x q1 x 1.5 L) + 2 (0.5L/2.5L x q1 x 0.5 L) 772,5 kgm = 5L q L q L q1 772,5 kgm = 7 Lq kgm = 7 x 1.5 x q1 q 1 = kg/m STATIKA PEMBEBANAN Beban Sebelum Komposit Beban Primer Beban Setelah Komposit Beban Primer Beban Mati setelah pelaksanaan Beban Gandar Kendaraan

7 Tipe 1 untuk mencari momen max : Tipe 2 untuk mencari gaya lintang max : Beban Sekunder Beban Angin Beban Rem PROFIL GELAGAR INDUK DAN DIAFRAGMA

8 Profil Gelagar Induk Profil W 36 x 182 Dimension Area (A) = 53.6 in2 = cm2 Depth (d) = in = cm Web : Thickness (tw) = in = cm tw/2 = 3/8 in = 0.95 cm Flange : Width(bf) = in = cm Thickness (tf) = 1.18 in = cm Properties Nominal wt/ft = 182 lb/ft Compact section criteria : b f 2t = 5 h = 45 f t w Elastic properties Axix X-X I = in4 = cm4 S = 623 in3 = cm3 r = 14.5 in = cm Axix Y_Y I = 347 in4 = cm4 S = 57.6 in3 = cm3 r = 2.55 in = cm Plastic modulus Zx = 718 in3 = cm3 Zy = 90.7 in3 = cm3 Profil Diafragma Dicoba profil WF 175 x 175 A = 51,21 cm 2 d = 17,5 cm tw = 0,75 cm bf = 17,5cm tf = 1,1 cm rx = 7,50 cm ry = 4,38 cm Zx = 330 cm 3 Zy = 112 cm 3 w = 40,2 kg/m Ix = 2880 cm 4 Iy = 984 cm 4 DATA YANG DIKETAHUI

9 1.Mutu Profil (Fy) = 320 Mpa = 3200 kg/cm 2 2.Mutu beton (f c) = 25 Mpa = 250 kg/cm 2 3. Bentang Jembatan = 20 m MODULUS RATIO Ec=4700 f'c = =23500 Mpa 6 kg Es = 2,1.10 cm = MPa Es n= = =8,936 Ec LEBAR EFEKTIF PLAT BETON Berdasarkan SNI ; Lebar efektif plat lantai yang membentang pada masing-masing sisi dari sumbu balok tidak boleh melebihi : a. be = ¼ panjang bentang jembatan = ¼ x 20 m = 5 m b. be = jarak spasi antar balok(pusat ke pusat) = 2 x ½ 1,5 m = 1,5 m Diambil yang terkecil, yaitu lebar efektif = 1,5 m =150 cm KONTROL Syarat Kontrol Kapasitas Penampang Untuk Sayap Kontrol Kelangsingan Profil b λ = 2tf 12,075 = = 5,117 2x1,18 λp = 170 fy = = 9,5033 Karena λ < λp maka sayap tersebut kompak

10 Untuk Badan = tw h λ 36,33 = = 0,725 50, λp = fy = = 93,9149 Karena λ < λp maka badan profil tersebut kompak MENENTUKAN GARIS NETRAL KOMPOSIT Direncanakan struktur akan mengalami komposit penuh. Asumsi : Shear Connector tersedia cukup untuk menjamin perilaku komposit penuh. Kekuatan Baja Total (Ts Total) Ts (Total) = As x fy = 345,806 cm 2 x 3200 kg/cm 2 = ,432 kg Kekuatan Beton Total (Cc Total) Ac = lebar efektif x tinggi plat beton = 150 x 20 = 3000 cm 2 Cc (Total) = 0,85 x f`c x Ac = 0,85 x 250 kg/cm 2 x 3000 cm 2 = kg karena Cc (Total) < Ts (Total) sehingga.. Bahan yang memegang peranan dalam kegagalan struktur adalah BETON Garis Netral Plastis (PNA) terletak pada profil BAJA

11 PERANCANGAN II MENCARI LETAK PNA Prinsip kesetimbangan Σ R = 0 Σ Ftarik = Σ Ftekan Ttotal Asc x xfy = Cc + Asc x fy 2Asc x fy = Ttotal Cc Asc = Ttotal Cc 2 fy Luasan Baja yang mengalami Tekan Asc = Ttotal Cc 2 fy = , x3200 = cm 2 Luasan Flens bagian Atas A flens = bf x tf = 30,6705 x 2,997 = 91,926 cm 2 Karena Asc A flens, maka PNA teletak pada web (badan profil) b eff = 140 cm PNA 20 cm Slab Beton x Cc Cs1 Cs2 z1 z2 z3 92,728 cm Profil Baja W 36 x 182 T1 z4 z5 T2 30,6705 cm

12 PERANCANGAN II Letak garis netral Plastis (PNA) dari serat atas komposit x = t c + t f Asc Aflens + t 111, ,926 = , ,8415 = 33,44847 cm Perjtungan Kopel Momen Internal w Perhitungan M 1 Cc = 0,85 x f c x b eff x t c = 0,85 x 250 kg/cm 2 x 150 cm x 20 cm = kg z 1 = x - ½ t c = 33,44847 cm ½.20 cm = 23,44847 cm M 1 = Cc x z 1 = kg x 23,44847 cm = ,63 kgcm = ,9963 kgm Perhitungan M 2 Cs 1 = A flens x Fy = 91,9256 cm 2 x 3200 kg/cm 2 = ,99 kg z 2 = x - t c ½ t f = 33,44847 cm 20 cm - ½.2,997 = 11,94987 cm M 2 = Cs 1 x z 2 = ,99 kg x 11,94987 cm = ,56 kgcm = 35151,9656 kgm

