BAB III METODOLOGI PEMBAHASAN. Adapun data-data yang didapat untuk melakukan perencanaan struktur. a. Gambar arsitektur (gambar potongan dan denah)

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III METODOLOGI PEMBAHASAN. Adapun data-data yang didapat untuk melakukan perencanaan struktur. a. Gambar arsitektur (gambar potongan dan denah)"

Transkripsi

1 BAB III METODOLOGI PEMBAHASAN 3.1 Data Perencanaan Adapun data-data yang didapat untuk melakukan perencanaan struktur gedung ini antara lain : a. Gambar arsitektur (gambar potongan dan denah) Gambar 3.1 Potongan Arsitektur Bangunan Ellips R. ERICK PRIHARNA L III - 1

2 Gambar 3.2 Denah Arsitektur Lantai 1 6 Banguan Ellips Gambar 3.3 Denah Arsitektur Lantai 7 10 Banguan Ellips R. ERICK PRIHARNA L III - 2

3 b. Lokasi bangunan berada di daerah Banten tepatnya di Anyer, termasuk kedalam wilayah gempa 5 Gambar 3.4 Lokasi Banguan Berdasarkan Wilayah Gempa c. Kategori bangunan adalah Apartemen dan hotel d. Finishing lantai terdiri dari pasangan keramik dengan spesi mortar ketebalan 2.5 cm e. Dinding interior merupakan pasangan dinding ½ bata dengan tebal 15 cm f. Dinding exterior merupakan Curtain Wall, elemen Curtain Wall terdiri dari pasangan kaca ketebalan 8 mm, kusen alumunium ekstrusi (alumunium alloy) berupa mullion dengan berat g. Langit-langit plafon merupakan pasangan gypsum dengan rangka zincalum serta terdapat instalasi Mekanikal dan Elektrikal (ME). h. Struktur merupakan beton bertulang dengan mutu bahan : - Mutu tulangan, f y = 400 Mpa - Mutu beton pelat dan balok, f c = 35 Mpa - Mutu beton kolom, f c = 40 MPa R. ERICK PRIHARNA L III - 3

4 3.2 Perencanaan Struktur Gedung Secara umum perencanaan struktur gedung dilakukan melalui beberapa tahapan, seperti yang tergambar dalam diagram alir berikut, Mulai A Data-data perencanaan: - Gambar arsitektur, - Spesifikasi gedung Analisa Pembebanan Gempa Statis Equivalen dan Penempatan Beban Gempa pada Pusat Massa Gedung Preliminari Elemen Struktur: -Pelat -Balok -Kolom Permodelan Struktur dengan Software Running Struktur Desain Penulangan Elemen Struktur Balok, Pelat, dan Kolom dengan SRPMK sesuai SNI Analisa Pembebanan Statis (beban hidup dan mati) Gedung dan Input Beban Statis pada Gedung Gambar Detail A Selesai Gambar 3.5 Diagram Alir Perencanaan Struktur Gedung dengan SRPMK Dari gambar 3.5 di atas dapat kita lihat bahwa langkah awal perencanaan gedung adalah dimulai dengan pengumpulan data-data perencanaan berupa gambar arsitektur dan spesifikasi teknis gedung seperti keutamaan fungsi gedung, lokasi gedung berada yang berkaitan dengan wilayah gempa, mutu beton yang dipakai, mutu tulangan yang dipakai, dan lain sebagainya. Perhitungan preliminary desain menjadi urutan pertama dalam mendesain struktur gedung. Preliminari desain / prarencana menjadi sangat penting untuk dilakukan, suatu struktur dikatakan optimal tidak hanya dilihat dari segi R. ERICK PRIHARNA L III - 4

5 kekuatannya saja tetapi struktur yang optimum adalah struktur yang secara maksimal mampu menahan seluruh beban yang bekerja serta ekonomis dari segi dimensi penampang struktur tersebut. Output dari preliminary desain adalah dimensi elemen struktur yang optimum berdasarkan ketentuan dalam SNI Hasil akhir prliminari desain seperti tebal pelat (h), tinggi (h) dan lebar (b) balok, dan lebar kolom (b), kemudian diaplikasikan secara keseluruhan dan dimodelkan dalam bentuk geometris struktur gedung. Dalam proses permodelan ini Penulis menggunakan bantuan software analisa struktur Etabs. Ada 2 jenis pembebanan pada gedung yaitu pembebanan statis yang meliputi beban hidup dan beban mati, dan pembebanan dinamis atau pembebanan gempa. Beban statis yang bekerja pada gedung dianalisa sedemikian rupa sehingga menghasilkan besaran atau nilai yang cukup mewakili dan di-input pada pemodelan struktur yang telah dilakukan sebelumnya. Sedangkan beban gempa dihitung secara khusus dan sistematis pada gambar 3.2 berikut. R. ERICK PRIHARNA L III - 5

6 T = 0.06 H 3 4 T = 0.06 H 3 4 C I V = R W t T = g 2 i i W d Fd i i Wi.Zi Fi = V ΣWi.Zi Wi.Zi F = 10 ΣWi.Zi Wi.Zi Fi = 90% V ΣWi.Zi lt. paling atas % V T T 1 T 1 < 20% Gambar 3.6 Diagram Alir Analisa Beban Gempa Dari gambar 3.6 tampak langkah-langkah / metode analisa beban gempa dimana persamaan-persamaan yang dipakai berdasarkan landasan teori pada bab sebelumnya. Dalam analisis pembebanan gempa, pemeriksaan terhadap kinerja R. ERICK PRIHARNA L III - 6

