ANALISIS LAJU PERPINDAHAN PANAS PADA FINAL SUPERHEATER PADA INSTALASI STEAM GENERATOR UNTUK SISTIM PEMBANGKIT DAYA 150 MW

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS LAJU PERPINDAHAN PANAS PADA FINAL SUPERHEATER PADA INSTALASI STEAM GENERATOR UNTUK SISTIM PEMBANGKIT DAYA 150 MW"

Transkripsi

1 ANALISIS LAJU PERPINDAHAN PANAS PADA FINAL SUPERHEATER PADA INSTALASI STEAM GENERATOR UNTUK SISTIM PEMBANGKIT DAYA 150 MW Joko Sarsetiyanto, Denny M.E Soedjono, Aprilina Deluk Rahmanita D3 TeknikMesin, FakultasTeknologi Industri, InstitutTeknologi Sepuluh Nopember Surabaya Jl. Arief Rahman Hakim, Surabaya Indonesia ABSTRACT In the steam power plant installation, the final superheater is a heat exchange, that plays an important role in generating superheated (high temperature) steam. If at the end of the heating process in the final supeheater the steam temperature is low, so the steam enthalpy is also low. Low steam enthalpy will produce low turbine power. Finally resulting low power plant efficiency. Final superheater is a heat exchanger that is highly influenced by the mechanism of convection and conduction heat transfers. Convection heat transfer is influenced by the speed and fluid flow pattern, while conduction is affected by the thermal conductivity of the material/substance of the heat exchanger pipe. The heat exchanger which has been operated for several time, will surely experience change the performance. To find these changes, the analysis/calculation of the heat transfer efficiency in the final superheater has been conducted. The calculation using log mean temperature difference (LMTD) methode. The result shows that the LMTD at commissioning conditions is o K and at existing conditions is o K. So there was already decrease of 5.10 %. While the rate of heat transfers in the final superheater (q s) at commissioning conditions is kw, while at existing conditions is kw. So there was already decrease of 4.80 %. Key words: kunci : final superheater, rate of heat transfer, LMTD ABSTRAK Pada instalasi pembangkit listrik tenaga uap (PLTU), final superheater adalah alat penukar kalor yang berperan penting dalam menghasilkan uap panas lanjut yang bertemperatur tinggi. Jika pada tahap akhir pemanasan di final supeheater temperatur uap yang dihasilkan rendah, berarti enthalpy uap juga rendah. Akibatnya daya yang dihasilkan oleh turbin juga rendah. Daya turbin yang rendah dapat mengakibatkan effisiensi instalasi instalasi pembangkit daya juga rendah. Final superheater adalah sebuah alat penukar kalor yang kinerjanya sangat dipengaruhi oleh mekanisme perpindahan panas konveksi dan konduksi yang terjadi didalamnya. Perpindahan panas konveksi sangat dipengaruhi oleh kecepatan dan pola aliran fluida. Sedangkan perpindahan panas konduksi dipengaruhi oleh konduktifitas termal material/bahan pipa alat penukar kalor. Pada alat penukar kalor (final superheater) yang sudah dioperasikan beberapa lama tentu akan mengalami perubahan kinerja. Untuk mengetahui perubahan tersebut maka dilakukan analisis/perhitungan effisiensi perpindahan panas. Perhitungan menggunakan metode log mean temperature difference (LMTD) dengan data komisioning dan data eksisting. Dari hasil perhitungan pada saat PLTU mendapat beban penuh (150 MW) dapat diketahui bahwa LMTD pada kondisi komisioning 529,779 o K dan pada kondisi eksisting 502,750 o K. Jadi sudah ada penurunan sebesar 5,10 %. Sedangkan penyerapan kalor pada final superheater (q s) untuk kondisi komisioning 44668,319 kw, sedangkan untuk kondisi eksisting 42525,977 kw. Jadi sudah ada penurunan sebesar 4,80 %. Kata kunci : final superheater, laju perpindahan panas, LMTD B - 65

2 PENDAHULUAN Dalam PLTU superheater adalah alat penukar kalor yang berfungsi melakukan pemanasan tahap akhir dari uap air yang dihasilkan boiler sehingga menjadi uap kering yang bertemperatur tinggi. Konstruksi superheater terdiri dari jajaran pipa pipa yang didalamnya berisi uap air dan dilingkungan luarnya gas panas hasil pembakaran yang telah melewati boiler. Boiler menghasilkan uap jenuh, kemudian uap jenuh tersebut dipanaskan lebih lanjut di superheater agar menjadi uap panas lanjut. Permasalahannya adalah: setelah dioperasikan beberapa aka nada kerak yang menghambat laju perpindahan panas. Untuk mengetahui besarnya kalor yang hilang karena terhambat oleh kerak tersebut maka dilakukan analisis perpindahan panas pada superheater. Analisis menggunakan metode log mean temperature difference. TINJAUAN PUSTAKA Perpindahan panas adalah perpindahan energi panas/kalor sebagai akibat adanya perbedaan temperatur (level energy kalor). Perpindahan panas yang terjadi pada final superheater adalah perpindahan panas konveksi dan konduksi. Perpindahan Panas Konduksi Perpindahan panas konduksi adalah perpindahan panas yang bergantung terhadap aktivitas pada level molekuler. Untuk menghitung laju perpindahan panas konduksi satu dimensi pada dinding pipa superheater, digunakan hukum Fourier yaitu : (Ref.3 hal..136), 1) Keterangan: = Laju perpindahan panas kearah radial positif k = Konduktivitas panas (W/m o K) adalah karakteristik individu material A = Luasan yang tegak lurus arah perpindahan panas (m 2 ) = Gradient Temperatur Perpindahan Panas Konveksi Perpindahan panas secara konveksi adalah perpindahan panas yang terjadi antara permukaan padat dengan fluida yang bergerak. Perpindahan panas konveksi didukung oleh gerakan acak molekuler dan gerakan makroskopik dari fluida diantara permukaan dan lapisan batas. Selain itu konveksi dikategorikan berdasarkan penyebab terjadinya aliran fluida. Jika aliran fluida disebabkan oleh faktor eksternal disebut konveksi paksa. Jika aliran fluida dihasilkan oleh tarikan gaya buoyancy yang dihasilkan oleh adanya variasi massa jenis fluida, maka disebut konveksi bebas. Untuk menghitung laju perpindahan panas konveksi dapat menggukanan persamaan law of Cooling: (Ref.3 hal. 8) 2) Keterangan : q = Laju Perpindahan Panas (Watt) h = Koefisien konveksi (W/m 2 o K) A = Luasan permukaan perpindahan Panas (m 2 ) = Temperatur permukaan padat ( o K) = Temperatur fluida pada free stream ( o K) Perpindahan Panas Konveksi di Dalam Pipa 1) Aliaran Laminer Untuk aliran laminar korelasi Nusselt yang dapat digunakan adalah: (Ref.3 hal. 538) 3) 2) Aliran Turbulen Untuk aliran turbulen fully developed korelasi untuk menghitung bilangan Nusselt yang dapat digunakan adalah korelasi Dittus Boelter: B - 66