13 Perhitungan M 3 Cs 2 = A web tekan x Fy = (1,8415 cm x ( 33,44847 cm 20 cm 2,997 cm )) x 3200 = 61587,22368 kg z 3 = ½ (x - t c t f ) = ½ (33,44847 cm 20 cm - 2,997) = 5,22563 cm M 3 = Cs 2 x z 2 = 61587,22368 kg x 5,22563 cm = ,2462 kgcm = 3218, kgm Perhitungan M 4 T 1 = A web tarik x Fy = (1,8415 cm x ( 92, , ,997 ) cm ) x 3200 = ,953 kg z 4 = ½ (d + t c - x t f ) = ½ (92,278 cm + 20 cm 33,44847 cm - 2,997 cm) = 37,91627 cm M 4 = T 1 x z 4 = ,953 kg x 37,91627 cm = ,66 kgcm = ,8866 kgm Perhitungan M 5 T 2 = A flens tarik x Fy = 91,926 cm 2 x 3200 kg/cm 2 = ,992 kg z 5 = d + t c - x ½ t f = 92,278 cm + 20 cm 33,44847 cm ½.2,997 cm) = 77,33 cm

14 M 5 = T 2 x z 5 = ,992 kg x 77,33 cm = ,28 kgcm = ,8028 kgm KONTROL KUAT LENTUR Mu = kgm (Perhitungan Staad Pro) φ Mn = 0,85 x (M 1 + M 2 + M 3 + M 4 + M 5 ) = 0,85 x (149483,9963 kgm ,9656 kgm , kgm ,8866 kgm ,8028 kgm) = ,77 kgm Mu = kgm φ Mn = ,77 kgm...ok! KONTROL KUAT GESER Vu = kg (Perhitungan Staad Pro) Vu φvn (SK SNI 2002 pasal hal 45) a = d 2 x tf = cm 2 x 2,997 cm = 90,5764 cm Aw = Luas kotor plat badan = a x tw = 90,5764 cm x 1,8415 cm = 166,796 cm 2 Vn = 0,6 x fy x Aw Vu = 0,6 x 3200 kg/cm 2 x 166,796 cm 2 = ,166 kg φvn ,9x320249,166 kg ,249 Kg...OK!

15 11.KONTROL TEGANGAN b eff 150 =140 cm cm 20 cm 92,728 cm 2,997 cm 30,6705 cm Dari Staad Pro diketahui : Momen Maks sebelum Komposit = kgm Momen Maks sesudah Komposit = kgm Geser Maks sebelum Komposit = kg Geser Maks sesudah Komposit = kg Garis netral penampang komposit berada di daerah baja Ac = beff x d = 150 x 20 = 3000 cm 2 d dt = ya + 2 = 92, = 56,139 cm 2 2 Ac At = As + n = 345,806 + = 681,53 cm 3000 Es , n= = = 8,936 n Ec 23500

16 As dc = dt At ds yc ys 345,806 = 56, ,53 = 28,49 cm = dt dc = 56,139 cm 28,49 cm = 27,65 cm = dc + y beton = 28, = 38,49 cm = yb + ds = 92, ,65 2 = 74,014 cm yc` = 28,49 10 Ic = = 18,49 cm 1 3 x150x20 12 = cm 4 Is = ,511 cm 4 Momen inersia setelah komposit It = Is + Ic + n 2 ( Acxdc ) 2 + ( Asxds ) n x28,49 2 = , ( 345,806 x27,65 ) = ,45 cm 4 8,936 8,936 + Kontrol tegangan

17 PERANCANGAN II Sebelum komposit σ sa M = - σ sb = - = Wx 10209, 14 = - 968,19 < 3200 Kg/cm 2 Setelah komposit M. y Beton σ = n. I ,49 σ sa = = 8, , ,49 σ sb = = 8, ,45 135, 465 kg/cm 2 < fc = 250 kg/cm 2 65,075 kg/cm 2 < fc = 250 kg/cm 2 Baja σ sa = σ sa = M.y = I , ,45 = -581,512 kg/cm 2 < fy = 3200 kg/cm 2 M.y = I , ,45 = 2327,746 kg/cm 2 < fy = 3200 kg/cm 2

18 Diagram Tegangan Sebelum Komposit 1985,75 kg/cm ,75 kg/cm Diagram Tegangan Setelah Komposit 109,796 kg/cm ,296 kg/cm 617,395 kg/cm ,953 kg/cm 2

19 PERANCANGAN II 12. SHEAR CONNECTOR Karena jembata direncanakan memiliki aksi komposit penuh, sehinnga kekuatan geser total yang diberikan oleh shear connector minimal harus lebih besar dari yang terkecil antara baja total ( Ts Total) dan kekuatan Beton Total (Cc Total). Pada perencanaan jembatab komposit kelas II dengan bentang antar dua perletakan gelagar sederhana = 36 m, yang lebih kecil adalah kekuatan beton total (Cc Total) sehingga : Vh = Cc = 0,85 x fc x Ac = kg = 870,97 Kips Untuk perencanaan shear connector, dicoba menggunakan stud 1 in x 4 in Data Yang Diketahui : Tebal slab = 20 cm = 7,8740 in Panjang bentang = 36 m = 118,34 ft Mutu Profil (fy) = 320 Mpa = 46,4 ksi Mutu Profil (fu) = 450 Mpa = 65,25 ksi Mutu Beton (f c) = 16,6 Mpa = 2,409 ksi = 2409 Psi Kontrol Diameter Maksimum Shear Connecyor yang Diizinkan: Diameter maksimum = 2,5 x t f = 2,5 x 1,18 = 2,95 in > 1 in...ok! Luas Penampang 1 shear connector : Asc = ¼. π. D 2 = ¼. π. 1 2 = 0,785 in 2 Modulus Elastis Beton (jika diasumsikan beton normal): Ec = Wc 1,5 x 33 x f ' c = (145) 1,5 x 33 x 2409 = ,156 Psi = 2828,032 Ksi Kuat Geser dari satu Connector (AISC 15-1)