7 batas layan (Δs) menjadi sangat penting dilakukan untuk membatasi terjadinya pelelehan baja dan peretakan beton yang berlebihan, di samping untuk mencegah kerusakan non-struktur dan ketidaknyamanan penghuni. Begitu pula dengan pemeriksaan terhadap kinerja batas ultimit (Δm) perlu dilakukan untuk membatasi kemungkinan terjadinya keruntuhan struktur gedung yang dapat menimbulkan korban jiwa manusia dan untuk mencegah benturan berbahaya antar-gedung atau antar bagian struktur gedung yang dipisah dengan sela pemisah (sela delatasi). Kembali pada gambar 3.1, setelah beban gempa ditempatkan pada pusat massa, maka dilakukan running struktur untuk mendapatkan gaya-gaya dalam setiap elemen struktur akibat kombinasi beban yang dipersyaratkan dalam SNI untuk SRPMK yang telah di input sebelumnya pada tahapan permodelan struktur dengan software Etabs. Desain penulangan dihitung berdasarkan output gaya-gaya dalam yang didapat. Penulangan disesuaikan dengan ketentuan penulangan untuk SRPMK yang diatur dalam SNI Sehingga hasil akhir dari seluruh perencanaan struktur gedung yang dilakukan adalah detail penulangan seluruh elemen struktur yaitu balok, pelat lantai, dan kolom. 3.3 Diagram Alir Perencanaan Struktur Pelat Lantai a. Preliminari desain pelat Pada gambar 3.7 perhitungan preliminari desain tebal pelat (h) dalam SNI dihitung dengan persamaan (2.12) dan persamaan (2.13) tergantung dari besarnya rasio rata-rata kekakuan lentur penampang balok terhadap kekakuan lentur suatu pelat dengan lebar yang dibatasi dalam arah lateral oleh sumbu dari R. ERICK PRIHARNA L III - 7

8 panel yang bersebelahan (bila ada) pada tiap sisi dari balok (α m ). Dimana besarnya α m dibatasi pada nilai tertentu (lihat persamaan pada gambar 3.3). Untuk setiap persamaan tebal pelat (h), SNI membatasi nilai tebal pelat (h) yang dihitung dengan persamaan (2.12) dan persamaan (2.13). Jika nilai h yang dhitung berdasarkan rumus melebihi dari pada batas yang telah ditentukan maka tebal pelat (h) yang dipakai adalah tebal pelat minimum (h min ) dalam hal ini nilai h min ekivalen atau sama dengan nilai batasan tebal pelat (h) itu sendiri (lihat gambar 3.7). Gambar 3.7 Diagram Alir Preliminari Desain Pelat Lantai R. ERICK PRIHARNA L III - 8

9 b. Penulangan Pelat Lantai Berikut Penulis sajikan metode perhitungan penulangan pelta lantai secara sistematis dalam bentuk diagram alir pada gambar 3.8. Gambar 3.8 Diagram Alir Desain Penulangan Pelat Lantai Bentuk geometrik pelat lantai cenderung melebar searah horizontal menjadikan elemen struktur ini lebih dominan menerima beban lentur dibandingkan dengan beban geser yang bekerja pada sistem struktur gedung, dengan bentuk geometric seperti itu pula dengan sendirinya pelat lantai telah mampu menahan beban geser yang bekerja pada sistem struktur tersebut sehingga perhitungan penulangan lebih ditekankan pada penulangan lentur dengan kata lain R. ERICK PRIHARNA L III - 9

10 metode perhitungan penulangan pelat lantai untuk semua jenis sistem rangka pemikul baik itu SRPMB, SRPMM, maupun SRPMK adalah sama. Dari gambar 3.4 dengan data-data perhitungan yang ada, dapat kita lihat bahwa perhitungan penulangan pelat lantai tidak terlepas dari besarnya momen lentur yang terjadi. Momen lentur yang diperhitungkan adalah pada arah X dan Y karena desain pelat merupakan pelat dua arah (two way slab) yang berarti penyaluran beban didistribusikan di kedua arah yaitu X dan Y. Adapun metode perhitungan momen lentur dapat dilakukan dengan bantuan software atau secara manual dengan melakukan perhitungan pendekatan momen dengan menggunakan tabel sepeti pada tabel 2.3. Perhitungan penulangan tidak terlepas dari syarat rasio penulangan sebagaimana diatur dalam SNI Sehingga penampang perlu dilakukan kontrol terhadap syarat rasio penulangan. Untuk lebih jelasnya jumlah penulangan dihitung seperti pada gambar Diagram Alir Perencanaan Struktur Balok a. Preliminari Desain Balok Gambar 3.9 merupakan diagram alir preliminary desain balok dimana hasil akhir dari preliminary desain ini adalah dimensi balok yaitu h dan b. untuk memberikan desain yang ekonomis dan optimum dimensi h dan b ditentukan berdasarkan beban terfaktor yang bekerja dalam hal ini adalah beban hidup dan mati yang bekerja pada elemen struktur tersebut. Momen terfaktor dihitung dengan persamaan umum balok sederhana. Dengan adanya beban dan momen yang bekerja pada balok sederhana maka dimensi balok awal perlu dihitung kembali dengan menggunakan persamaan R. ERICK PRIHARNA L III - 10