3 (Ref. 3 hal. 544) 4) dimana n = 0,4 untuk proses heating (T s m) dan n = 0,3 untuk proses cooling (T s< T m) dengan: keterangan: :beda temperatur rata rata antara fluida panas dan fluida dingin ( o K) : temperatur rata rata fluida panas ( o K) : temperatur rata rata fluida dingin ( o K) Perpindahan Panas Konveksi di Luar Pipa Korelasi untuk menghitung bilangan Nusselt dapat dicari dengan persamaan di bawah ini tergantung pada besarnya Reynolds number dan Prandtl number. (Ref.3, hal. 469) 5) dimana: : Nusselt number : Reynolds number : Prandtl number :Prandtl number pada temperatur surface : Konduktivitas termal fluid film (W/m 2 K) : Diameter luar tube : Jumlah jajaran tube C 1 : factor koreksi (tabel Incropera) Untuk mendapatkan koefisien di atas maka perlu dihitung terlebih dahulu variabel penyusunnya. Bilangan Reynolds untuk aliran flue gas (gas buang) dengan V gmax adalah : Kecepatan aliran sisi shell (V gmax) dapat dihitung dengan persamaan berikut tergantung pada dimana V gmax terjadi. Apaakah di A 1 atau pada A 2. Gambar 1. Susunan Tube (a) Aligned, (b) Staggered (Ref.3 hal. 469) Pada susunan aligned kecepatan maksimum terjadi pada A 1, oleh karena itu dicari dengan menggunakan persamaan berikut: (Ref.3 hal. 471) 6) dapat B - 67

4 Sedangkan untuk susunan staggred kecepatan maksimum dapat terjadi di A 1 atau dapat pula terjadi pada A 2. ([4], hal 471) Dan bila terjadi di A 2 maka: terjadi pada A 2, jika: (Ref.3 hal. 471) 7) (Ref.3 hal. 471) 8) Kecepatan gas masuk pada jajaran pipa yang diukur pada temperatur gas buang masuk Keterangan: 9) : laju aliran massa gas buang gas buang : massa jenis gas buang : Kecepatan maksimum fluida : Diameter hidrolis : jumlah pipa dalam satu row/baris : panjang pipa Overall Heat Transfer Coefficient Overall heat transfer coeficient adalah total koefisien perpindahan panas yang terjadi pada suatu sistim perpindahan panas yang ditinjau. Secara umum overall heat transfer coeficient dapat dicari dengan rumus berikut: 10) Pada superheater tahanan termal total untuk sistem di atas adalah penjumlahan tahanan konveksi aliran di dalam pipa, tahanan konduksi pada material pipa dan tahanan konveksi aliran di luar pipa. 11) keterangan: : Overall heat transfer coefficient pada kondisi komisioning : koefisien konveksi di dalam pipa : koefisien konveksi di luar pipa : Jari jari luar pipa : Jari jari dalam pipa Laju Perpindahan Panas pada Alat Penukar Kalor Perbedaan temperatur yang terjadi di sepanjang pipa alat penukar kalor tidak linier. Perbedaan temperatur rata-rata dicari dengan metode LMTD (log mean temperature difference). Oleh karena itu laju perpindahan panas yang terjadi dihitung berdasarkan persamaan berikut: 12) T lm : adalah log mean temperature difference (LMTD) A : adalah luan permukan perpindahan panas keseluruhan (m 2 ) 13) 14) Dengan nilai F faktor koreksi. (correction factor for a shell and tube heat exchanger with one shell and any multiple of two tube phases). B - 68

5 Gambar 2. Faktor Koreksi LMTD untuk Heat Exchanger Aliran Silang dengan Satu Fluida Bercampur dan yang lain Tidak Bercampur. Ref.3 hal th ed. Proses Pembakaran Bahan Bakar Pembakaran adalah reaksi kimia yang terjadi antara material yang dapat terbakar dengan oksigen pada volume dan temperatur tertentu. Reaksi Kimia Pembakaran Dalam proses pembakaran, unsur-unsur dalam bahan bakar yang dapat membentuk reaksi pembakaran dengan oksigen adalah karbon, hidrogen dan sulfur. Karena itu proses pembakaran bahan bakar tidak lain adalah terbentuknya reaksi pembakaran antara ketiga unsur tersebut dengan (Ref. 5) oksigen. Reaksi pembakaran untuk ketiga unsur tersebut adalah sebagai berikut: Reaksi Pembakaran Karbon - Pembakaran karbon sempurna Karbon + Oksigen Karbon Dioksida C + O 2 CO 2 (panas yang dihasilkan sebesar 8100 ) - Pembakaran karbon tidak sempurna Karbon+ Oksigen Karbon Monoksida 2 C + O 2 2 CO (panas yang dihasilkan sebesar 2370 ) Reaksi Pembakaran Hidrogen Hidrogen + Oksigen Air 2 H 2 + O 2 2 H 2O (panas yang dihasilkan sebesar ) Reaksi Pembakaran Sulfur Sulfur + Oksigen Sulfur Dioksida S + O 2 SO 2 (panas yang dihasilkan sebesar 2500 ) Kebutuhan Udara Bahan Bakar Jika susunan bahan bakar diketahui, maka dapat dihitung jumlah kebutuhan udara (Ref. 2 hal 71) pembakaran untuk pembakaran yang sempurna. Pembakaran Sempurna Karbon (C) Karbon + Oksigen Karbon Dioksida C + O 2 CO 2 1 atom C + 1 mol O 2 1 mol CO 2 12 kg C+ 32 kg O 2 44 kg CO 2 1 kg C memerlukan Pembakaran Sempurna Hidrogen (H) Hidrogen + Oksigen Air B - 69