20 Qn = 0,5 x Asc x f `cxec Asc x fu = 0,5 x 0,785 in 2 x 2,409 2 ksi x 2828,032 ksi 0,785 in x65, 25 ksi = 32,3967 Kips 47,1 Kips Diambil Qn = 32,3967 Kips Keterangan : Asc = Luas penampang melintang 1 shear connector (in 2 ) Ec = Modulus Elastis Beton (ksi) f c = Kekuatan tarik beton usia 28 hari (ksi) fu = Kekutan tarik minimum dari 1 stud (ksi) Qn = Kuat geser 1 shear connector (Kips) Jumlah shear connector yang dibutuhkan (separuh bentang) : Vh 870,97 N = = = 26, buah Qn 32,3967 Digunakan 28 buag stud untuk setengah bentang, sehingga untuk seluruh bentang digunakan 56 buah stud Syarat Pemasangan Shear Connector (AISC 15-6) Untuk stud berkepala (semua jarak adalah dari pusat ke pusat) Jarak longitudinal minimum = 6 x d = 6 x 1 = 6 in Jarak tranversal minimum = 4 x d = 4 x 1 = 4 in Jarak longitudinal maksimum = 8 x t c = 8 x 7,874 = 62,992 in Untuk semua tipe connector Cover beton lateral minimum = 1 in (tidak ada cover vertikal minimum) Keterangan : d = diameter stud t c = tebal slab beton (slab thickness)

21 Jarak Pendekatan Connector Jika digunakan satu stud tiap bagian, maka jarak pendekatannya adalah : (36 / 0,0254) s = 56 buah in = 25,31 in 6 in < 25,31 in < 62,992 in...ok! Jika digunakan dua stud tiap bagian, maka jarak pendekatannya adalah : (36 / 0,0254) in s = = 50,617 in (56 / 2) buah 6 in < 50,617 in < 62,992 in...ok! Jadi untuk perencanaan shear connector, dipasang 2 stud dengan diameter 1 in x 4 in pada tiap bagian

22

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

STRUKTUR JEMBATAN BAJA KOMPOSIT

STRUKTUR JEMBATAN BAJA KOMPOSIT STRUKTUR JEMBATAN BAJA KOMPOSIT WORKSHOP/PELATIHAN - 2015 Sebuah jembatan komposit dengan perletakan sederhana, mutu beton, K-300, panjang bentang, L = 12 meter. Tebal lantai beton hc = 20 cm, jarak antara

Lebih terperinci

BAB II PERATURAN PERENCANAAN

BAB II PERATURAN PERENCANAAN BAB II PERATURAN PERENCANAAN 2.1 Klasifikasi Jembatan Rangka Baja Jembatan rangka (Truss Bridge) adalah jembatan yang terbentuk dari rangkarangka batang yang membentuk unit segitiga dan memiliki kemampuan

Lebih terperinci

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 6 S e s i 5 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 10. Penghubung Geser (Shear Connector). Contoh Soal. Tujuan Pembelajaran : Mahasiswa mengetahui, memahami

Lebih terperinci

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 6 S e s i 5 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 10. Penghubung Geser (Shear Connector). Contoh Soal. Tujuan Pembelajaran : Mahasiswa mengetahui, memahami

Lebih terperinci

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran:

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran: BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API 3.1. Kerangka Berpikir Dalam melakukan penelitian dalam rangka penyusunan tugas akhir, penulis melakukan penelitian berdasarkan pemikiran: LATAR

Lebih terperinci

Data data perencanaan: 1. Bentang jambatan : 2. Lebar jembatan : 3. Lebar trotoar : 4. Jarak gelegar memanjang : 5. Jenis lantai :

Data data perencanaan: 1. Bentang jambatan : 2. Lebar jembatan : 3. Lebar trotoar : 4. Jarak gelegar memanjang : 5. Jenis lantai : Data data perencanaan: 1. Bentang jambatan : 2. Lebar jembatan : 3. Lebar trotoar : 4. Jarak gelegar memanjang : 5. Jenis lantai : 6. Mutu beton k-2275(fc') : 7. Mutu baja fe-510(fy) : 8. Tebal pelat lantai

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN TUGAS AKHIR PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Strata Satu (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

Mencari garis netral, yn. yn=1830x200x x900x x x900=372,73 mm

Mencari garis netral, yn. yn=1830x200x x900x x x900=372,73 mm B. Perhitungan Sifat Penampang Balok T Interior Menentukan lebar efektif balok T B ef = ¼. bentang balok = ¼ x 19,81 = 4,95 m B ef = 1.tebal pelat + b w = 1 x 200 + 400 = 00 mm =, m B ef = bentang bersih

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi

BAB III METODOLOGI PERANCANGAN. Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi BAB III METODOLOGI PERANCANGAN 3.1. Umum Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi adalah masalah kekakuan dari struktur. Pada prinsipnya desain bangunan gedung bertingkat

Lebih terperinci

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN ABSTRAK KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN i ii iii iv vii xiii xiv xvii xviii BAB

Lebih terperinci

REVIEW DESAIN STRUKTUR GEDUNG CENTER FOR DEVELOPMENT OF ADVANCE SCIENCE AND TECHNOLOGY (CDAST) UNIVERSITAS JEMBER DENGAN KONSTRUKSI BAJA TAHAN GEMPA

REVIEW DESAIN STRUKTUR GEDUNG CENTER FOR DEVELOPMENT OF ADVANCE SCIENCE AND TECHNOLOGY (CDAST) UNIVERSITAS JEMBER DENGAN KONSTRUKSI BAJA TAHAN GEMPA REVIEW DESAIN STRUKTUR GEDUNG CENTER FOR DEVELOPMENT OF ADVANCE SCIENCE AND TECHNOLOGY (CDAST) UNIVERSITAS JEMBER DENGAN KONSTRUKSI BAJA TAHAN GEMPA Wahyu Aprilia*, Pujo Priyono*, Ilanka Cahya Dewi* Jurusan