11 (2.38) serta batasan nilai b pada persamaan (2.36). Dimensi penampang balok dihitung dengan cara coba-coba (trial & error) pada nilai b dan d (tinggi effektif penampang balok). Sehingga didapatkan dimensi h dan b yang sesuai dengan syarat pada persamaan (2.38) dan persamaan (2.36) serta memenuhi persyaratan SRPMK. q. l 2 u M u = 8 bd 2 M u φf ' ω 59 c ( 1 0. ω) f y. ω = ρ f ' c Gambar 3.9 Diagram Alir Preliminari Desain Balok R. ERICK PRIHARNA L III - 11

12 b. Perencanaan Lentur Balok Penampang persegi dengan penulangan tarik dan tekan dinamakan juga dengan penampang bertulangan ganda (rangkap). Oleh karena kekuatan tekan beton relative tinggi, maka kebutuhan akan penulangan tekan untuk mendapatkan kekuatan yang cukup tidak begitu besar. Perencanaan tulangan rangkap terkait dengan penentuan kekuatan momen nominal lentur Mn dimana b, d, d, As, As, fc dan fy sebagai besaran yang diketahui. Seperti halnya balok dengan tulangan tunggal, balok dengan tulangan ganda SNI menyatakan bahwa ρ tidak boleh kurang dari ρ min dimana besarnya ρ min = 1.4/f y, jika syarat tak terpenuhi maka jumlah tulangan lentur harus ditambah. Secara filosofi persyaratan daktilitas di dalam arti berapa besar regangan yang seharusnya di dalam tulangan tarik di saat serat tekan luar dari beton mencapai regangan sebesar harus sama untuk suatu balok dengan atau tanpa tulangan tekan. Mengatur diagram regangan agar jarak garis netral (c) tidak melebihi (c b ) merupakan cara yang mudah dimengerti dan paling sederhana di dalam perhitungan sebagai jalan untuk menentukan perbandingan tulangan ρ maks yang diizinkan pada suatu balok bertulangan ganda. Pada gambar 3.10 nilai a ditentukan dari persamaan kesetimbangan tegangan untuk kondisi penulangan ganda (lihat gambar 2.3 distribusi regangan dan regangan penampang balok tulangan ganda). Kondisi tulangan baja ditentukan dengan regangan baja yang terjadi, apakah tulangan baja tersebut leleh atau tidak. Regangan baja tulangan tekan dapat dihitung dengan persamaan R. ERICK PRIHARNA L III - 12

13 segitiga sebangun dari diagram regangan sehingga didapatkan persamaan (2.47) seperti pada gambar Mulai A n, n, b, h, d, 1 d, fy,fc, Mu B B As, As, < maks? tidak Perbesar Dimensi Tambah tulangan tidak ρ = min 1.4 f y min? Ya a Mn = (Asfy Asfs' )(d ) + As' fs'(d d' ) 2 atau a Mn = (As As' )fy(d ) + As' fy(d d' ) 2 B ya Hitung tinggi garis netral (c) Mn Mu? tidak Perbesar Dimensi atau tambah tulangan Ya a = 0.85 c Hitung As perlu, As terpasang f s =f y ya c d' εs' = c fy εy = E s s > y? tidak f ' = ε ' E s s s Kontrol syarat SRPMK (SNI-2002, psl (2(2)), psl (2(1)), psl (1(4))) Ok Tdk Ok Pakai Jumlah tulangan (As terpasang ) minimum memenuhi syarat SRPMK Mn, n, n (0.85fc'β1)600 ρb = fy (600 + fy) ρ maks = (syarat SRPMK) Selesai A Gambar 3.10 Diagram Alir Perencanaan Balok Beton Bertulang dengan Tulangan Ganda R. ERICK PRIHARNA L III - 13

14 Tulangan baja mencapai kondisi leleh jika regangannya melebihi f y /E s sehingga f s = fy. Tetapi jika kondisi tulangan tidak melebihi f y /E s maka nilai fs ditentukan lain sesuai dengan persamaan (2.54). Untuk lebih jelas maka perencanaan penulangan balok terhadap lentur dibuat secara sistematis seperti pada gambar 3.10 (diagram alir perencanaan penulangan lentur balok dengan tulangan ganda). Output / hasil akhir dari perencanaan penulangan lentur ini adalah besaran nilai Mn (tahanan momen nominal balok) dan jumlah tulangan baik untuk tulangan tekan (n ) maupun tulangan tarik (n). c. Perencanaan Geser Balok Pada gambar 3.11 disajikan perencanaan tulangan geser, tulangan geser direncanakan akibat gaya geser rencana yang memenuhi syarat SRPMK dimana gaya geser dihitung akibat momen nominal kedua ujung balok, Mpr, dan beban gravitasi yang bekerja pada balok yang ditinjau. Dalam perencanaan geser balok, kuat geser beton tiabaikan (Vc=0) jika gaya geser akibat Mpr saja lebih besar 50% dari pada gaya geser rencana (Ve) dan gaya aksial terfaktor yang bekerja tidak melebihi (Ag.fc )/20. Output akhir perencanaan geser balok ini adalah jarak antar tulangan sengkang. Dalam perencanaan SRPMK jarak antar tulangan geser (sengkang) perlu dilakukan control terhadap jarak maksimum. Jika nilai s yang didapatkan dengan persamaan tidak dapat terpenuhi maka s diambil nilai s terkecil yang ditentukan berdasarkan batasan maksimum s. Untuk lebih jelas langkah perencanaan tulangan geser balok disajikan pada diagram alir gambar 3.11 di bawah ini. R. ERICK PRIHARNA L III - 14