6 2 H 2 + O 2 2 H 2O 2 atom H 2+ 1 mol O 2 2 mol H 2O 4 kg H kg O 2 36 kg H 2O 1 kg H 2 memerlukan Pembakaran Sempurna Sulfur (S) Sulfur + Oksigen Sulfur Dioksida S + O 2 SO 2 1 atom S + 1 mol O 2 1 mol SO 2 32 kg S+ 32 kg O 2 64 kg CO 2 1 kg S memerlukan Kebutuhan O 2 teoritis adalah jumlah O 2 teoritis yang diperlukan oleh karbon, O 2 teoritis yang diperlukan oleh hidrogen dan O 2 teoritis yang diperlukan oleh sulfur. Tetapi biasanya didalam bahan bakar juga terdapat sedikit oksigen dan dianggap akan bereaksi dengan hidrogen dalam bahan bakar tersebut. Karena itu hidrogen yang bereaksi dengan oksigen yang berasal dari udara akan berkurang sebanyak, sehingga kebutuhan oksigen teoritis total menjadi: Karena 100 kg udara mengandung 23,2 kg O 2, maka 1 kg oksigen dikandung dalam 4,31034 kg udara, sehingga kebutuhan udara teoritis (TA) dapat dihitung dengan persamaan: dimana: C : % karbon per kg bahan bakar H : % hidrogen per kg bahan bakar O : % oksigen per kg bahan bakar S : % sulfur per kg bahan bakar Kebutuhan Udara Lebih (Excess Air) Dalam prakteknya, pembakaran sempurna dengan udara teoritis sangat sulit dicapai karena pada kenyataannya, disebabkan oleh beberapa faktor bahwa tidak semua oksigen dapat bertemu dan bereaksi dengan unsur unsur dalam bahan bakar. Karena itu, untuk menjamin terlaksananya proses pembakaran sempurna, maka diberikan sejumlah udara lebih (excess air). Tetapi jika excess air terlalu tinggi maka akan membawa panas keluar cerobong dan jumlah udara harus merupakan kompromi antara bertujuan untuk menciptakan pembakaran sempurna serta usaha untuk mengurangi kerugian panas ke cerobong sekecil mungkin. Pemberian udara lebih, yakni dengan memasukkan lebih banyak udara kedalam ruang bakar akan mengurangi kerugian panas dalam hal kerugian karbon yang tidak terbakar. Tambahan oksigen akan bereaksi dengan karbon sehingga akan menurunkan kadar karbon dalam abu. Selain itu juga akan mengurangi kandungan CO dalam gas buang, sehingga mengurangi kerugian gas yang tidak terbakar. Jika udara lebih ditingkatkan lagi, kerugian pembakaran akan menurun tetapi keuntungan tersebut akan (Ref.5 hal dikompensasi oleh kenaikan daya fan serta peningkatan kehilangan panas karena gas buang. 46) Excess air dapat diketahui dengan rumus: 15) atau jika kadar CO 2 dalam flue gas dapat terdeteksi, maka excess air dapat dihitung dengan persamaan: 16) dimana: B - 70

7 17) EA : excess air (kebutuhan udara lebih) AA : actual air (udara sebenarnya) TA : theoritical air (kebutuhan udara teoritis) METODE Menghitung prosentase produk pembakaran bahan bakar (gas). Prosentase ini akan digunakan untuk menghitung/mendapatkan properties gas. Selanjutnya properties gas digunakan untuk menghitung koefisien konveksi. 1. Menghitung koefisien konveksi rata-rata di luar pipa. 2. Menghitung temperatur rata-rata uap panas lanjut di dalam pipa. 3. Mendapatkan properties uap panas lanjut menghitung nilai perpindahan panas dalam pipa. 4. Menghitung koefisien konveksi rata-rata di dalam pipa. 5. Menghitung laju perpindahan panas yang terjadi pada alat penukar kalor. 6. Menghitung prosentase penyerapan kalor pada final superheater. 7. Membandingkan hasil perhitungan dengan data komisioning dan data eksisting. Boiler pada PLTU yang dibahas di desain untuk bahan bakar minyak. Kemudian pada 1994 boiler dimodifikasi menjadi bahan bakar gas (gas firing) maupun kombinasi keduanya. Berikut merupakan spesifikasi boiler PLTU yang dimaksud: Type : IHI-FW SR single drum type Reheat steam flow : kg/jam Superheater outlet : 173,8 kg/cm 2 gx 541 C Reheat outlet : 31,2 kg/cm 2 g x 541 C Reheat inlet : 32,9 kg/cm 2 g x 316 C Bahan bakar :Residual oil/natural gas Temperatur udara luar : 32 C Temperatur gas buang : 131 C Tekanan udara luar : 1 atm Tahun pembuatan : 1987 Kapasitas : 643 ton/jam Draft System : Forced Draft HASIL DAN PEMBAHASAN Data Perhitungan Tabel 1 Data Performance Final Superheater Boiler Kondisi Komisioning dan Kondisi Eksisting Sampling Location : PLTU unit 4 No. Keterangan Satuan 1 Generator load 9 Agustus 1994/ 09:00 9 Februari 2016/ 09:00 MW B - 71

8 2 A. final superheater inlet temperatur 3 B. final superheater inlet temperatur 4 A. final superheater outlet temperatur 5 B. final superheater outlet temperatur o C ,905 5 o C ,785 2 o C 540,3 540,966 2 o C 545,2 539, Steam flow T/h 448,50 472,138 7 Burner flue Nm 3 /h 31503, ,7 gas flow Burner flue 1,81 2,139 2 gas pressure Kg/cm g 9 Flue gas flow 10 Flue gas temperature inlet Kg /h , o C 1084, Hasil Perhitungan Tabel 2. Analisis Hasil Bahan Bakar No. Keteranga n Satuan Komisioning Aktual 1 % 23,64 23,12 2 % 17,47 18,06 3 % 28,15 27,90 4 % 30,74 30,92 NO. 1. Tabel 3. Properties Uap DATA KOMISIONI KETERANG NG AN T C = 764,125 K DATA SEKARAN G T C = 764,1475 K 2,1280 2, ,2877 0, , ,2500 B - 72

9 4. 1,0130 1, , , , ,6000 No. Keterangan Tabel 4: Properties Flue Gas Data Komisioning T h= 1357 K Data Eksistin g T h= 1333 K 1. 1,4854 1, ,2125 0, , , ,7876 0, , , , ,49 Tabel 5. Hasil Perhitungan PERPINDAHAN PANAS DI DALAM PIPA No. Keterangan Kondisi komisioning Kondisi eksisting 1. R ed 80028, , N UD 193, , h i 347, ,162 PERPINDAHAN PANAS DI LUAR PIPA No. Kondisi Komisioning Kondisi eksisting 1. Th o 1230, , R edmax 3066, , q t 68603, , Pr s 0,8068 0, N UD 38, , h O 92, ,302 PERPINDAHAN PANAS FINAL SUPERHEATER No. Kondisi Kondisi Keterangan komisioning eksisting 1. U ( 69,228 69, (K) 529, , ( kw) , , (kw) , ,264 B - 73