Lebih terperinci

BAB V ANALISA STRUKTUR PRIMER

BAB V ANALISA STRUKTUR PRIMER BAB V ANALISA STRUKTUR PRIMER PEMBEBANAN GRAVITASI Beban Mati Pelat lantai Balok & Kolom Dinding, Tangga, & Lift dll Beban Hidup Atap : 100 kg/m2 Lantai : 250 kg/m2 Beban Gempa Kategori resiko bangunan

Lebih terperinci

PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR

PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR 1. Perhitungan Lantai Kendaraan Direncanakan : Lebar lantai 7 m Tebal lapisan aspal 10 cm Tebal plat beton 20 cm > 16,8 cm (AASTHO LRFD) Jarak gelagar

Lebih terperinci

BAB III LANDASAN TEORI. Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan. dalam konfigurasi beban sumbu seperti gambar 3.

BAB III LANDASAN TEORI. Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan. dalam konfigurasi beban sumbu seperti gambar 3. BAB III LANDASAN TEORI 3.1. Beban Lalu Lintas Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan gaya tekan pada sumbu kendaraan. Gaya tekan sumbu selanjutnya disalurkan ke permukaan perkerasan

Lebih terperinci

MODUL 6. S e s i 4 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 6. S e s i 4 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 6 S e s i 4 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 8. Kekuatan Lentur Gelagar Komposit Keadaan Ultimit. 8.1. Daerah Momen Positip. 8.. Daerah Momen Negatip.

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

MODUL 6. S e s i 1 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 6. S e s i 1 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 6 S e s i 1 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 1. Pengertian Konstruksi Komposit. 2. Aksi Komposit. 3. Manfaat dan Keuntungan Struktur Komposit. 4.

Lebih terperinci

BAB IV ANALISIS PERHITUNGAN STRUKTUR

BAB IV ANALISIS PERHITUNGAN STRUKTUR BAB IV ANALISIS PERHITUNGAN STRUKTUR 4.1 Data Perencanaan Bangunan Direncanakan : Bentang Jembatan : 120 meter Lebar Jembatan : 7.5 (1 + 6.5) meter Jenis Jembatan : Sturktur Rangka Baja (Tipe Warren Truss)

Lebih terperinci

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Dr. AZ Department of Civil Engineering Brawijaya University Pendahuluan JEMBATAN GELAGAR BAJA BIASA Untuk bentang sampai dengan

Lebih terperinci

DAFTAR ISI HALAMANJUDUL HALAMAN PENGESAHAN KATAPENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI FAKTOR KONVERSI

DAFTAR ISI HALAMANJUDUL HALAMAN PENGESAHAN KATAPENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI FAKTOR KONVERSI DAFTAR ISI Halaman HALAMANJUDUL HALAMAN PENGESAHAN KATAPENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI FAKTOR KONVERSI INTISARI i ii Hi v viii ix x xi xii xiii BAB I. PENDAHULUAN

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON

ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON Monika Eirine Tumimomor Servie O. Dapas, Mielke R. I. A. J. Mondoringin Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi

Lebih terperinci

TUGAS AKHIR RC

TUGAS AKHIR RC TUGAS AKHIR RC09-1380 MODIFIKASI PERENCANAAN GEDUNG OFFICE BLOCK PEMERINTAHAN KOTA BATU MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON AMANDA KHOIRUNNISA 3109 100 082 DOSEN PEMBIMBING IR. HEPPY KRISTIJANTO,

Lebih terperinci

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang ABSTRAK Dalam tugas akhir ini memuat perancangan struktur atas gedung parkir Universitas Udayana menggunakan struktur baja. Perencanaan dilakukan secara fiktif dengan membahas perencanaan struktur atas

Lebih terperinci

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT TUGAS AKHIR MODIFIKASI PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT Dosen Pembimbing : Ir. Heppy Kristijanto, MS Oleh : Fahmi Rakhman

Lebih terperinci

BAB II TINJAUAN PUSTAKA Pendahuluan Permasalahan Yang Akan Diteliti 7

BAB II TINJAUAN PUSTAKA Pendahuluan Permasalahan Yang Akan Diteliti 7 DAFTAR ISI HALAMAN JUDUL LEMBAR PENGESAHAN KATA PENGANTAR LEMBAR MOTTO LEMBAR PERSEMBAHAN DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI ABSTRAKSI i ii iii v vi x xi xjv xv xjx BAB I PENDAHULUAN 1

Lebih terperinci

JEMBATAN RANGKA BAJA. bentang jembatan 30m. Gambar 7.1. Struktur Rangka Utama Jembatan

JEMBATAN RANGKA BAJA. bentang jembatan 30m. Gambar 7.1. Struktur Rangka Utama Jembatan JEMBATAN RANGKA BAJA 7.2. Langkah-Langkah Perancangan Struktur Jembatan Rangka Baja Langkah perancangan bagian-bagian jembatan rangka baja adalah sbb: a. Penetapan data teknis jembatan b. Perancangan pelat

Lebih terperinci

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan 5 II. TINJAUAN PUSTAKA A. Jembatan Jembatan adalah suatu konstruksi untuk meneruskan jalan melalui suatu rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan air / lalu lintas

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK SEMINAR TUGAS AKHIR JULI 2011 MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK Oleh : SETIYAWAN ADI NUGROHO 3108100520

Lebih terperinci

Materi Pembelajaran : WORKSHOP/PELATIHAN Perhitungan Tegangan Elastis Pada Penampang Komposit

Materi Pembelajaran : WORKSHOP/PELATIHAN Perhitungan Tegangan Elastis Pada Penampang Komposit STRUKTUR BAJA II MODUL S e s i 2 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : WORKSHOP/PELATIHAN Perhitungan Tegangan Elastis Pada Penampang Komposit Tujuan Pembelajaran : Mahasiswa

Lebih terperinci

TUBAGUS KAMALUDIN DOSEN PEMBIMBING : Prof. Tavio, ST., MT., Ph.D. Dr. Ir. Hidayat Soegihardjo, M.S.