15 Mulai A f c, fy, b, h, d, As terpasang As(1.25 f y) a = fc'. b Hitung M pr maksimum akibat gempa kiri dan kanan. a M pr = As 1.25 f y d 2 M V = ( ) + M L pr kiri pr kanan e ± W u.l 2 Kontrol s i untuk daerah sendi plastis (syarat SRPMK): s i d/4 s i 8 ø utama s i 24 ø sengk s i 300 mm Terpenuhi Tentukan batas sendi plastis l 0 = 2L Hitung Vs di luar area sendi plastis Vs V u V 2 = c φ Tidak terpenuhi Ambil nilai s i yang paling minimum Tidak Terpenuhi Kontrol thd syarat SRPMK : - Gaya geser akibat Mpr > 0.5Ve - Gaya aksial tekan < (A g f c )/20 Terpenuhi Avi f y d si = Vs i Hitung kuat geser nominal dgn rumus : Vni Vsi = Vc φ (V n akibat beban gempa saja (akibat M pr saja), ɸ = 0.75) V c = 0 Hitung kuat geser nominal dgn rumus : Vni Vs i = φ (V n akibat beban gempa saja (akibat M pr saja), ɸ = 0.75) Kontrol jarak s utk daerah luar sendi plastis (Syarat SRPMK, Psl (3(4)) & Psl 13.5 (4(1))) : s i d/2 Terpenuhi s 1 = Jarak sengkang daerah sendi plastis s 2 = Jarak sengakng daerah diluar sendi palstis Tidak terpenuhi Gunakan s 2 = d/2 Kontrol V s ⅔ f c.b.d (Psl (6(9))) Tidak terpenuhi Selesai Terpenuhi Gunakan rumus : V s = ⅔ f c.b.d Avi f si = Vs i y d A Gambar 3.11 Diagram Alir Perencanaan Tulangan Geser Balok R. ERICK PRIHARNA L III - 15

16 3.5 Diagram Alir Perencanaan Struktur Kolom a. Preliminari Kolom Mulai f c, fy, t, DL, LL Pu = Beban aksial terfaktor A g 0.2 u ( f ' + f ρ ) Dimana : 0.01 g 0.06 c P y t b = Ag Kontrol syarat SRPMK : Pu > (A g.f c )/10 Uk. Terkecil penampang > 300mm Rasio b/h 0.4 Ok Tdk Ok - Ubah dimensi kolom - Pakai dimensi minimum b, h Selesai Gambar 3.12 Diagram Alir Preliminari Desain Kolom Pada gambar 3.12 diagram alir preliminary desain kolom, dimensi awal kolom dalam hal ini diwakili dengan notasi A g merupakan fungsi daripada gaya aksial terfaktor (P u ) dimana besarnya gaya terfaktor diambil berdasarkan area pembebanan di sekitar kolom yang memberikan kontribusi terbesar pada kolom. Nilai pembagi pada persamaan di atas adalah 0.2 karena kolom diasumsikan R. ERICK PRIHARNA L III - 16

17 kolom selain beban aksial yang bekerja juga menerima beban momen. Dimana beban momen ini merupakan input untuk menentukan penulangan lentur kolom. Pada diagram alir di atas diasumsikan bahwa kolom merupakan penampang persegi dimana setiap sisi kolom memiliki dimensi yang sama sehingga nilai Ag merupakan nilai kuadrat daripada dimensi lebar sisi kolom. b. Perencanaan Tulangan Memanjang Kolom Gambar 3.13 Diagram Alir Perencanaan Tulangan Memanjang Kolom R. ERICK PRIHARNA L III - 17

18 Pada gambar 3.13 dapat kita lihat bahwa perencanaan penulangan lentur kolom ini dilakukan secara trial & error, dimana SRPMK mensyaratkan bahwa besaran jumlah antara momen nominal ujung kolom atas dan bawah lantai (ΣMe) pada pertemuan HBK yang ditinjau tidak boleh kurang daripada 6/5 jumlah momen nominal ujung balok (ΣMg) pada pertemuan HBK yang ditinjau. Sehingga revisi terhadap jumlah maupun ukuran tulangan menjadi langkah agar syarat SRPMK dapat terpenuhi. Untuk mempermudah perhitungan Me, momen nominal ujung kolom di pertemuan HBK, digunakan bantuan software PCACol, dimana Me ditentukan berdasarkan Pu terendah akibat kombinasi beban gempa pada tiap arah gempa yang diplotkan ke dalam diagram interaksi. SRPMK mengatur desain penulangan baik lentur maupun geser. Oleh karena itu perlu dilakukan kontrol desain terhadap persyaratan SRPMK sebagaimana telah diatur dalam SNI (lihat persyaratan SRPMK pada BAB II TINJAUAN PUSTAKA). Dengan demikian output atau keluaran dari desain penulangan dapat dituangkan dalam bentuk gambar detail yang mempresentasikan jumlah tulangan dan diameter tulangan yang dipakai. R. ERICK PRIHARNA L III - 18