10 5. (%) 10,770 9,480 Berdasarkan hasil perhitungan perpindahan panas pada final superheater untuk kondisi komisioning dan kondisi eksisting pada sata PLTU mendapat beban penuh 150 MW dapat dilakukan interpretasi sebagai berikut: Dari tabel 7.5 diperoleh koefisien konveksi di sisi dalam pipa h i =347,836 W/m 2 K untuk kondisi komisioning dan h i = 363,162 W/m 2 K untuk kondisi eksisting. Naiknya h i ini karena laju massa uap yang diproduksi ditingkatkan. Hal ini terdeteksi dari R ed yang meningkat tajam dari 80028,71 kondisi komisioning menjadi 83898,87 kondisi eksisting. Sedangkan koefisien konveksi disisi luar pipa h o telah terjadi penurunan dari 92,795 W/m 2 K untuk kondisi komisioning menjadi 91,302 W/m 2 K untuk kondisi eksisting. Hal ini jelas menunjukkan bahwa sudah ada hambatan termal (kerak) dii dinding luar pipa. Selanjutnya dari hasil perhitungan koefisien perpindahan panas total U = 69,228 W/m 2 K untuk kondisi komisioning menjadi 69,094 W/m 2 K. Penurunan nilai U ini mempertegas bahwa telah terjadi penambahan hambatan perpindahan panas pada final superheater. Faktor-faktor tersebut diatas mengakibatkan penyerapan kalor pada final superheater menjadi menurun seperti terlahat pada diagram berikut ini: Penyerapan Kalor (%) Perbandingan Panas yang Dihasilkan Bahan Bakar dengan Penyerapan Panas pada Final Superheater Komisioning Eksisting Gambar 3. Grafik Perbandingan Kalor yang dihasilkan Bahan Bakar dengan Penyerapan Kalor pada Final Superheater boiler Kondisi Komisioning dengan Kondisi Eksisting Berdasarkan grafik diatas dapat diketahui bahwa penyerapan kalor pada kondisi komisioning sebesar ,319 kw dan penyerapan kalor pada kondisi eksisting sebesar ,977 kw. Dari hasil tersebut dapat diketahui bahwa telah terjadi penurunan penyerapan kalor sebesar 2142,342 kw atau 4,80 %. Berdasarkan hasil perhitungan diatas, dapat dianalisis sebagai berikut: terjadinya penurunan penyerapan kalor pada final superheater dikarenakan adanya penurunan laju perpindahan panas pada kondisi eksisting. Faktor utama penyebab terjadiinya penurunan laju perpindahan panas adalah menurunnya nilai overall heat transfer coefficient dan nilai log mean temperature difference. Penyebab menurunnya nilai overall heat transfer coefficient adalah adanya kerak yang melapisi baik sisi luar maupun sisi dalam dinding pipa uap. Kerak tersebut bersifat menghambat laju perpindahan panas atau memperkecil koefisien perpindahan panas (U s), berdasarkan persamaan berikut: dimana: s : Overall heat transfer coefficient (W/m 2 K) kondisi eksisting : koefisien konveksi di dalam pipa : koefisien konveksi di luar pipa : Jari jari luar pipa : Jari jari dalam pipa R f i : Faktor hambatan panas pada kerak dalam pipa (m 2 K/W) R fo: Faktor hambatan panas pada kerak di luar pipa (m 2 K/W) B - 74

11 Penurunan nilai overall heat transfer coefficient tersebut akan mempengaruhi temperatur uap yang keluar dari final superheater sehingga pada akhirnya juga berkontribusi dalam penurunan nilai log mean temperature difference. Jadi pada akhirnya laju perpindahan panas (laju penyerapan kaor) yang terjadi pada final superheater juga mengalami penurunan. Hal ini dapat dilihat dari persamaan:, dimana adalah log mean temperature difference. KESIMPULAN 1. Dengan beban plan 150 MW, laju perpindahan panas pada final superheater pada kondisi komisioning sebesar kw. Sedangkan pada kondisi eksisting sebesar kw. Jadi telah terjadi penurunan sebesar 2142,342 kw atau terjadi penurunan sebesar 4,80 %. 2. Dengan beban plan 150 MW, prosentase penyerapan kalor pada final superheater (q) dengan panas yang dihasilkan bahan bakar (q bb) pada kondisi komisioning sebesar 10,77 % dan kondisi eksisting sebesar 9,48 %. Jadi telah terjadi penurunan sebesar 1,34 %. Penurunan tersebut disebabkan sudah terjadi kerak yang bersifat menghambat laju perpindahan panas pada dinding pipa final superheater. DAFTAR PUSTAKA 1. Analisa Unjuk Kerja Boiler terhadap Penurunan Daya pada PLTU PT. Indonesia Power UBP Perak (url: paper.pdf) 2. Djokosetyardjo, M.J. 2003, Ketel Uap, Jakarta. 3. Incropera, Frank P. Bregman Theodore L, Lavine Andrinne S, Dewitt David P, 2011, Fundamental of Heat and Mass Transfer 7 th United State of America: John Willey & Sons, Inc. 4. Marpaung, Ir. Parlindungan, Prinsip Teknik Konservasi Energi Pada Boiler (url: 5. Bahan Bakar. Unit Pendidikan dan Pelatihan Suralaya. 6. UNEP 2008, United Nation Environment Program. B - 75

12 - Halaman ini sesengaja dikosngkan - B - 76

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik

Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik SKRIPSI LOGO Januari 2011 Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik PUTRA IS DEWATA 4206.100.061 Contents BAB I

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Mustaza Ma a 1) Ary Bachtiar Krishna Putra 2) 1) Mahasiswa Program Pasca Sarjana Teknik Mesin

Lebih terperinci

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi I. PENDAHULUAN A. Latar Belakang Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi Tulen yang berperan dalam proses pengeringan biji kopi untuk menghasilkan kopi bubuk TULEN. Biji

Lebih terperinci

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-132 Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin Anson Elian dan

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-91 Studi Eksperimen Pengaruh Variasi Kecepatan Udara Terhadap Performa Heat Exchanger Jenis Compact Heat Exchanger (Radiator)

Lebih terperinci

Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak, Jumlah dan Diameter Tube

Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak, Jumlah dan Diameter Tube JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: 2337-3539 (2301-9271 Print) B-388 Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak,