TUBAGUS KAMALUDIN DOSEN PEMBIMBING : Prof. Tavio, ST., MT., Ph.D. Dr. Ir. Hidayat Soegihardjo, M.S. MODIFIKASI STRUKTUR ATAS JEMBATAN CISUDAJAYA KABUPATEN SUKABUMI JAWA BARAT DENGAN SISTEM RANGKA BATANG MENGGUNAKAN MATERIAL FIBER REINFORCED POLYMER (FRP) TUBAGUS KAMALUDIN 3110100076 DOSEN PEMBIMBING

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON TUGAS AKHIR RC09 1380 MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON OLEH: RAKA STEVEN CHRISTIAN JUNIOR 3107100015 DOSEN PEMBIMBING: Ir. ISDARMANU, M.Sc

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON Oleh : ANTON PRASTOWO 3107 100 066 Dosen Pembimbing : Ir. HEPPY KRISTIJANTO,

Lebih terperinci

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan MENGGUNAKAN STRUKTUR JEMBATAN BUSUR Oleh : Faizal Oky Setyawan 3105100135 PENDAHULUAN TINJAUAN PUSTAKA METODOLOGI HASIL PERENCANAAN Latar Belakang Dalam rangka pemenuhan dan penunjang kebutuhan transportasi

Lebih terperinci

BAB 3 LANDASAN TEORI. perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan

BAB 3 LANDASAN TEORI. perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan BAB 3 LANDASAN TEORI 3.1. Geometrik Lalu Lintas Perencanan geometrik lalu lintas merupakan salah satu hal penting dalam perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan geometrik

Lebih terperinci

BAB V PERHITUNGAN STRUKTUR

BAB V PERHITUNGAN STRUKTUR PERHITUNGAN STRUKTUR V-1 BAB V PERHITUNGAN STRUKTUR Berdasarkan Manual For Assembly And Erection of Permanent Standart Truss Spans Volume /A Bridges, Direktorat Jenderal Bina Marga, tebal pelat lantai

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB II PERATURAN PERENCANAAN. Jembatan ini menggunakan rangka baja sebagai gelagar induk. Berdasarkan letak

BAB II PERATURAN PERENCANAAN. Jembatan ini menggunakan rangka baja sebagai gelagar induk. Berdasarkan letak BAB II PERATURAN PERENCANAAN 2.1. Klasifikasi Jembatan Rangka Baja Jembatan ini menggunakan rangka baja sebagai gelagar induk. Berdasarkan letak lantai kendaran Jembatan rangka baja dibagi menjadi Jembatan

Lebih terperinci

PERANCANGAN JEMBATAN WOTGALEH BANTUL YOGYAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh : HENDRIK TH N N F RODRIQUEZ NPM :

PERANCANGAN JEMBATAN WOTGALEH BANTUL YOGYAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh : HENDRIK TH N N F RODRIQUEZ NPM : PERANCANGAN JEMBATAN WOTGALEH BANTUL YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : HENDRIK TH N N F RODRIQUEZ NPM

Lebih terperinci

LAMPIRAN 1 PRELIMINARY DESAIN

LAMPIRAN 1 PRELIMINARY DESAIN LAMPIRAN 1 PRELIMINARY DESAIN L1.1 Preliminary Pelat Lantai. - Kombinasi Pembebanan - q ult1 = 1,4 q DL = 1,4 (104) = 145,6 kg/m 2 - q ult2 = 1,2 q DL + 1,6q LL = 1,2 (104) +1,6(400) = 764,8 kg/m 2 Digunakan

Lebih terperinci

PERENCANAAN GELAGAR BAJA PADA JEMBATAN DESA BUKET LINTEUNG KECAMATAN LANGKAHAN KABUPATEN ACEH UTARA

PERENCANAAN GELAGAR BAJA PADA JEMBATAN DESA BUKET LINTEUNG KECAMATAN LANGKAHAN KABUPATEN ACEH UTARA PERENCANAAN GELAGAR BAJA PADA JEMBATAN DESA BUKET LINTEUNG KECAMATAN LANGKAHAN KABUPATEN ACEH UTARA Syahrial Putra 1, Syukri 2, Herri Mahyar 3 1) Mahasiswa, Diploma 4 Perancangan Jalan dan Jembatan, Jurusan

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR

DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR TUGAS AKHIR DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR DISUSUN OLEH : HILMY GUGO SEPTIAWAN 3110.106.020 DOSEN KONSULTASI: DJOKO IRAWAN, Ir. MS. PROGRAM STUDI S-1 LINTAS

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

Modifikasi Perencanaan Gedung Office Block Pemerintahan Kota Batu Menggunakan Struktur Komposit Baja Beton

Modifikasi Perencanaan Gedung Office Block Pemerintahan Kota Batu Menggunakan Struktur Komposit Baja Beton Modifikasi Perencanaan Gedung Office Block Pemerintahan Kota Batu Menggunakan Struktur Komposit Baja Beton Amanda Khoirunnisa, Heppy Kristijanto, R. Soewardojo. Jurusan Teknik Sipil, Fakultas Teknik Sipil

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton SNI 03-1974-1990 memberikan pengertian kuat tekan beton adalah besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG TOWER C KEBAGUSAN CITY JAKARTA MENGGUNAKAN STRUKTUR BAJA KOMPOSIT

MODIFIKASI PERENCANAAN GEDUNG TOWER C KEBAGUSAN CITY JAKARTA MENGGUNAKAN STRUKTUR BAJA KOMPOSIT JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 MODIFIKASI PERENCANAAN GEDUNG TOWER C KEBAGUSAN CITY JAKARTA MENGGUNAKAN STRUKTUR BAJA KOMPOSIT Muhammad Zakki, Endah Wahyuni,

Lebih terperinci

Materi Pembelajaran : 7. Pelaksanaan Konstruksi Komposit dengan Perancah dan Tanpa Perancah. 8. Contoh Soal.