19 c. Perencanaan Geser Kolom M Ve = pr3 + M pr 4 H Pu fc V C ' = 1 + b d 14Ag 6 Vui Vsi Vc = φ Vui Vs i = φ Avi f y d si = Vs i Vs i Vui = φ Vc 350 hx sx = Gambar 3.14 Diagram Alir Perencanaan Tulangan Geser Kolom Diagram alir yang disajikan di atas merupakan langkah-langkah perencanaan tulangan geser / transversal kolom dimana metode perhitungan menggunakan SRPMK. Pada perencanaan tulangan geser kolom dengan metode SRPMK, SNI mensyaratkan bahwa gaya geser rencana dihitung akibat momen nominal ujung kolom yang ditinjau dalam kondisi balance (Mnb). Untuk mempermudah perhitungan, maka digunakan bantuan software PCACol dalam menentukan Mnb (Mpr). R. ERICK PRIHARNA L III - 19

20 Dalam perencanaan penulangan geser kolom dengan metode SRPMK, SNI mensyaratkan bahwa kuat geser beton pada kolom diabaikan (Vc=0) jika kuat geser rencana (Ve) yang ditentukan berdasarkan kuat lentur nominal (Mnb) kurang dari 50% gaya geser yang dihitung dalam analisis struktur dan gaya aksial terfaktor, Pu, kurang daripada (Ag.fc )/20. Sehingga dalam perencanaan penulangan geser kolom dengan metode SRPMK tidak adanya kontribusi kuat geser beton yang disumbangkan untuk memikul beban akibat kombinasi gempa yang ada. R. ERICK PRIHARNA L III - 20

BAB III METODOLOGI PEMBAHASAN

BAB III METODOLOGI PEMBAHASAN BAB III METODOLOGI PEMBAHASAN III.1 Data Perencanaan Studi kasus pada penyusunan skripsi ini adalah perancangan Apartement bertingkat 21 lantai dengan bentuk bangunan L ( siku ) dan dibuat dalam tiga variasi

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS BETON BERTULANG GEDUNG ELLIPS DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK)

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS BETON BERTULANG GEDUNG ELLIPS DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) TUGAS AKHIR PERENCANAAN STRUKTUR ATAS BETON BERTULANG GEDUNG ELLIPS DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

BAB V DESAIN TULANGAN ELEMEN GEDUNG. Berdasarkan hasil analisis struktur dual system didapat nilai gaya geser setiap

BAB V DESAIN TULANGAN ELEMEN GEDUNG. Berdasarkan hasil analisis struktur dual system didapat nilai gaya geser setiap BAB V DESAIN TULANGAN ELEMEN GEDUNG 5.1 Umum Berdasarkan hasil analisis struktur dual system didapat nilai gaya geser setiap tingkat dari analisis gempa dinamik dan analisis gempa statik ekuivalen, Vstatik

Lebih terperinci

Perhitungan Penulangan Kolom Suatu kolom portal beton bertulang, yang juga berfungsi menahan beban lateral, dengan dimensi seperti gambar :

Perhitungan Penulangan Kolom Suatu kolom portal beton bertulang, yang juga berfungsi menahan beban lateral, dengan dimensi seperti gambar : 3 5 0 Perhitungan Penulangan Kolom 3 5 0 Suatu kolom portal beton bertulang, yang juga berfungsi menahan beban lateral, dengan dimensi seperti gambar : A A Direncanakan : Mutu beton fc 35 Mpa Mutu baja

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

BAB V DESAIN TULANGAN STRUKTUR

BAB V DESAIN TULANGAN STRUKTUR BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS BAB III STUDI KASUS Pada bagian ini dilakukan 2 pemodelan yakni : pemodelan struktur dan juga pemodelan beban lateral sebagai beban gempa yang bekerja. Pada dasarnya struktur yang ditinjau adalah struktur

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN BAB III METODELOGI PENELITIAN 3.1 Pendahuluan Pada penelitian ini, Analisis kinerja struktur bangunan bertingkat ketidakberaturan diafragma diawali dengan desain model struktur bangunan sederhanan atau

Lebih terperinci

BAB V PENULANGAN STRUKTUR

BAB V PENULANGAN STRUKTUR BAB V PENULANGAN STRUKTUR 5.1. PENULANGAN PELAT 5.1.. Penulangan Pelat Lantai 1-9 Untuk mendesain penulangan pelat, terlebih dahulu perlu diketahui data pembebanan yang bekerja pada pelat. Data Pembebanan

Lebih terperinci

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN)

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN) BB IV PERENCNN WL (PRELIMINRY DESIGN). Prarencana Pelat Beton Perencanaan awal ini dimaksudkan untuk menentukan koefisien ketebalan pelat, α yang diambil pada s bentang -B, mengingat pada daerah sudut