Lebih terperinci

PERHITUNGAN EFISIENSI BOILER

PERHITUNGAN EFISIENSI BOILER 1 of 10 12/22/2013 8:36 AM PERHITUNGAN EFISIENSI BOILER PERHITUNGAN EFISIENSI BOILER Efisiensi adalah suatu tingkatan kemampuan kerja dari suatu alat. Sedangkan efisiensi pada boiler adalah prestasi kerja

Lebih terperinci

PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER

PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER Rianto, W. Program Studi Teknik Mesin Universitas Muria Kudus Gondangmanis PO.Box 53-Bae, Kudus, telp 0291 4438229-443844, fax 0291 437198

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

Studi Numerik Karakteristik Aliran dan Perpindahan Panas pada Tube Platen Superheater PLTU Pacitan

Studi Numerik Karakteristik Aliran dan Perpindahan Panas pada Tube Platen Superheater PLTU Pacitan Studi Numerik Karakteristik Aliran dan Perpindahan Panas pada Tube Platen Superheater PLTU Pacitan Kurniadi Heru Prabowo 1, Prabowo 2 1) Jurusan Teknik Mesin, Program Studi Magister Rekayasa Energi, ITS

Lebih terperinci

UNIVERSITAS DIPONEGORO PERHITUNGAN PERFORMA ALAT PENUKAR KALOR AIR PREHEATER A DAN B TIPE ROTARY LAP UNIT 1 PLTU 3 JAWA TIMUR TANJUNG AWAR-AWAR

UNIVERSITAS DIPONEGORO PERHITUNGAN PERFORMA ALAT PENUKAR KALOR AIR PREHEATER A DAN B TIPE ROTARY LAP UNIT 1 PLTU 3 JAWA TIMUR TANJUNG AWAR-AWAR UNIVERSITAS DIPONEGORO PERHITUNGAN PERFORMA ALAT PENUKAR KALOR AIR PREHEATER A DAN B TIPE ROTARY LAP UNIT 1 PLTU 3 JAWA TIMUR TANJUNG AWAR-AWAR TUGAS AKHIR ADITYA MAHENDRA SASMITA 21050112083011 FAKULTAS

Lebih terperinci

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-137 Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure Ryan Hidayat dan Bambang

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-192 Studi Numerik Pengaruh Baffle Inclination pada Alat Penukar Kalor Tipe Shell and Tube terhadap Aliran Fluida dan Perpindahan

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

ANALISA PERFORMANSI COOLER LUBE OIL DENGAN KAPASITAS 300 TON/JAM PADA UNIT 2 DI PLTU LABUHAN ANGIN LAPORAN TUGAS AKHIR

ANALISA PERFORMANSI COOLER LUBE OIL DENGAN KAPASITAS 300 TON/JAM PADA UNIT 2 DI PLTU LABUHAN ANGIN LAPORAN TUGAS AKHIR ANALISA PERFORMANSI COOLER LUBE OIL DENGAN KAPASITAS 300 TON/JAM PADA UNIT 2 DI PLTU LABUHAN ANGIN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan

Lebih terperinci

Studi Eksperimen Pengaruh Sudut Blade Tipe Single Row Distributor pada Swirling Fluidized Bed Coal Dryer terhadap Karakteristik Pengeringan Batubara

Studi Eksperimen Pengaruh Sudut Blade Tipe Single Row Distributor pada Swirling Fluidized Bed Coal Dryer terhadap Karakteristik Pengeringan Batubara 1 Studi Eksperimen Pengaruh Sudut Blade Tipe Single Row Distributor pada Swirling Fluidized Bed Coal Dryer terhadap Karakteristik Pengeringan Batubara Afrizal Tegar Oktianto dan Prabowo Teknik Mesin, Fakultas

Lebih terperinci

ANALISIS KINERJA COOLANT PADA RADIATOR

ANALISIS KINERJA COOLANT PADA RADIATOR ANALISIS KINERJA COOLANT PADA RADIATOR Alexander Clifford, Abrar Riza dan Steven Darmawan Program Studi Teknik Mesin, Fakultas Teknik Universitas Tarumanagara e-mail: Alexander.clifford@hotmail.co.id Abstract:

Lebih terperinci

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION (Interpretasi Saturated Burning Zone ditinjau dari Flame Temperatur pada Steam Power Generation Closed Cycle System) Diajukan Untuk Memenuhi Syarat Menyelesaikan

Lebih terperinci

II. TINJAUAN PUSTAKA A. SAMPAH

II. TINJAUAN PUSTAKA A. SAMPAH II. TINJAUAN PUSTAKA A. SAMPAH Sampah adalah sisa-sisa atau residu yang dihasilkan dari suatu kegiatan atau aktivitas. kegiatan yang menghasilkan sampah adalah bisnis, rumah tangga pertanian dan pertambangan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN DATA

BAB III ANALISA DAN PEMBAHASAN DATA BAB III ANALISA DAN PEMBAHASAN DATA 3.1 Analisis dan Pembahasan Kehilangan panas atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

Analisa Heat Balance Thermal Oxidizer dengan Waste Heat Recovery Unit

Analisa Heat Balance Thermal Oxidizer dengan Waste Heat Recovery Unit JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-165 Analisa Heat Balance Thermal Oxidizer Waste Heat Recovery Unit Alfian Bani Susiloputra dan Bambang Arip Dwiyantoro Jurusan

Lebih terperinci

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR Sugiyanto 1, Cokorda Prapti Mahandari 2, Dita Satyadarma 3. Jurusan Teknik Mesin Universitas Gunadarma Jln Margonda Raya 100 Depok.

Lebih terperinci

ANALISA TEKNIS EVALUASI KINERJA BOILER TYPE IHI FW SR SINGLE DRUM AKIBAT KEHILANGAN PANAS DI PLTU PT. PJB UNIT PEMBANGKITAN GRESIK

ANALISA TEKNIS EVALUASI KINERJA BOILER TYPE IHI FW SR SINGLE DRUM AKIBAT KEHILANGAN PANAS DI PLTU PT. PJB UNIT PEMBANGKITAN GRESIK ANALISA TEKNIS EVALUASI KINERJA BOILER TYPE IHI FW SR SINGLE DRUM AKIBAT KEHILANGAN PANAS DI PLTU PT. PJB UNIT PEMBANGKITAN GRESIK Putra Is Dewata (Mahasiswa) I Made Ariana, ST.,MT.,Dr.MarSc. (Dosen pembimbing

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Keluatan Institut Teknolgi Sepuluh Nopember Surabaya 2011

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Perhitungan Daya Motor 4.1.1 Torsi pada poros (T 1 ) T3 T2 T1 Torsi pada poros dengan beban teh 10 kg Torsi pada poros tanpa beban - Massa poros; IV-1 Momen inersia pada poros;

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN

BAB III ANALISA DAN PEMBAHASAN BAB III ANALISA DAN PEMBAHASAN 3.1 SPESIFIKASI TURBIN Turbin uap yang digunakan pada PLTU Kapasitas 330 MW didesain dan pembuatan manufaktur dari Beijing BEIZHONG Steam Turbine Generator Co., Ltd. Model

Lebih terperinci

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur Nur Rima Samarotul Janah, Harsono Hadi dan Nur Laila Hamidah Departemen Teknik Fisika,

Lebih terperinci

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo B117 Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo Raditya Satrio Wibowo dan Prabowo Departemen Teknik Mesin, Fakultas Teknologi

Lebih terperinci

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012 Hasil Penelitian dan Kegiatan PTLR Tahun 202 ISSN 0852-2979 PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 202 Heri Witono, Ahmad Nurjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B13

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B13 B13 Studi Numerik Karakteristik Perpindahan Panas pada Membrane Wall Tube Boiler Dengan Variasi Jenis Material dan Ketebalan Insulasi di PLTU Unit 4 PT.PJB UP Gresik I Nyoman Ari Susastrawan D dan Prabowo.

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow

Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow Jurnal Teknik Elektro dan Komputer, Vol.I, No.2, Oktober 2013, 161-168 161 Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow Mustaza Ma a Program

Lebih terperinci

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor 4 BAB II TEORI DASAR.1 Perancangan Sistem Penyediaan Air Panas.1.1 Kualitas Air Panas Air akan memiliki sifat anomali, yaitu volumenya akan mencapai minimum pada temperatur 4 C dan akan bertambah pada

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: B-169

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: B-169 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 B-169 Studi Numerik Peningkatan Cooling Performance pada Lube Oil Cooler Gas Turbine yang Disusun Secara Seri dan Paralel dengan Variasi Kapasitas

Lebih terperinci

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM Ign. Djoko Irianto Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) BATAN ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI

Lebih terperinci

Bab 1. PENDAHULUAN Latar Belakang

Bab 1. PENDAHULUAN Latar Belakang 1 Bab 1. PENDAHULUAN 1.1. Latar Belakang Perkembangan Industri kimia di Indonesia sudah cukup maju seiring dengan globalisasi perdagangan dunia. Industri pembuatan Nylon yang merupakan salah satu industri

Lebih terperinci

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI Dosen Pembimbing : Ir. Joko Sarsetiyanto, MT Program Studi Diploma III Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya Oleh

Lebih terperinci

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA Oleh Audri Deacy Cappenberg Program Studi Teknik Mesin Universitas 17 Agustus 1945 Jakarta ABSTRAK Pengujian Alat Penukar Panas Jenis Pipa Ganda Dan

Lebih terperinci

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia.

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia. Desain Rancang Heat Exchanger Stage III pada Pressure Reduction System pada Daughter Station CNG Granary Global Energy dengan Tekanan Kerja 20 ke 5 Bar Taufik Ramuli (0639866) Departemen Teknik Mesin,

Lebih terperinci

PENINGKATAN EFISIENSI PRODUKSI MINYAK CENGKEH PADA SISTEM PENYULINGAN KONVENSIONAL

PENINGKATAN EFISIENSI PRODUKSI MINYAK CENGKEH PADA SISTEM PENYULINGAN KONVENSIONAL PENINGKATAN EFISIENSI PRODUKSI MINYAK CENGKEH PADA SISTEM PENYULINGAN KONVENSIONAL Budi Santoso * Abstract : In industrial clove oil destilation, heat is the main energy which needed for destilation process

Lebih terperinci

Evaluasi Performa Lube Oil Cooler pada Turbin Gas dengan Variasi Surface Designation dan Reynolds Number

Evaluasi Performa Lube Oil Cooler pada Turbin Gas dengan Variasi Surface Designation dan Reynolds Number Evaluasi Performa Lube Oil Cooler pada Turbin Gas dengan Variasi Surface Designation dan Reynolds Number Siti Duratun Nasiqiati Rosady 1), Bambang Arip Dwiyantoro 2) 1) Program Studi Pascasarjana Teknik

Lebih terperinci

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks Dwi Arif Santoso Fakultas Teknologi Industri, Universitas Gunadarma

Lebih terperinci

RANCANG BANGUN HEAT EXCHANGER TUBE NON FIN SATU PASS, SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON

RANCANG BANGUN HEAT EXCHANGER TUBE NON FIN SATU PASS, SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON TUGAS AKHIR RANCANG BANGUN HEAT EXCHANGER TUBE NON FIN SATU PASS, SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON Disusun Sebagai Syarat Untuk Menyelesaikan Progam Studi Strara 1 Pada Jurusan Teknik

Lebih terperinci

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Air Panglima Besar Soedirman mempunyai tiga unit turbin air tipe Francis poros vertikal, yang digunakan sebagai penggerak mula dari generator

Lebih terperinci

JURNAL TEKNIK POMITS 1

JURNAL TEKNIK POMITS 1 JURNAL TEKNIK POMITS 1 Recovery Derating Dengan Redesign Kondensor Berdasarkan Analisa Termodinamika Dan Perpindahan Panas Bagus Wahyu Hadi Atmaja dan Atok Setiyawan Jurusan Teknik Mesin, Fakultas Teknologi

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel

BAB II TINJAUAN PUSTAKA. tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel BAB II TINJAUAN PUSTAKA 2.1 Boiler Salah satu peralatan yang sangat penting di dalam suatu pembangkit tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel uap. Alat ini merupakan

Lebih terperinci

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48 PENGARUH SIRIP CINCIN INNER TUBE TERHADAP KINERJA PERPINDAHAN PANAS PADA HEAT EXCHANGER Sujawi Sholeh Sadiawan 1), Nova Risdiyanto Ismail 2), Agus suyatno 3) ABSTRAK Bagian terpenting dari Heat excanger

Lebih terperinci

UNIVERSITAS DIPONEGORO ANALISIS UNJUK KERJA KONDENSOR UNIT 1 TIPE N DI PLTU 3 JAWA TIMUR TANJUNG AWAR AWAR TUGAS AKHIR FAKULTAS TEKNIK