Materi Pembelajaran : 7. Pelaksanaan Konstruksi Komposit dengan Perancah dan Tanpa Perancah. 8. Contoh Soal. STRUKTUR BAJA II MODUL S e s i Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 7. Pelaksanaan Konstruksi Komposit dengan Perancah dan Tanpa Perancah. 8. Contoh Soal. Tujuan Pembelajaran

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

PERHITUNGAN KONSTRUKSI

PERHITUNGAN KONSTRUKSI V - 1 BAB V PERHITUNGAN KONSTRUKSI 5.1 DATA PERENCANAAN BANGUNAN Direncanakan : Bentang Jembatan : 80 meter Lebar Jembatan : 9 ( 1 + 7 + 1 ) meter Jenis Jembatan : Struktur Rangka Baja Bangunan Atas a.

Lebih terperinci

BAB II PERILAKU DAN KARAKTERISTIK JEMBATAN

BAB II PERILAKU DAN KARAKTERISTIK JEMBATAN BAB II PERILAKU DAN KARAKTERISTIK JEMBATAN A. Pengertian Jembatan Jembatan adalah suatu konstruksi yang gunanya untuk meneruskan jalan melalui rintangan yang permukaannya lebih rendah. Rintangan ini biasanya

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Metode Desain LRFD dengan Analisis Elastis o Kuat rencana setiap komponen struktur tidak boleh kurang dari kekuatan yang dibutuhkan yang ditentukan berdasarkan kombinasi pembebanan

Lebih terperinci

BAB IV ANALISIS PERENCANAAN STRUKTUR GEDUNG

BAB IV ANALISIS PERENCANAAN STRUKTUR GEDUNG BAB IV ANALISIS PERENCANAAN STRUKTUR GEDUNG Bab IV Analisis Perencanaan Struktur Gedung 4.1 Pembebanann Struktur Berdasarkan SNI-03-1729-2002 tentang Tata Cara Perencanaan Struktur Bajaa untuk Bangunan

Lebih terperinci

PERHITUNGAN GELAGAR JEMBATAN BALOK-T A. DATA STRUKTUR ATAS

PERHITUNGAN GELAGAR JEMBATAN BALOK-T A. DATA STRUKTUR ATAS PERHITUNGAN GELAGAR JEMBATAN BALOK-T A. DATA STRUKTUR ATAS Panjang bentang jembatan L = 15.00 m Lebar jalan (jalur lalu-lintas) B1 = 7.00 m Lebar trotoar B2 = 1.00 m Lebar total jembatan B1 + 2 * B2 =

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Kekuatan tekan adalah kemampuan beton untuk menerima gaya tekan persatuan luas. Kuat tekan beton mengidentifikasikan mutu dari sebuah struktur. Semakin tinggi

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG SYARIAH TOWER UNIVERSITAS AIRLANGGA MENGGUNAKAN BETON BERTULANG DAN BAJA-BETON KOMPOSIT

PERENCANAAN STRUKTUR GEDUNG SYARIAH TOWER UNIVERSITAS AIRLANGGA MENGGUNAKAN BETON BERTULANG DAN BAJA-BETON KOMPOSIT PERENCANAAN STRUKTUR GEDUNG SYARIAH TOWER UNIVERSITAS AIRLANGGA MENGGUNAKAN BETON BERTULANG DAN BAJA-BETON KOMPOSIT Retno Palupi, I Gusti Putu Raka, Heppy Kristijanto Jurusan Teknik Sipil, Fakultas Teknik

Lebih terperinci

BAB VII PERENCANAAN PERLETAKAN ( ELASTOMER )

BAB VII PERENCANAAN PERLETAKAN ( ELASTOMER ) BAB VII PERENCANAAN PERLETAKAN ( ELASTOMER ) Perencanaan Perletakan ( bearings ) jembatan akhir - akhir ini sering memakai elastomer ( elastomeric ), yaitu bahan yang terbuat dari kombinasi antara karet

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG BANGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG BANGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG NGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT JA BETON Oleh : Insan Wiseso 3105 100 097 Dosen Pembimbing : Ir. R. Soewardojo, MSc Ir. Isdarmanu,

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN JURUSAN DIPLOMA IV TEKNIK SIPIL FTSP ITS SURABAYA MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO Oleh : M. ZAINUDDIN 3111 040 511 Dosen Pembimbing

Lebih terperinci

BAB IV ANALISIS STRUKTUR. Berat sendri pelat = 0.12 x 2400 kg/m 3 = 288 kg/m 2. Berat Spesi = 3 x 21 kg/m 2 /cm = 63 kg/m 2

BAB IV ANALISIS STRUKTUR. Berat sendri pelat = 0.12 x 2400 kg/m 3 = 288 kg/m 2. Berat Spesi = 3 x 21 kg/m 2 /cm = 63 kg/m 2 BAB IV ANALISIS STRUKTUR 4.1. Pembebanan a. Beban Mati ( DL) Berat sendri pelat = 0.1 x 400 kg/m 3 = 88 kg/m Berat Spesi = 3 x 1 kg/m /cm = 63 kg/m Penutup lantai (Granit) = x 4 kg/m /cm = 48 kg/m Pelafond

