tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh

Ukuran: px
Mulai penontonan dengan halaman:

Download "tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh"

Transkripsi

1 Lecture 4. Limit A A. Definition of Limit Definisi 4.1 (a). Jika f adalah suatu fungsi, maka kita mengatakan bahwa jika nilai f(x) mendekati L saat x dipilih mendekati a. Dengan kata lain, bilangan L merupakan it dari fungsi f(x) untuk x mendekati a. Definisi 4.1 (b). jika dan hanya jika untuk setiap bilangan positif ε yang dipilih, meskipun kecil, ada satu bilangan δ sedemikian rupa sehingga, ketika 0 < x a < δ maka f(x) L < ε Berikut adalah dalam tiga kasus. Pada kasus (a), f(x) terdefinisi pada x = a, dengan f(a) = L. Diperoleh Pada kasus (b), meskipun f(x) terdefinisi pada x = a, dengan f(a) L, namun kita tetap mengatakan Pada kasus (c), meskipun fungsi f(x) tidak terdefinisi pada x = a, yaitu f(a) tidak ada, tetapi kita tetap mengatakan Gambar 4.1. Contoh 1 (Pendekatan Matematis) (a) x = 9, karena x mendekati 9 saat x sedekat mungkin ke 3. (b) Tentukan nilai dari. Meskipun tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh

2 x 1 x 1 = x 1 (x 1)(x + 1) = = = 0,5 (Pencoretan sah karena x hanya mendekati 1, sehingga x 1 0). Pendekatan dari kiri Pendekatan dari kanan Gambar 4.2. = 0,5 (c) Tentukan nilai dari g(x), dengan g(x) =, jika x 1 2, jika x = 1. Karena x 1 artinya x hanya mendekati 1 (tidak mencapai x = 1), sehingga x 1. Dengan demikian diperoleh g(x) = = 0,5.

3 Gambar 4.3. g(x) = 0,5 Contoh 2 (Pendekatan Numerik) (a) Tentukan. Tabel berikut memberikan nilai pendekatan fungsi untuk beberapa nilai t yang cukup dekat dengan 0. Gambar 4.4. =. Perhatikan bahwa untuk t mendekati 0, maka nilai fungsi mendekati , sehingga diperoleh t t = 1 6

4 (b) Tentukan. Fungsi f(x) = tidak terdefinisi pada x = 0. Tabel berikut memberikan nilai pendekatan fungsi untuk beberapa nilai t yang cukup dekat dengan 0. Gambar 4.5. = 1. Berdasarkan tabel dan gambar di atas, diperoleh = 1. Contoh 3 (Pendekatan Definisi): Mari kita gunakan definisi yang tepat untuk menunjukkan bahwa (4x 5) = 3. Misalkan ε > 0 dipilih. Kita harus menghasilkan δ > 0 sedemikian rupa sehingga, ketika 0 < x 2 < δ maka (4x 5) 3 < ε. Pertama kita catat bahwa (4x 5) 3 = 4x 8 = 4 x 2 Jika kita mengambil δ =, maka, ketika 0 < x 2 < δ diperoleh (4x 5) 3 = 4 x 2 < 4δ = ε Teorema 4.1 (Ketunggalan Limit). Jika dan, maka L = L.

5 Berdasarkan Teorema 4.1, kita dapat menyatakan bahwa jika suatu it fungsi f memiliki suatu it L di suatu bilangan a, maka L adalah satusatunya it dari f di a. B. Calculating Limits Using the Limit Laws Limit Laws. Diberikan suatu konstanta c dan it-it f(x) dan g(x) ada. Maka berlaku (1) [f(x) + g(x)] = f(x) + g(x) (2) [f(x) g(x)] = f(x) g(x) (3) [cf(x)] = c f(x) (4) [f(x)g(x)] = f(x). g(x) () (5) = (), jika () () g(x) 0 (6) [f(x)] = [ f(x)], dengan n bilangan bulat positif. (7) c = c (8) x = a (9) x = a, dengan n bilangan bulat positif. (jika n genap, diasumsikan a > 0) (10) f(x) = f(x), dengan n bilangan bulat positif. (jika n ganjil, diasumsikan f(x) > 0) Contoh 1. Gunakan aturan-aturan it (it laws) dan grafik f dan g untuk mengevaluasi it-it berikut (jika itnya ada). (a) [f(x) + 5g(x)] (b) [f(x)g(x)] (c) () () (a) Dari grafik f dan g diperoleh f(x) = 1 dan g(x) = 1. Sehingga diperoleh [f(x) + 5g(x)] = f(x) + [5g(x)] = f(x) + 5 g(x) = 1 + 5( 1) = 4 (b) Dari grafik f dan g diperoleh f(x) = 2, tetapi g(x) tidak ada, karena it kiri tidak sama dengan it kanan, yaitu

6 g(x) = 2 dan g(x) = 1. Sehingga aturan it ke (4) tidak bisa digunakan (c) Dari grafik f dan g diperoleh f(x) 1.4 dan g(x) = 0. Karena g(x) = 0, maka aturan it ke (5) tidak dapat digunakan. Jadi itnya tidak ada. Contoh 2. Evaluasi it-it berikut dengan aturan it. (2x 3x + 4) (2x 3x + 4) = (2x ) (3x) + 4 = 2 x 3 x + 4 = 2(5 ) 3(5) + 4 = 39 Contoh 3. Tentukan nilai dari. Misal f(x) =. Kita tidak dapat mencari itnya dengan langsung mensubstitusi x = 1, karena f(1) tidak terdefinisi. Selanjutnya, karena f(1) = (remember this), sehingga bisa disederhanakan terlebih dahulu. = ()() = (x + 1) = = 2. () Contoh 4. Tentukan nilai dari. Misal f(h) = (). Kita tidak dapat mencari itnya dengan langsung mensubstitusi h = 0, karena f(0) tidak terdefinisi. Selanjutnya, karena f(0) =, sehingga bisa disederhanakan terlebih dahulu. () = ( ) = = (6 + h) = 6. Contoh 5. Tentukan nilai dari.

7 Misal f(t) =. Kita tidak dapat mencari itnya dengan langsung mensubstitusi t = 0, karena f(0) tidak terdefinisi. Selanjutnya, karena f(0) =, sehingga bisa disederhanakan terlebih dahulu. =. ( = ) = = C. Left and Right-Hand Limits = =. Teorema. jika dan hanya jika = f(x) Contoh 1. Tunjukkan bahwa x = 0. x, jika x 0 Diketahui x = x, jika x < 0. Karena x = x untuk x > 0, maka x = x = 0. Karena x = x untuk x < 0, maka x = ( x) = 0. Berdasarkan teorema di atas, diperoleh x = 0 Contoh 2. Tunjukkan bahwa tidak ada. x, jika x 0 Diketahui x = x, jika x < 0. Karena x = x untuk x > 0, maka = = 1 = 1. Karena x = x untuk x < 0, maka = = 1 = 1. Karena, sehingga tidak ada.

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

Definisi yang sama dapat diberikan untuk limit tak hingga sepihak.

Definisi yang sama dapat diberikan untuk limit tak hingga sepihak. Lecture 4. Limit C A. Infinite Limits Definisi 4.1 Notasi lim f(x) = Menyatakan bahwa nilai f(x) membesar tanpa batas jika nilai x semakin dekat dengan a, tetapi tidak sama dengan a. lim f(x) = lim f(x)

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana. Bagian 3. Limit & Kontinuitas ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana. Bagian 3. Limit & Kontinuitas ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana Bagian 3 Limit & Kontinuitas ALZ DANNY WOWOR Topik yang dibahas A. Limit Fungsi B. Perhitungan Limit (menggunakan hukum

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN 10.1 PENDAHULUAN Sebelum mambahas it fungsi di suatu titik terlebih dahulu kita akan mengamati perilaku suatu fungsi bila peubahnya mendekati suatu bilangan ril c tertentu. Misal

Lebih terperinci

Pengertian limit secara intuisi

Pengertian limit secara intuisi Pengertian it secara intuisi Perhatikan fungsi f ( ) = Fungsi diatas tidak terdefinisi di =, karena di titik tersebut f() berbentuk 0/0. Tapi masih bisa ditanyakan berapa nilai f() jika mendekati Dengan

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Derivatives D A. Turunan Tingkat Tinggi Jika f adalah turunan fungsi f, maka f juga merupakan suatu fungsi. f adalah turunan pertama dari f. Jika turunan dari f ada, turunan ini dinamakan turunan

Lebih terperinci

LIMIT FUNGSI. Standar kompetensi : Mengunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

LIMIT FUNGSI. Standar kompetensi : Mengunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah LIMIT FUNGSI Standar kompetensi : Mengunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah Kompetensi Dasar : Menjelaskan secara intuitif arti limit fungsi di suatu titik dan di takhingga.

Lebih terperinci

Limit Fungsi. semua x bilangan real, kecuali x = 2

Limit Fungsi. semua x bilangan real, kecuali x = 2 LA - WB (Lembar Aktivitas Warga Belajar) LIMIT FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 27 Limit Fungsi Kompetensi Dasar

Lebih terperinci

karena limit dari kiri = limit dari kanan

karena limit dari kiri = limit dari kanan A. DEFINISI LIMIT Istilah it dalam matematika hampir sama artinya dengan istilah mendekati. Akibatnya, nilai it sering dikatakan sebagai nilai pendekatan.. Pengertian Limit secara Intusi Untuk memahami

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

Bahan Ajar. Limit Fungsi Aljabar. (Edisi 1,00) Disusun Oleh : Fendi Alfi Fauzi

Bahan Ajar. Limit Fungsi Aljabar. (Edisi 1,00) Disusun Oleh : Fendi Alfi Fauzi Bahan Ajar Limit Fungsi Aljabar (Edisi 1,00) Disusun Oleh : Fendi Alfi Fauzi Fendi Alfi Fauzi Bahan Ajar Limit Fungsi Aljabar (Edisi 1,00) Tulisan ini bebas dibaca dan disebarluaskan kepada siapapun dengan

Lebih terperinci

BAB 3. LIMIT DAN KEKONTINUAN FUNGSI

BAB 3. LIMIT DAN KEKONTINUAN FUNGSI BAB. LIMIT DAN KEKONTINUAN FUNGSI A. Definisi it Sebelum mendefinisikan it, terlebih dahulu perhatikan gambar berikut! y L + ε ε ε f() f() - L L f() - L f() L - ε c - δ c c + δ c- -c δ δ Gambar. Dari gambar

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

Matematika

Matematika Fungsi dan Kekontinuan D3 Analis Kimia FMIPA Universitas Islam Indonesia Ilustrasi 1 Nol mutlak, yaitu temperatur T C di mana semua aktivitas molekular berhenti, dapat didekati namun tidak pernah dapat

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

II. TINJUAN PUSTAKA. lim f(x) = L berarti bahwa bilamana x dekat tetapi sebelah kiri c 0 maka f(x)

II. TINJUAN PUSTAKA. lim f(x) = L berarti bahwa bilamana x dekat tetapi sebelah kiri c 0 maka f(x) II. TINJUAN PUSTAKA 2.1. Limit Definisi lim f(x) = L, dan mengatakan limit f (x) ketika x mendekati a sama dengan L, jika dapat dibuat nilai f (x) sebarang yang dekat dengan L dengan cara mengambil nilai

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

Gambar 1. Gradien garis singgung grafik f

Gambar 1. Gradien garis singgung grafik f D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +

Lebih terperinci

PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI

PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI LIMIT Limit menggambarkan seberapa jauh sebuah fungsi akan berkembang apabila variabel di dalam fungsi yang bersangkutan terus menerus berkembang mendekati

Lebih terperinci

x 3 NAMA : KELAS : LEMBAR AKTIVITAS SISWA LIMIT FUNGSI Dengan menggunakan limit matematis dapat dituliskan sebagai berikut: lim

x 3 NAMA : KELAS : LEMBAR AKTIVITAS SISWA LIMIT FUNGSI Dengan menggunakan limit matematis dapat dituliskan sebagai berikut: lim NAMA : KELAS : A. PENGERTIAN LIMIT FUNGSI LEMBAR AKTIVITAS SISWA LIMIT FUNGSI Dengan menggunakan it matematis dapat dituliskan sebagai berikut: x 3 (2x -1) =.. Grafiknya dapat diperhatikan sebagai berikut:

Lebih terperinci

Hendra Gunawan. 13 September 2013

Hendra Gunawan. 13 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 13 September 2013 Latihan (Kuliah yang Lalu) sin t 1. Menggunakan fakta bahwa lim 1, t0 hitunglah: t 2 sin( 2 ) a. limsin t.cot 2t b. lim t 0 0

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Pengertian dan notasi dari it suatu fungsi, f() di suatu nilai = a diberikan secara intuitif berikut. Bila nilai f() mendekati L untuk nilai mendekati a dari arah kanan maka dikatakan

Lebih terperinci

Hendra Gunawan. 11 September 2013

Hendra Gunawan. 11 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 01/014 11 September 01 Latihan (Kuliah yang Lalu) 1. Buktikan bahwa ( 5) 1. (sdh dibahas). Buktikan bahwa. 4. Buktikan kik bh bahwa 4. bh bahas sekarang

Lebih terperinci

10. TEOREMA NILAI RATA-RATA

10. TEOREMA NILAI RATA-RATA 10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 7 Limit dan Kekontinuan 2 Isaac Newton (1643-1727) Isaac Newton adalah seorang fisikawan & matematikawan Inggris yang

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

Limit Fungsi. Bab. Limit fungsi Pendekatan (kiri dan kanan) Bentuk tentu dan tak tentu Perkalian sekawan A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Limit Fungsi. Bab. Limit fungsi Pendekatan (kiri dan kanan) Bentuk tentu dan tak tentu Perkalian sekawan A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Limit Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran it fungsi, siswa mampu: 1. menghayati pola hidup disiplin, kritis, bertanggungjawab, konsisten

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Kuliah 3: TURUNAN. Indah Yanti

Kuliah 3: TURUNAN. Indah Yanti Kuliah 3: TURUNAN Indah Yanti Turunan Parsial DEFINISI Misalkan fungsi f: A R, dengan A R n adalah himpunan buka. Untuk setiap x = (x 1,..., x n ) A dan setiap j = 1,..., n limit f x j x 1,, x n f x 1,,

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Integral A. Masalah Luas (The Area Problem) Sebelumnya kita pernah mempelajari rumus-rumus luas dari beberapa bentuk geometri. Misalnya, luas daerah persegi panjang adalah panjang kali lebar,

Lebih terperinci

Untuk sebuah fungsi y = f(x), bagaimana perilaku dari f(x) jika x mendekati c, akan tetapi x tidak sama dengan c (x c).

Untuk sebuah fungsi y = f(x), bagaimana perilaku dari f(x) jika x mendekati c, akan tetapi x tidak sama dengan c (x c). 5 LIMIT FUNGSI 5. PENDAHULUAN LIMIT Untuk sebuah fungsi y f(), bagaimana perilaku dari f() jika mendekati c, akan tetapi tidak sama dengan c ( c). Contoh, kita ambil fungsi f() dan g() dan akan kita cari

Lebih terperinci

PRAKTIKUM MAPLE 4 KALKULUS LANJUTAN

PRAKTIKUM MAPLE 4 KALKULUS LANJUTAN 11 Fungsi Implisit PRAKTIKUM MAPLE 4 KALKULUS LANJUTAN Pada pembelajaran praktikum 3, diajarkan fungsi eksplisit dalam bentuk y = f(x). Sekarang bagaimana menuliskan fungsi apabila dalam bentuk implisit?

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5.3 Kalkulus Turunan Pada bagian ini kita akan membahas sejumlah aturan untuk diferensial dan aturan untuk turunan, yg mempunyai kemiripan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 4 Derivatif ALZ DANNY WOWOR Cakupan Materi A. Defenisi Derivatif B. Rumus-rumus Derivatif C. Aplikasi Derivatif

Lebih terperinci

BAB III LIMIT DAN KEKONTINUAN FUNGSI

BAB III LIMIT DAN KEKONTINUAN FUNGSI BAB III LIMIT DAN KEKONTINUAN FUNGSI Pembahasan pada bab ini dibagi dalam dua bagian. Pada bagian pertama dibahas it fungsi yang meliputi pengertian, sifat, dan penghitungan nilai it suatu fungsi. Pada

Lebih terperinci

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/ matematika K e l a s XI LIMIT TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menghitung it fungsi trigonometri di suatu

Lebih terperinci

Matematika

Matematika Fungsi dan Kekontinuan D3 Analis Kimia FMIPA Universitas Islam Indonesia Ilustrasi 1 Nol mutlak, yaitu temperatur T C di mana semua aktivitas molekular berhenti, dapat didekati namun tidak pernah dapat

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Fungsi 2.1.1 Pengertian Sebuah fungsi adalah suatu kaidah yang menghasilkan korespondensi di antara dua himpunan. Jika pada setiap nilai yang dapat diambil oleh sebuah variabel

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN)

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) PENDAHULUAN BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) (Pertemuan ke 11 & 12) Diskripsi singkat Pada bab ini dibahas tentang integral tak tentu, integrasi parsial dan beberapa metode integrasi lainnya yaitu

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI Diktat Kuliah TK Matematika BAB LIMIT DAN KEKONTINUAN FUNGSI Limit Fungsi Pengantar Limit Tinjau fungsi yang didefinisikan oleh f ( ) Perhatikan bahwa fungsi ini tidak terdefinisi pada = karena memiliki

Lebih terperinci

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada

Lebih terperinci

Tugas Praktikum Matematika Dasar I Ringkasan Materi Maple

Tugas Praktikum Matematika Dasar I Ringkasan Materi Maple Tugas Praktikum Matematika Dasar I Ringkasan Materi Maple Nama : YULI ARDIKA PRIHATAMA NIM : K2308062 Prodi : Pendidikan Fisika Kelas/Angkatan : B/2008 PENDAHULUAN Maple adalah sebuah software yang biasa

Lebih terperinci

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. Definisi. (i) Suatu fungsi f(x, y) memiliki minimum lokal pada titik

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

Kedua, lim f(x)=l harus dibaca serta ditafsirkan bahwa L adalah limit fungsi f(x), dan bukan berarti L adalah nilai fungi f(x).

Kedua, lim f(x)=l harus dibaca serta ditafsirkan bahwa L adalah limit fungsi f(x), dan bukan berarti L adalah nilai fungi f(x). MATERI 4 LIMIT Sub Materi : 1. Pengertian limit 2. Limit sisi kiri 3. Limit sisi kanan 4. Kaidah-kaidah limit 5. Penyelesaiaan kasus khusus 6. Kesinambungan 7. Penerapan ekonomi Pertemuan ke-6 dan 7 Tujuan

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu

IV. HASIL DAN PEMBAHASAN. Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu IV. HASIL DAN PEMBAHASAN 4.1 Fungsi Euler Definisi 4.1 Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu bilangan bulat yang sama dengan jumlah dari iterasi Totientnya. yaitu jika

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 3, 2011 6.3 Limit Sepihak, Limit di Tak Hingga, dan Limit Tak Hingga Bila sebelumnya kita mempelajari limit barisan,

Lebih terperinci

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

5.1 Fungsi periodik, fungsi genap, fungsi ganjil Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk

Lebih terperinci

B. PENGERTIAN LIMIT FUNGSI

B. PENGERTIAN LIMIT FUNGSI B. PENGERTIAN LIMIT FUNGSI Dalam kehidupan sehari-hari kita sering mendengar kaat-kaat seperti : a. Mobil itu nyaris masuk ke jurang. b. Kita hampir memasuki kota Jakarta. c. Kecantikannya mendekati sempurna.

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA

MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA 11.1. Ketentuan dan Sifat-Sifat KETENTUAN a P = a. a. a. a................. sampai p faktor (a dinamakan bilangan pokok, p dinamakan pangkat atau eksponen) SIFAT-SIFAT

Lebih terperinci

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I.. 3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 3. Function (A) A. Definition of Function Definisi. f adalah fungsi dari himpunan A ke himpunan B yang ditulis dengan f: A B, yaitu merupakan suatu aturan yang memetakan (mengawankan) setiap xεa

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

LIMIT DAN KONTINUITAS. Arum Handini Primandari

LIMIT DAN KONTINUITAS. Arum Handini Primandari LIMIT DAN KONTINUITAS Arum Handini Primandari Jika sebuah fungsi yang terdefinisi pada suatu selang buka yang memuat a, kecuali di a sendiri, maka kita katakan bahwa limit f(x) untuk x mendekati a adalah

Lebih terperinci

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM LIMIT & KEKONTINUAN IRA PRASETYANINGRUM Bilangan Tidak Tertentu Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong Misal : A={Orang yang Istrinya } Terdapat bilangan mendekati dari kiri/bawah/negati

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f). Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

SEKOLAH MENENGAH KEJURUAN NEGERI 1 TEMON

SEKOLAH MENENGAH KEJURUAN NEGERI 1 TEMON TUGAS MANDIRI TIDAK TERSTUKTUR LIMIT DAN TURUNAN Disusun oleh : RADITYA AMARA BOJA 1037 SEKOLAH MENENGAH KEJURUAN NEGERI 1 TEMON 1 KULON PROGO OKTOBER 2015 Kata Pengantar Puji syukur saya panjatkan kepada

Lebih terperinci