Lebih terperinci

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S 1) Disusun oleh : Nama : Lenna Hindriyati

Lebih terperinci

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan BAB III METEDOLOGI PENELITIAN 3.1 Prosedur Penelitian Pada penelitian ini, perencanaan struktur gedung bangunan bertingkat dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan perhitungan,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. untuk mencari ketinggian shear wall yang optimal untuk gedung perkantoran 22

BAB III METODOLOGI PENELITIAN. untuk mencari ketinggian shear wall yang optimal untuk gedung perkantoran 22 BAB III METODOLOGI PENELITIAN 3.1 Umum Metode penelitian ini menggunakan metode analisis perancangan yang difokuskan untuk mencari ketinggian shear wall yang optimal untuk gedung perkantoran 22 lantai.

Lebih terperinci

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA Laporan Tugas Akhir Sebagai salah satu sarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : Yusup Ruli Setiawan NPM :

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

BAB V PENULANGAN BAB V PENULANGAN. 5.1 Tulangan Pada Pelat. Desain penulangan pelat dihitung berdasarkan beban yang dipikul oleh

BAB V PENULANGAN BAB V PENULANGAN. 5.1 Tulangan Pada Pelat. Desain penulangan pelat dihitung berdasarkan beban yang dipikul oleh BAB V PENULANGAN 5.1 Tulangan Pada Pelat Desain penulangan pelat dihitung berdasarkan beban yang dipikul oleh pelat itu sendiri. Setelah mendapat nilai luasan tulangan yang dibutuhkan maka jumlah tulangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI Halaman Judul... i Lembar Pengesahan... ii Kata Pengantar... iii Daftar Isi... iv Daftar Notasi... Daftar Tabel... Daftar Gambar... Abstraksi... BAB I PENDAHULUAN... 1 1.1 Latar Belakang Masalah...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Pemilihan Struktur Desain struktur harus memperhatikan beberapa aspek, diantaranya : Aspek Struktural ( kekuatan dan kekakuan struktur) Aspek ini merupakan aspek yang

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

Desain Struktur Beton Bertulang Tahan Gempa

Desain Struktur Beton Bertulang Tahan Gempa Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan - 12 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1 DAFTAR ISI HALAMAN JUDUL.. i LEMBAR PENGESAHAN ii KATA PENGANAR.. iii ABSTRAKSI... DAFTAR ISI DAFTAR GAMBAR.. DAFTAR NOTASI. v vi xii xiii BAB I PENDAHULUAN 1.1. Latar Belakang...... 1 1.2. Maksud dan

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG HOTEL DAN MALL DI WILAYAH GEMPA 3

PERANCANGAN STRUKTUR ATAS GEDUNG HOTEL DAN MALL DI WILAYAH GEMPA 3 PERANCANGAN STRUKTUR ATAS GEDUNG HOTEL DAN MALL DI WILAYAH GEMPA 3 TUGAS AKHIR SARJANA STRATA SATU Oleh : REYHANSON PANJAITAN No. Mahasiswa : 11597 / TS NPM : 03 02 11597 PROGRAM STUDI TEKNIK SIPIL FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS 2.1 Tinjauan Umum Secara umum struktur atas adalah elemen-elemen struktur bangunan yang biasanya di atas permukaan tanah yang berfungsi menerima dan menyalurkan

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Yogyakarta, Juni Penyusun

Yogyakarta, Juni Penyusun KATA PENGANTAR Assalamu Alaikum Warahmatullahi Wabarakatuh Alhamdulillah, dengan segala kerendahan hati serta puji syukur, kami panjatkan kehadirat Allah SWT, karena atas segala kasih sayang-nya sehingga

Lebih terperinci

PERENCANAAN APARTEMEN SOLO PARAGON TUGAS AKHIR SARJANA STRATA SATU. Oleh :

PERENCANAAN APARTEMEN SOLO PARAGON TUGAS AKHIR SARJANA STRATA SATU. Oleh : PERENCANAAN APARTEMEN SOLO PARAGON TUGAS AKHIR SARJANA STRATA SATU Oleh : ANDREAS HENDRI EKA YOGI PRASETYA No. Mahasiswa : 11845 / TS NPM : 04 02 11845 PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB IV PEMODELAN STRUKTUR

BAB IV PEMODELAN STRUKTUR BAB IV PEMODELAN STRUKTUR Pada bagian ini akan dilakukan proses pemodelan struktur bangunan balok kolom dan flat slab dengan menggunakan acuan Peraturan SNI 03-2847-2002 dan dengan menggunakan bantuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON 03-2847-2002 DAN SNI GEMPA 03-1726-2002 Rinto D.S Nrp : 0021052 Pembimbing : Djoni Simanta,Ir.,MT FAKULTAS TEKNIK JURUSAN

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB V ANALISIS PEMBEBANAN STRUKTUR. A. Spesifikasi Data Teknis Banguan

BAB V ANALISIS PEMBEBANAN STRUKTUR. A. Spesifikasi Data Teknis Banguan 58 BAB V ANALISIS PEMBEBANAN STRUKTUR A. Spesifikasi Data Teknis Banguan 1. Denah Bangunan Gambar 5.1 Denah Struktur Bangunan lantai 1.. Lokasi Bangunan Gedung Apartemen Malioboro City Yogyakarta terletak

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

PERANCANGAN ULANG STRUKTUR GEDUNG BANK MODERN SOLO

PERANCANGAN ULANG STRUKTUR GEDUNG BANK MODERN SOLO PERANCANGAN ULANG STRUKTUR GEDUNG BANK MODERN SOLO Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : Heroni Wibowo Prasetyo NPM :

Lebih terperinci

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i ) DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSETUJUAN... iii PERNYATAAN BEBAS PLAGIARISME... iv KATA PENGANTAR... v HALAMAN PERSEMBAHAN... vii DAFTAR ISI... viii DAFTAR GAMBAR... xii

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Analisis Struktur Analisis struktur bertujuan untuk mengetahui gaya-gaya dalam, reaksi perletakan, dan perpindahan yang terjadi akibat pembebanan. Sebelum dilakukan analisis struktur

Lebih terperinci

BAB III METODOLOGI. 3.1 Dasar-dasar Perancangan

BAB III METODOLOGI. 3.1 Dasar-dasar Perancangan BAB III METODOLOGI 3.1 Dasar-dasar Perancangan Struktur gedung beton komposit masih jarang digunakan pada gedunggedung bertingkat tinggi terutama di indonesia karena material ini masih tergolong baru bila

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm² Ag = Luas bruto penampang (mm²) An = Luas bersih penampang (mm²) Atp = Luas penampang tiang pancang (mm²) Al = Luas total

Lebih terperinci

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem BAB III METODOLOGI PENELITIAN 3.1 Alur Penelitian Dalam penelitian ini akan dilakukan analisis sistem struktur penahan gempa yang menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR 3.. Denah Bangunan Dalam tugas akhir ini penulis merancang suatu struktur bangunan dengan denah seperti berikut : Gambar 3.. Denah bangunan 33 34 Dilihat dari bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Perhitungan Struktur Akibat Gaya Gempa Beban gempa adalah semua beban statik ekivalen yang bekerja pada gedung tersebut atau bagian dari gedung tersebut yang menirukan pengaruh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Berdasarkan Pasal 3.25 SNI 03 2847 2002 elemen struktural kolom merupakan komponen struktur dengan rasio tinggi terhadap dimensi lateral terkecil melebihi tiga,

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA II.1. PEMBEBANAN Dalam melakukan analisis desain suatu struktur, perlu ada gambaran yang jelas mengenai perilaku dan besar beban yang bekerja pada struktur. Beban-beban yang bekerja

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK Tugas Akhir ini diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata-1

Lebih terperinci

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir DAFTAR ISTILAH A0 = Luas bruto yang dibatasi oleh lintasan aliran geser (mm 2 ) A0h = Luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar (mm 2 ) Ac = Luas inti komponen struktur

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

Desain Elemen Lentur Sesuai SNI

Desain Elemen Lentur Sesuai SNI DesainElemenLentur Sesuai SNI 03 2847 2002 2002 Balok Beton Bertulang Blkdik Balok dikenal sebagai elemen lentur, yaituelemen struktur yang dominan memikul gaya dalam berupa momen lentur dan juga geser.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Konsep perencanaan struktur bangunan bertingkat tinggi harus memperhitungkan kemampuannya dalam memikul beban-beban yang bekerja pada struktur tersebut, diantaranya

Lebih terperinci

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH David Bambang H NRP : 0321059 Pembimbing : Daud Rachmat W., Ir., M.Sc. FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAB III STUDI KASUS 3.1 UMUM

BAB III STUDI KASUS 3.1 UMUM BAB III STUDI KASUS 3.1 UMUM Tahap awal adalah pemodelan struktur berupa desain awal model, yaitu menentukan denah struktur. Kemudian menentukan dimensi-dimensi elemen struktur yaitu balok, kolom dan dinding

Lebih terperinci

ANALISIS DAKTILITAS BALOK BETON BERTULANG

ANALISIS DAKTILITAS BALOK BETON BERTULANG ANALISIS DAKTILITAS BALOK BETON BERTULANG Bobly Sadrach NRP : 9621081 NIRM : 41077011960360 Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB III LANDASAN TEORI. dan SNI 1726, berikut kombinasi kuat perlu yang digunakan:

BAB III LANDASAN TEORI. dan SNI 1726, berikut kombinasi kuat perlu yang digunakan: BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang digunakan dalam peranangan adalah kombinasi dari beban hidup, beban mati, dan beban gempa. 3.1.1. Kuat Perlu Kuat perlu dihitung berdasarkan kombinasi

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Prosedur Analisis Metodologi penilitian ini yaitu studi kasus terhadap struktur beraturan & gedung beraturan dengan pushover analysis, guna mencapai tujuan yang diharapkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Prosedur Penelitian Untuk mengetahui penelitian mengenai pengaruh pengekangan untuk menambah kekuatan dan kekakuan dari sebuah kolom. Perubahan yang akan di lakukan dari

Lebih terperinci

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI YOGYAKARTA

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI YOGYAKARTA PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI YOGYAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : AGUSTINUS PUJI RAHARJA

Lebih terperinci

PERANCANGAN STRUKTUR ATAS HOTEL ARCS DI DAERAH ISTIMEWA YOGYAKARTA TUGAS AKHIR PROGRAM SARJANA STRATA SATU

PERANCANGAN STRUKTUR ATAS HOTEL ARCS DI DAERAH ISTIMEWA YOGYAKARTA TUGAS AKHIR PROGRAM SARJANA STRATA SATU PERANCANGAN STRUKTUR ATAS HOTEL ARCS DI DAERAH ISTIMEWA YOGYAKARTA TUGAS AKHIR PROGRAM SARJANA STRATA SATU Disusun oleh: Ferryanto TM 93 02 07273 UNIVERSITAS ATMA JAYA YOGYAKARTA FAKULTAS TEKNIK PROGRAM

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

BAB V PENULANGAN ELEMEN VERTIKAL DAN HORIZONTAL

BAB V PENULANGAN ELEMEN VERTIKAL DAN HORIZONTAL BAB V PENULANGAN ELEMEN VERTIKAL DAN HORIZONTAL 5.1 Desain Penulangan Elemen Struktur Pada bab V ini akan membahas tentang perhitungan tulangan yang akan digunakan dalam perencaan struktur yang telah didesain.

Lebih terperinci

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar :

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar : BAB V PONDASI 5.1 Pendahuluan Pondasi yang akan dibahas adalah pondasi dangkal yang merupakan kelanjutan mata kuliah Pondasi dengan pembahasan khusus adalah penulangan dari plat pondasi. Pondasi dangkal

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN DOSEN PEMBIMBING HALAMAN PENGESAHAN TIM PENGUJI LEMBAR PERYATAAN ORIGINALITAS LAPORAN LEMBAR PERSEMBAHAN INTISARI ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR

Lebih terperinci

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom... DAFTAR ISI Lembar Pengesahan Abstrak Daftar Isi... i Daftar Tabel... iv Daftar Gambar... vi Daftar Notasi... vii Daftar Lampiran... x Kata Pengantar... xi BAB I PENDAHULUAN 1.1 Latar Belakang... I-1 1.2

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Prosedur Penelitian Untuk mengetahui penelitian mengenai pengaruh tingkat redundansi pada sendi plastis perlu dipersiapkan tahapan-tahapan untuk memulai proses perancangan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

1.6 Tujuan Penulisan Tugas Akhir 4

1.6 Tujuan Penulisan Tugas Akhir 4 DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERSEMBAHAN i ii in KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI INTISARI v viii xii xiv xvii xxii BAB I PENDAHIJLUAN 1 1.1 Latar

Lebih terperinci

BAB V ANALISIS PEMBEBANAN

BAB V ANALISIS PEMBEBANAN BAB V ANALISIS PEMBEBANAN Analisis pembebanan pada penelitian ini berupa beban mati, beban hidup, beban angin dan beban gempa. 3,5 m 3,5 m 3,5 m 3,5 m 3,5 m 3,5 m 4,5 m 3,25 m 4,4 m 4,45 m 4 m Gambar 5.1.

Lebih terperinci

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER Andi Algumari NRP : 0321059 Pembimbing : Daud Rachmat W., Ir., M.Sc. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL oleh

Lebih terperinci

BAB IV ANALISIS & PEMBAHASAN

BAB IV ANALISIS & PEMBAHASAN BAB IV ANALISIS & PEMBAHASAN 4.1 EKSENTRISITAS STRUKTUR Pada Tugas Akhir ini, semua model mempunyai bentuk yang simetris sehingga pusat kekakuan dan pusat massa yang ada berhimpit pada satu titik. Akan

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN PEN BAB 3 METODE PENELITIAN SKRIPSI EVALUASI KEKUATAN DAN DETAILING TULANGAN KOLOM BETON BERTULANG SESUAI SNI 2847:2013 DAN SNI 1726:2012 (STUDI KASUS : HOTEL 7 LANTAI DI WILAYAH PEKALONGAN) BAB 3 METODE

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Mulai Pengumpulan Data Perencanaan Awal Pelat Balok Kolom Flat Slab Ramp Perhitungan beban gempa statik ekivalen Analisa Struktur Cek T dengan

Lebih terperinci

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP :

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP : DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH Refly. Gusman NRP : 0321052 Pembimbing : Ir. Daud R. Wiyono, M.Sc. Pembimbing Pendamping : Cindrawaty Lesmana, ST., M.Sc.(Eng) FAKULTAS

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil disusun oleh : MUHAMMAD NIM : D

Lebih terperinci

BAB IV DESAIN STRUKTUR ATAS

BAB IV DESAIN STRUKTUR ATAS BAB IV DESAIN STRUKTUR ATAS 4. Data- data Struktur Pada bab ini akan menganilisis struktur atas, data-data struktur serta spesifikasi bahan dan material adalah sebagai berikut : 1. Bangunan gedung digunakan

Lebih terperinci

BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR

BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR 4.1. Estimasi Dimensi Estimasi dimensi komponen struktur merupakan tahap awal untuk melakukan analisis struktur dan merancang suatu bangunan gedung. Estimasi yang

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI Raden Ezra Theodores NRP : 0121029 Pembimbing : Ir. DAUD R. WIYONO, M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN

Lebih terperinci