Lebih terperinci

BAB I PENDAHULUAN 1.3. Maksud dan Tujuan 1.4. Batasan Masalah

BAB I PENDAHULUAN 1.3. Maksud dan Tujuan 1.4. Batasan Masalah 1 BAB I PENDAHULUAN Bahan Baja walaupun dari jenis yang paling rendah kekuatannya, tetap mempunyai perbandingan kekuatan per volume lebih tinggi bila dibandingkan dengan bahan-bahan bangunan lainnya yang

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

CONTOH CARA PERHITUNGAN JEMBATAN RANGKA BATANG

CONTOH CARA PERHITUNGAN JEMBATAN RANGKA BATANG CONTOH CARA PERHITUNGAN JEMBATAN RANGKA BATANG PERHITUNGAN PELAT LANTAI MODEL GAMBAR PERHITUNGAN d 4 (Aspal) d 3 (Beton) S = b 1 -b f b 1 Pelat Beton dihitung per meter pajang 1 m PERHITUNGAN PELAT LANTAI

Lebih terperinci

PERHITUNGAN VOIDED SLAB JOMBOR FLY OVER YOGYAKARTA Oleh : Ir. M. Noer Ilham, MT. [C]2008 :MNI-EC

PERHITUNGAN VOIDED SLAB JOMBOR FLY OVER YOGYAKARTA Oleh : Ir. M. Noer Ilham, MT. [C]2008 :MNI-EC A. DATA VOIDED SLAB PERHITUNGAN VOIDED SLAB JOMBOR FLY OVER YOGYAKARTA Oleh : Ir. M. Noer Ilham, MT. [C]2008 :MNI-EC Lebar jalan (jalur lalu-lintas) B 1 = 7.00 m Lebar trotoar B 2 = 0.75 m Lebar total

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

5- STRUKTUR LENTUR (BALOK)

5- STRUKTUR LENTUR (BALOK) Pengertian Balok 5- STRUKTUR LENTUR (BALOK) Balok adalah bagian dari struktur bangunan yang menerima beban tegak lurus ( ) sumbu memanjang batang (beban lateral beban lentur) Beberapa jenis balok pada

Lebih terperinci

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori BAB II Dasar Teori 2.1 Umum Jembatan secara umum adalah suatu konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya beberapa rintangan seperti lembah yang dalam, alur

Lebih terperinci

BAB V PERHITUNGAN KONSTRUKSI

BAB V PERHITUNGAN KONSTRUKSI V - 1 BAB V PERHITUNGAN KONSTRUKSI 5.1 Data Perencanaan Jembatan h 5 m 45 m Gambar 5.1 Skema Rangka Baja Data-Data Bangunan 1. Bentang total : 45,00 m. Lebar jembatan : 9,00 m 3. Lebar lantai kendaraan

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK OLEH : FIRENDRA HARI WIARTA 3111 040 507 DOSEN PEMBIMBING : Ir. IBNU PUDJI RAHARDJO, MS JURUSAN

Lebih terperinci

BAB VI REVISI BAB VI

BAB VI REVISI BAB VI BAB VI REVISI BAB VI 6. DATA-DATA PERENCANAAN Bentang Total : 60 meter Lebar Jembatan : 0,5 meter Lebar Lantai Kendaraan : 7 meter Lebar Trotoar : x mter Kelas Jembatan : Kelas I (BM 00) Mutu Beton : fc

Lebih terperinci

3.6.4 Perhitungan Sambungan Balok dan Kolom

3.6.4 Perhitungan Sambungan Balok dan Kolom 64 3.6.4 Perhitungan Sambungan Balok dan Kolom A. Sambungan pada balok anak melintang ke balok anak memanjang Diketahui: Balok anak memanjang menggunakan profil WF 00.150.6.9, BJ 37 Balok anak melintang

Lebih terperinci

TUGAS AKHIR PERENCANAAN VARIASI RANGKA BAJA PADA JEMBATAN TANJUNG SELAMAT MEDAN (STUDI KASUS) Disusun Oleh : STEPHANY G. SURBAKTI

TUGAS AKHIR PERENCANAAN VARIASI RANGKA BAJA PADA JEMBATAN TANJUNG SELAMAT MEDAN (STUDI KASUS) Disusun Oleh : STEPHANY G. SURBAKTI TUGAS AKHIR PERENCANAAN VARIASI RANGKA BAJA PADA JEMBATAN TANJUNG SELAMAT MEDAN (STUDI KASUS) Disusun Oleh : STEPHANY G. SURBAKTI 11 0404 059 Dosen Pembimbing : Ir. Sanci Barus, MT 19520901 198112 1 001

Lebih terperinci

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir Tugas Akhir PERENCANAAN JEMBATAN BRANTAS KEDIRI DENGAN MENGGUNAKAN SISTEM BUSUR BAJA Nama : Mohammad Zahid Alim Al Hasyimi NRP : 3109100096 Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung

Lebih terperinci

MODUL 4 STRUKTUR BAJA II. Perencanaan Lantai Kenderaan. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 4 STRUKTUR BAJA II. Perencanaan Lantai Kenderaan. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 4 Perencanaan Lantai Kenderaan Dosen Pengasuh : Ir. Thamrin Nasution Materi Pembelajaran : CONTOH SOAL PERENCANAAN LANTAI JEMBATAN Tujuan Pembelajaran : Mahasiswa mengetahui dan

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

ANAAN TR. Jembatan sistem rangka pelengkung dipilih dalam studi ini dengan. pertimbangan bentang Sungai Musi sebesar ±350 meter. Penggunaan struktur

ANAAN TR. Jembatan sistem rangka pelengkung dipilih dalam studi ini dengan. pertimbangan bentang Sungai Musi sebesar ±350 meter. Penggunaan struktur A ANAAN TR Jembatan sistem rangka pelengkung dipilih dalam studi ini dengan pertimbangan bentang Sungai Musi sebesar ±350 meter. Penggunaan struktur lengkung dibagi menjadi tiga bagian, yaitu pada bentang

Lebih terperinci

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA SEMINAR TUGAS AKHIR PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA OLEH : AHMAD FARUQ FEBRIYANSYAH 3107100523 DOSEN PEMBIMBING : Ir.