UNIVERSITAS DIPONEGORO ANALISIS UNJUK KERJA KONDENSOR UNIT 1 TIPE N DI PLTU 3 JAWA TIMUR TANJUNG AWAR AWAR TUGAS AKHIR FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO ANALISIS UNJUK KERJA KONDENSOR UNIT 1 TIPE N - 16000-2 DI PLTU 3 JAWA TIMUR TANJUNG AWAR AWAR TUGAS AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya MAULANA

Lebih terperinci

ANALISA UNJUK KERJA BOILER TERHADAP PENURUNAN DAYA PADA PLTU PT. INDONESIA POWER UBP PERAK

ANALISA UNJUK KERJA BOILER TERHADAP PENURUNAN DAYA PADA PLTU PT. INDONESIA POWER UBP PERAK ANALISA UNJUK KERJA BOILER TERHADAP PENURUNAN DAYA PADA PLTU PT. INDONESIA POWER UBP PERAK Asmudi, 4207100608 Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan, ITS Surabaya Abstrak Boiler unit

Lebih terperinci

VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN Harto Tanujaya, Suroso dan Edwin Slamet Gunadarma Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE. Nicolas Titahelu * ABSTRACT

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE. Nicolas Titahelu * ABSTRACT ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE Nicolas Titahelu * ABSTRACT Effect of hot fluid flow velocity direction have been investigated

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR SKRIPSI Skripsi yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN Saut Mangihut Tua Naibaho 1), Steven Darmawan 1) dan Suroso 2) 1) Program Studi Teknik Mesin Universitas

Lebih terperinci

ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW

ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW Andrea Ramadhan ( 0906488760 ) Jurusan Teknik Mesin Universitas Indonesia email : andrea.ramadhan@ymail.com ABSTRAKSI Pulverized Coal (PC)

Lebih terperinci

ANALISIS PENGARUH KANDUNGAN KARBON TETAP PADA BATUBARA TERHADAP EFISIENSI KETEL UAP PLTU TANJUNG JATI B UNIT 2

ANALISIS PENGARUH KANDUNGAN KARBON TETAP PADA BATUBARA TERHADAP EFISIENSI KETEL UAP PLTU TANJUNG JATI B UNIT 2 EKSERGI Jurnal Teknik Energi Vol 1 No. 1 Januari 016; 1-6 ANALISIS PENGARUH KANDUNGAN KARBON TETAP PADA BATUBARA TERHADAP EFISIENSI KETEL UAP PLTU TANJUNG JATI B UNIT Sudjito, Program Studi Teknik Konversi

Lebih terperinci

Diajukan Untuk Memenuhi Sebagian Persyaratan Dalam Menyelesaikan Program Pendidikan Diploma 3 PROGRAM STUDI TEKNIK KONVERSI ENERGI

Diajukan Untuk Memenuhi Sebagian Persyaratan Dalam Menyelesaikan Program Pendidikan Diploma 3 PROGRAM STUDI TEKNIK KONVERSI ENERGI ANALISA PERFORMANSI KETEL PIPA AIR KAPASITAS 45 TON UAP/JAM, TEKANAN 30 kg/cm 2 DENGAN TEMPERATUR 270 0 C DI PABRIK KELAPA SAWIT SEI MANGKEI LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SUHERI SUSANTO NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SUHERI SUSANTO NIM ANALISIS ALAT PENUKAR KALOR SHELL AND TUBE SEBAGAI PEMANAS MARINE FUEL OIL ( MFO ) UNTUK BAHAN BAKAR BOILER PLTU UNIT 4 DI PT. PLN (PERSERO) SEKTOR PEMBANGKITAN BELAWAN SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON

ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON EKSERGI Jurnal Teknik Energi Vol 10 No. 3 September 2014; 78-83 ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON F. Gatot Sumarno, Slamet

Lebih terperinci

EFEKTIVITAS FUEL OIL HEATER PADA PEMBANGKIT LISTRIK TENAGA UAP

EFEKTIVITAS FUEL OIL HEATER PADA PEMBANGKIT LISTRIK TENAGA UAP EFEKTIVITAS FUEL OIL HEATER PADA PEMBANGKIT LISTRIK TENAGA UAP Rustan Hatib Jurusan Teknik Mesin, Fakultas Teknik, Universitas Tadulako Jl. Sukarno Hatta Km. 9 Tondo, Palu 94117 Email: rustanhatib98@gmail.com

Lebih terperinci

PERANCANGAN TERMAL HEAT RECOVERY STEAM GENERATOR SISTEM TEKANAN DUA TINGKAT DENGAN VARIASI BEBAN GAS TURBIN

PERANCANGAN TERMAL HEAT RECOVERY STEAM GENERATOR SISTEM TEKANAN DUA TINGKAT DENGAN VARIASI BEBAN GAS TURBIN TUGAS AKHIR TM141585 PERANCANGAN TERMAL HEAT RECOVERY STEAM GENERATOR SISTEM TEKANAN DUA TINGKAT DENGAN VARIASI BEBAN GAS TURBIN ANSON ELIAN NRP. 2112100142 Dosen Pembimbing Bambang Arip Dwiyantoro, S.T,

Lebih terperinci

ANALISA COOLING SISTEM GE FRAME 9 PLTG SICANANG 120MW

ANALISA COOLING SISTEM GE FRAME 9 PLTG SICANANG 120MW ANALISA COOLING SISTEM GE FRAME 9 PLTG SICANANG 120MW oleh Yogi Sirodz Gaos 1 dan Candra Damis Widiawati 2 1Engineering and Devices for Energy Conversion Research Lab., Fakultas Teknik Universitas Ibn

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Panas atau kalor merupakan salah satu bentuk energi. Panas dapat berpindah dari suatu zat ke zat lain. Panas dapat berpndah melalui tiga cara yaitu : 2.1.1

Lebih terperinci

OLEH Ir. PARLINDUNGAN MARPAUNG HIMPUNAN AHLI KONSERVASI ENERGI (HAKE)

OLEH Ir. PARLINDUNGAN MARPAUNG HIMPUNAN AHLI KONSERVASI ENERGI (HAKE) OLEH Ir. PARLINDUNGAN MARPAUNG HIMPUNAN AHLI KONSERVASI ENERGI (HAKE) 1 1. BOILER 2. PRINSIP KONSERVASI PADA BOILER 3 KASUS Boiler telah dikenal sejak jaman revolusi industri. Boiler merupakan peralatan

Lebih terperinci

PERPINDAHAN PANASPADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGERDI SEKTOR PEMBANGKITAN PLTGU CILEGON

PERPINDAHAN PANASPADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGERDI SEKTOR PEMBANGKITAN PLTGU CILEGON EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 85-90 PERPINDAHAN PANASPADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGERDI SEKTOR PEMBANGKITAN PLTGU CILEGON F. Gatot Sumarno, Slamet Priyoatmojo

Lebih terperinci

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Muhamad dangga A 2108 100 522 Dosen Pembimbing : Ary Bachtiar Krishna

Lebih terperinci

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER ABSTRAK Telah dilakukan perhitungan secara analitik dan numerik dengan pendekatan finite difference

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PITCH

STUDI EKSPERIMENTAL PENGARUH PITCH STUDI EKSPERIMENTAL PENGARUH PITCH TERHADAP PENINGKATAN PERPINDAHAN PANAS PADA PENUKAR KALOR PIPA KONSENTRIK DENGAN LOUVERED STRIP INSERT SUSUNAN BACKWARD SKRIPSI Diajukan sebagai salah satu syarat untuk

Lebih terperinci

PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI

PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI Kode Unit : JPI.KE01.001.01 STANDAR KOMPETENSI Judul Unit: Menerapkan prinsip-prinsip

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016 RANCANG BANGUN GENERATOR PADA MESIN PENDINGIN MENGGUNAKAN SIKLUS ABSORPSI MEMANFAATKAN PANAS BUANG MOTOR BAKAR DENGAN PASANGAN REFRIJERAN - ABSORBEN AMONIA-AIR Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C NASKAH PUBLIKASI PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C Makalah Seminar Tugas Akhir ini disusun sebagai

Lebih terperinci

Lampiran 1. Perhitungan kebutuhan panas

Lampiran 1. Perhitungan kebutuhan panas LAMPIRAN 49 Lampiran 1. Perhitungan kebutuhan panas 1. Jumlah Air yang Harus Diuapkan = = = 180 = 72.4 Air yang harus diuapkan (w v ) = 180 72.4 = 107.6 kg Laju penguapan (Ẇ v ) = 107.6 / (32 x 3600) =

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH KECEPATAN UDARA (V) TERHADAP KARAKTERISTIK PERPINDAHAN PANAS KONVEKSI PAKSA PELAT DATAR. Rikhardus Ufie * Abstract

STUDI EKSPERIMENTAL PENGARUH KECEPATAN UDARA (V) TERHADAP KARAKTERISTIK PERPINDAHAN PANAS KONVEKSI PAKSA PELAT DATAR. Rikhardus Ufie * Abstract STUDI EKSPERIMENTAL PENGARUH KECEPATAN UDARA (V) TERHADAP KARAKTERISTIK PERPINDAHAN PANAS KONVEKSI PAKSA PELAT DATAR Rikhardus Ufie * Abstract Effect of air velocity on heat transfer characteristics of

Lebih terperinci

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger JURNAL TEKNIK MESIN Vol. 2, No. 2, Oktober 2: 86 9 Pengaruh Kecepatan Aliran Terhadap Shell-and-Tube Heat Exchanger Ekadewi Anggraini Handoyo Dosen Fakultas Teknologi Industri Jurusan Teknik Mesin Universitas

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL)

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL) ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL) David Oktavianus 1,Hady Gunawan 2,Hendrico 3,Farel H Napitupulu

Lebih terperinci

JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MEDAN MEDAN 2015

JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MEDAN MEDAN 2015 ANALISA UNJUK KERJA TERMAL ALAT PENUKAR KALOR KONDENSOR DENGAN KAPASITAS SIRKULASI AIR 9.550 M 3 /JAM DI PLTU UNIT 3 PT PLN (PERSERO) SICANANG BELAWAN Diajukan untuk Memenuhi Sebagian Persyaratan dalam

Lebih terperinci

STUDI EKSPERIMEN ANALISA PERFORMANCE COMPACT HEAT EXCHANGER LOUVERED FIN FLAT TUBE UNTUK PEMANFAATAN WASTE ENERGY

STUDI EKSPERIMEN ANALISA PERFORMANCE COMPACT HEAT EXCHANGER LOUVERED FIN FLAT TUBE UNTUK PEMANFAATAN WASTE ENERGY Tugas Akhir STUDI EKSPERIMEN ANALISA PERFORMANCE COMPACT HEAT EXCHANGER LOUVERED FIN FLAT TUBE UNTUK PEMANFAATAN WASTE ENERGY Oleh: Taqwim Ismail 2111.105.007 Dosen Pembimbing: Ary Bachtiar K. P, ST.,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu BAB I PENDAHULUAN 1.1 LATAR BELAKANG Bertambahnya perindustrian di Indonesia menyebabkan peningkatan kebutuhan listrik. Untuk mengatasi hal tersebut maka saat ini pemerintah berupaya untuk meningkatkan

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2008

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2008 PENGARUH PENGGUNAANMEDIABAHANPENGISI( FILLER) PVC DENGANTINGGI45CM DAN DIAMETER 70CM TERHADAPKINERJAMENARAPENDINGINJENIS INDUCED- DRAFT COUNTERFLOW SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar

Lebih terperinci

BAB 4 ANALISA DAN PEMBAHASAN EFESIENSI CFB BOILER TERHADAP KEHILANGAN PANAS PADA PEMBANGKIT LISTRIK TENAGA UAP

BAB 4 ANALISA DAN PEMBAHASAN EFESIENSI CFB BOILER TERHADAP KEHILANGAN PANAS PADA PEMBANGKIT LISTRIK TENAGA UAP BAB 4 ANALISA DAN PEMBAHASAN EFESIENSI CFB BOILER TERHADAP KEHILANGAN PANAS PADA PEMBANGKIT LISTRIK TENAGA UAP 4.1 Analisis dan Pembahasan Kinerja boiler mempunyai parameter seperti efisiensi dan rasio

Lebih terperinci

Efisiensi PLTU batubara

Efisiensi PLTU batubara Efisiensi PLTU batubara Ariesma Julianto 105100200111051 Vagga Satria Rizky 105100207111003 Sumber energi di Indonesia ditandai dengan keterbatasan cadangan minyak bumi, cadangan gas alam yang mencukupi

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

Cara Kerja Pompa Sentrifugal Komponen Komponen Pompa Sentrifugal Klasifikasi Pompa Sentrifugal Boiler...

Cara Kerja Pompa Sentrifugal Komponen Komponen Pompa Sentrifugal Klasifikasi Pompa Sentrifugal Boiler... DAFTAR ISI HALAMAN JUDUL SKRIPSI... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v KATA PENGANTAR... vi DAFTAR ISI... viii DAFTAR GAMBAR...

Lebih terperinci