Lebih terperinci

PERHITUNGAN BALOK DENGAN PENGAKU BADAN

PERHITUNGAN BALOK DENGAN PENGAKU BADAN PERHITUNGAN BALOK DENGAN PENGAKU BADAN A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan sisa (residual stress ), f r = 70 MPa Modulus elastik baja (modulus

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

STUDI PENGGUNAAN, PERBAIKAN DAN METODE SAMBUNGAN UNTUK JEMBATAN KOMPOSIT MENGGUNAKAN LINK SLAB

STUDI PENGGUNAAN, PERBAIKAN DAN METODE SAMBUNGAN UNTUK JEMBATAN KOMPOSIT MENGGUNAKAN LINK SLAB STUDI PENGGUNAAN, PERBAIKAN DAN METODE SAMBUNGAN UNTUK JEMBATAN KOMPOSIT MENGGUNAKAN LINK SLAB Oleh : Ferindra Irawan 3105 100 041 Dosen Pembimbing : Dr. Ir. Hidayat Soegihardjo, MS LATAR BELAKANG Banyak

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL...i. LEMBAR PENGESAHAN... ii. LEMBAR PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR GAMBAR...

DAFTAR ISI. HALAMAN JUDUL...i. LEMBAR PENGESAHAN... ii. LEMBAR PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR GAMBAR... DAFTAR ISI HALAMAN JUDUL...i LEMBAR PENGESAHAN... ii LEMBAR PERSEMBAHAN... iii KATA PENGANTAR...iv DAFTAR ISI...vi DAFTAR GAMBAR...ix DAFTAR TABEL... xii DAFTAR LAMPIRAN... xv INTISARI...xvi ABSTRACT...

Lebih terperinci

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS SEMINAR TUGAS AKHIR OLEH : ANDREANUS DEVA C.B 3110 105 030 DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS JURUSAN TEKNIK SIPIL LINTAS JALUR FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT

Lebih terperinci

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA 2016

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA 2016 PERENCANAAN JEMBATAN KOMPOSIT METODE LRFD (LOAD AND RESISTANCE FACTOR DESIGN) TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan Sarjana Teknik Sipil Disusun oleh : HER AFRIYANDI 110404070

Lebih terperinci

PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN. Laporan Tugas Akhir. Universitas Atma Jaya Yogyakarta.

PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN. Laporan Tugas Akhir. Universitas Atma Jaya Yogyakarta. PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar sarjana dari Universitas Atma Jaya Yogyakarta

Lebih terperinci

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording 1.1 Perhitungan Dimensi Gording 1. PERENCANAAN ATAP 140 135,84 cm 1,36 m. Direncanakan gording profil WF ukuran 100x50x5x7 A = 11,85 cm 2 tf = 7 mm Zx = 42 cm 2 W = 9,3 kg/m Ix = 187 cm 4 Zy = 4,375 cm

Lebih terperinci

BAB V DESAIN TULANGAN STRUKTUR

BAB V DESAIN TULANGAN STRUKTUR BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka

Lebih terperinci

PERHITUNGAN SLAB LANTAI JEMBATAN

PERHITUNGAN SLAB LANTAI JEMBATAN PERHITUNGAN SLAB LANTAI JEMBATAN JEMBATAN PANTAI HAMBAWANG - DS. DANAU CARAMIN CS A. DATA SLAB LANTAI JEMBATAN Tebal slab lantai jembatan t s = 0.35 m Tebal trotoar t t = 0.25 m Tebal lapisan aspal + overlay

Lebih terperinci

MODUL 5 STRUKTUR BAJA II. Perencanaan Lantai Kenderaan. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 5 STRUKTUR BAJA II. Perencanaan Lantai Kenderaan. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 5 Perencanaan Lantai Kenderaan Dosen Pengasuh : Materi Pembelajaran : WORKSHOP/PELATIHAN PERENCANAAN LANTAI JEMBATAN Tujuan Pembelajaran : Mahasiswa dapat melakukan perencanaan lantai

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG B RUMAH SUSUN SEDERHANA SEWA GUNUNGSARI SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG B RUMAH SUSUN SEDERHANA SEWA GUNUNGSARI SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON TUGAS AKHIR RC09 1380 MODIFIKASI PERENCANAAN GEDUNG B RUMAH SUSUN SEDERHANA SEWA GUNUNGSARI SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON Oleh : YOGA C. V. TETHOOL 3107100057 Dosen Pembimbing : ENDAH

Lebih terperinci

PERBANDINGAN DESAIN GELAGAR BAJA KONVENSIOMAL DAN CASTELLA

PERBANDINGAN DESAIN GELAGAR BAJA KONVENSIOMAL DAN CASTELLA PERBANDINGAN DESAIN GELAGAR BAJA KONVENSIOMAL DAN CASTELLA PADA PERENCANAAN JEMBATAN KOMPOSIT Agus Dosen Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Padang Abstrak Teknologi

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

PERANCANGAN JEMBATAN TAHOTA II KABUPATEN MANOKWARI PROVINSI PAPUA BARAT

PERANCANGAN JEMBATAN TAHOTA II KABUPATEN MANOKWARI PROVINSI PAPUA BARAT PERANCANGAN JEMBATAN TAHOTA II KABUPATEN MANOKWARI PROVINSI PAPUA BARAT Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh: MARTUA MURDANI

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci