Pengantar Data Warehouse dan OLAP
|
|
|
- Yanti Kurnia
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Pengantar Data Warehouse dan OLAP
2 Agenda Pengertian data warehouse Model data multidimensi Operasi operasi dalam OLAP Arsitektur data warehouse Kegunaan data warehouse
3 Apa itu Data Warehousing? Data warehouse adalah koleksi dari data yang subject oriented, terintegrasi, time variant, dan nonvolatile, dalam mendukung proses pembuatan keputusan. Sering diintegrasikan dengan berbagai sistem aplikasi untuk mendukung pemrosesan informasi dan analisis data dengan menyediakan platform untuk historical data. Data warehousing: proses konstruksi dan penggunaan data warehouse.
4 Data warehouse subject oriented Data warehouse diorganisasikan di seputar subjek subjek utama seperti customer, produk, sales. Fokus pada pemodelan dan analisis data untuk pembuatan keputusan, bukan pada operasi harian atau pemrosesan transaksi. Menyediakan sebuah tinjauan sederhana dan ringkas seputar subjek tertentu dengan tidak mengikutsertakan data yang tidak berguna dalam proses pembuatan keputusan.
5 Data warehouse terintegrasi Dikonstruksi dengan mengintegrasikan banyak sumber data yang heterogen. relational database, flat file, on line transaction record Teknik data cleaning dan data integration digunakan Untuk menjamin konsistensi dalam konvensi konvensi penamaan, struktur pengkodean, ukuran ukuran atribut dll diantara sumber data yang berbeda. Contoh: Hotel price: currency, tax, breakfast covered, dll. Data dikonversi ketika dipindahkan ke warehouse.
6 Data Warehouse Time Variant Data disimpan untuk menyediakan informasi dari perspektif historical, contoh 5 10 tahun yang lalu. Struktur kunci dalam data warehouse Mengandung sebuah elemen waktu, baik secara ekspisit atau secara implisit. Tetapi kunci dari data operasional bisa mengandung elemen waktu atau tidak.
7 Data Warehouse Non Volatile Data warehouse adalah penyimpanan data yang terpisah secara fisik yang ditransformasikan dari lingkungan operasional. Data warehouse tidak memerlukan pemrosesan transaksi, recovery dan mekanisme kontrol konkurensi. Biasanya hanya memerlukan dua operasi dalam pengaksesan data, yaitu initial loading of data dan access of data.
8 OLAP (on line analitical processing) OLAP adalah operasi basis data untuk mendapatkan data dalam bentuk kesimpulan dengan menggunakan agregasi sebagai mekanisme utama. Ada 3 tipe: Relational OLAP (ROLAP): Multidimensional OLAP (MOLAP) Hybrid OLAP (HOLAP) membagi data antara tabel relasional dan tempat penyimpanan khusus.
9 Data Warehouse vs. Operational DBMS OLTP (on line transaction processing) Major task of traditional relational DBMS Day to day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc. OLAP (on line analytical processing) Major task of data warehouse system Data analysis and decision making Distinct features (OLTP vs. OLAP): User and system orientation: customer vs. market Data contents: current, detailed vs. historical, consolidated Database design: ER + application vs. star + subject View: current, local vs. evolutionary, integrated Access patterns: update vs. read only but complex queries
10 OLTP vs. OLAP OLTP OLAP users clerk, IT professional knowledge worker function day to day operations decision support DB design application oriented subject oriented data current, up to date detailed, flat relational isolated repetitive historical, summarized, multidimensional integrated, consolidated ad hoc lots of scans unit of work read/write index/hash on prim. key short, simple transaction # records accessed tens millions #users thousands hundreds DB size 100MB GB 100GB TB usage access complex query
11 Dari tabel dan spreadsheet ke Kubus Data Data warehouse didasarkan pada model data multidimensional, dimana data dipandang dalam bentuk kubus data Kubus data, seperti sales, memungkinkan data dipandang dan dimodelkan dalam banyak dimensi Tabel dimensi, seperti item (item_name, brand, type), or time(day, week, month, quarter, year) Tabel fakta mengandung measures (seperti dollars_sold) dan merupakan kunci untuk setiap tabel tabel dimensi terkait. n D base cube dinamakan base cuboid. 0 D cuboid merupakan cuboid pada level paling tinggi, yang menampung ringkasan data dalan level paling tinggi, dinamakan apex cuboid. Lattice dari cuboid cuboid membentuk sebuah data cube.
12 Cube: A Lattice of Cuboids all time time,item 0 D(apex) cuboid item time,location location item,location time,supplier time,item,location supplier location,supplier item,supplier time,location,supplier time,item,supplier 1 D cuboids 2 D cuboids 3 D cuboids item,location,supplier 4 D(base) cuboid time, item, location, supplier
13 Pemodelan Konseptual Data Warehouse Star schema: Sebuah tabel fakta di tengah tengah dihubungkan dengan sekumpulan tabel tabel dimensi. Snowflake schema: perbaikan dari skema star ketika hirarki dimensional dinormalisasi ke dalam sekumpulan tabel tabel dimensi yang lebih kecil Fact constellations: Beberapa tabel fakta dihubungkan ke tabel tabel dimensi yang sama, dipandang sebagai kumpulan dari skema star, sehingga dinamakan skema galaksi atau fact constellation.
14 Contoh Skema Star time item time_key day day_of_the_week month quarter year Sales Fact Table time_key item_key branch_key branch branch_key branch_name branch_type location_key units_sold dollars_sold avg_sales Measures item_key item_name brand type supplier_type location location_key street city province_or_street country
15 Contoh skema Snowflake time time_key day day_of_the_week month quarter year item Sales Fact Table time_key item_key branch_key branch branch_key branch_name branch_type location_key units_sold dollars_sold avg_sales Measures item_key item_name brand type supplier_key supplier supplier_key supplier_type location location_key street city_key city city_key city province_or_street country
16 Contoh Fact Constellation time time_key day day_of_the_week month quarter year item Sales Fact Table time_key item_key item_key item_name brand type supplier_type location_key branch_key branch_name branch_type units_sold dollars_sold avg_sales Measures time_key item_key shipper_key from_location branch_key branch Shipping Fact Table location to_location location_key street city province_or_street country dollars_cost units_shipped shipper shipper_key shipper_name location_key shipper_type
17 Hirarki Konsep: Dimensi (Lokasi) all all Europe region country city office Germany Frankfurt Spain North_America Canada Vancouver... L. Chan Mexico Toronto M. Wind
18 Tampilan datawarehouse dan hirarki Specification of hierarchies Schema hierarchy day < {month < quarter; week} < year Set_grouping hierarchy {1..10} < inexpensive
19 Data Multidimensional Sales volume sebagai fungsi dari product, month, dan region gi on Dimension: Product, Location, Time Hierarchical summarization paths Re Industry Region Year Product Category Country Quarter Product City Office Month Month Day Week
20 TV PC VCR sum 1Qtr 2Qtr Date 3Qtr 4Qtr sum Total annual sales of TV in U.S.A. U.S.A Canada Mexico sum Country Pr od uc t Contoh Kubus Data
21 Cuboid yang terkait dengan kubus all product product,date date 0 D(apex) cuboid country product,country 1 D cuboids date, country 2 D cuboids product, date, country 3 D(base) cuboid
22 Browsing kubus data Visualization OLAP capabilities Interactive manipulation
23 Operasi operasi OLAP Roll up (drill up): summarize data by climbing up hierarchy or by dimension reduction Drill down (roll down): reverse of roll up from higher level summary to lower level summary or detailed data, or introducing new dimensions Slice and dice: project and select Pivot (rotate): reorient the cube, visualization, 3D to series of 2D planes. Other operations drill across: involving (across) more than one fact table drill through: through the bottom level of the cube to its back end relational tables (using SQL)
24 Ilustrasi Ilustrasi untuk operasi operasi pada data multidimen.
25 Rancangan Data Warehouse: Business Analysis Framework Four views regarding the design of a data warehouse Top down view allows selection of the relevant information necessary for the data warehouse Data source view exposes the information being captured, stored, and managed by operational systems Data warehouse view consists of fact tables and dimension tables Business query view sees the perspectives of data in the warehouse from the view of end user
26 Proses Perancangan Data Warehouse Top down, bottom up approaches or a combination of both Top down: Starts with overall design and planning (mature) Bottom up: Starts with experiments and prototypes (rapid) From software engineering point of view Waterfall: structured and systematic analysis at each step before proceeding to the next Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around Typical data warehouse design process Choose a business process to model, e.g., orders, invoices, etc. Choose the grain (atomic level of data) of the business process Choose the dimensions that will apply to each fact table record Choose the measure that will populate each fact table record
27 Multi Tiered Architecture other source s Operational DBs Metadata Extract Transform Load Refresh Monitor & Integrator Data Warehouse OLAP Server Serve Analysis Query Reports Data mining Data Marts Data Sources Data Storage OLAP Engine Front End Tools
28 Data Warehouse Back End Tools and Utilities Data extraction: get data from multiple, heterogeneous, and external sources Data cleaning: detect errors in the data and rectify them when possible Data transformation: convert data from legacy or host format to warehouse format Load: sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions Refresh propagate the updates from the data sources to the warehouse
29 Three Data Warehouse Models Enterprise warehouse collects all of the information about subjects spanning the entire organization Data Mart a subset of corporate wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart Independent vs. dependent (directly from warehouse) data mart Virtual warehouse A set of views over operational databases Only some of the possible summary views may be materialized
30 Data Warehouse Development: A Recommended Approach Multi Tier Data Warehouse Distributed Data Marts Data Mart Data Mart Model refinement Enterprise Data Warehouse Model refinement Define a high level corporate data model
31 OLAP Server Architectures Relational OLAP (ROLAP) Use relational or extended relational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services greater scalability Multidimensional OLAP (MOLAP) Array based multidimensional storage engine (sparse matrix techniques) fast indexing to pre computed summarized data Hybrid OLAP (HOLAP) User flexibility, e.g., low level: relational, high level: array Specialized SQL servers specialized support for SQL queries over star/snowflake schemas
32 Data Warehouse Usage Three kinds of data warehouse applications Information processing supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs Analytical processing multidimensional analysis of data warehouse data supports basic OLAP operations, slice dice, drilling, pivoting Data mining knowledge discovery from hidden patterns supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools. Differences among the three tasks
33 From On Line Analytical Processing to On Line Analytical Mining (OLAM) Why online analytical mining? High quality of data in data warehouses DW contains integrated, consistent, cleaned data Available information processing structure surrounding data warehouses ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools OLAP based exploratory data analysis mining with drilling, dicing, pivoting, etc. On line selection of data mining functions integration and swapping of multiple mining functions, algorithms, and tasks. Architecture of OLAM
34 An OLAM Architecture Mining query Mining result User Interface User GUI API OLAM Engine Layer4 OLAP Engine Layer3 OLAP/OLAM Data Cube API Layer2 MDDB Filtering&Integration Databases Database API Meta Data Filtering Data Data integration Warehouse Data cleaning MDDB Layer1 Data Repository
35 Referensi Data Mining: Concepts and Techniques by Jiawei Han and Micheline Kamber, 2001 Introduction to Data Mining by Tan, Steinbach, Kumar, 2004
36 Terim a kasih
Datawarehouse dan OLAP (Overview) Diambil dari presentasi Jiawei Han
Datawarehouse dan OLAP (Overview) [email protected] Diambil dari presentasi Jiawei Han Apa Data warehouse? Database pendukung keputusan yang terpisah dengan database operasional Platform untuk konsolidasi
Pengantar Data Warehouse dan OLAP
Pengantar Data Warehouse dan OLAP Agenda Pengertian data warehouse Model data multidimensi Operasi-operasi dalam OLAP Arsitektur data warehouse Kegunaan data warehouse Apa itu Data Warehousing? Data warehouse
Data Warehouse & Data Mining STMIK GLOBAL
Data Warehouse & Data Mining STMIK GLOBAL Tanpa Data Warehouse Dengan Data Warehouse Multiple Report tanpa/ dengan Data Warehouse teknologi yang ada di data warehouse dan OLAP (On-Line Analytical Processing)
Data warehouse dan OLAP (Overview) Diambil dari presentasi Jiawei Han / Chirayu Versi dok: 0.8/ Sept 14
Data warehouse dan OLAP (Overview) [email protected] Diambil dari presentasi Jiawei Han / Chirayu Versi dok: 0.8/ Sept 14 Jutaan data per hari Kasus: Indomaret Dimensi (jumlah field) data besar Produk, jenis
INTRODUCTION OF DATA WAREHOUSE. Presented by HANIM M.A M. IRWAN AFANDI.
INTRODUCTION OF DATA WAREHOUSE 1 Presented by HANIM M.A M. IRWAN AFANDI. [email protected], [email protected], [email protected] 2 Acknowledgments S. Sudarshan (Comp. Science and Engineering Dept,
DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING (OLAP)
DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING (OLAP) Overview Data Warehouse dan OLAP merupakan elemen penting yang mendukung decision support. Terutama bagi perusahaan perusahaan besar dengan database
DATABASE DAN DATA WAREHOUSE. Pertemuan 06 2 SKS
Materi 1. Era Informasi 2. Strategi dan Peluang Yang Kompetitif 3. Database dan Database Warehouse 4. Desain Database 5. Sistem Pendukung Keputusan dan Sistem Cerdas 6. E-Commerce DATABASE DAN DATA WAREHOUSE
DESAIN WAREHOUSE FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO LANGKAH MEMBANGUN WAREHOUSE
DESAI WAREHOUSE FIRDAUS SOLIHI UIVERSITAS TRUOJOYO LAGKAH MEMBAGU WAREHOUSE 1 4 Langkah Data Warehouse Design Data Warehouse Extraction, Transfor Mation And Loading (ETL) Create Cube Create Dimension View
IN086 Temu Pengetahuan
IN086 Temu Pengetahuan 2. Overview Data Warehouse 1 Pengenalan Data Warehouse Introduksi Definisi data warehouse Data warehouse vs Operasional DB DM-MA/S1IF/FTI/UKM/2012 2 1 Data Warehouse Sebuah gudang
jumlah keluarga, dan jumlah rumah. Data diambil dari hasil sensus potensi desa yang dilakukan BPS tahun 1996, 1999, 2003, dan 2006.
1 Latar Belakang PENDAHULUAN Kemajuan teknologi komputer semakin memudahkan proses penyimpanan dan pengolahan data berukuran besar. Namun demikian, seringkali data yang sudah tersimpan belum dimanfaatkan
Data Warehousing dan Decision Support
Bab 9 Data Warehousing dan Decision Support POKOK BAHASAN: Hubungan antara Data Warehouse dan Decision Support Model Data Multidimensi Online Analytical Processing (OLAP) Arsitektur Data Warehouse Implementasi
DATAWAREHOUSE. Sukarsa:Pasca Elektro Unud. I Made Sukarsa
DATAWAREHOUSE I Made Sukarsa Evolusi Sistem Informasi Decision Support System database Database (I,U,D,R) ETL DW (Read) Masalah : integrasi /konsistensi OLTP Normalisasi/Den ormalisasi OLAP Denormalisasi
http://www.brigidaarie.com Apa itu database? tempat penyimpanan data yang saling berhubungan secara logika Untuk apa database itu?? untuk mendapatkan suatu informasi yang diperlukan oleh suatu organisasi
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika. Knowledge Discovery in Databases (KDD)
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika Knowledge Discovery in Databases (KDD) Knowledge Discovery in Databases (KDD) Definisi Knowledge Discovery
OLAP - PERTEMUAN 8 OLAP
OLAP - PERTEMUAN 8 OLAP OLTP & OLAP (1) OLTP adalah singkatan dari On Line Transaction Processing. OLTP sering kita jumpai di sekitar kita seperti toko atau swalayan contohnya database pada sistem informasi
PENDAHULUAN TINJAUAN PUSTAKA
1 Latar Belakang PENDAHULUAN Saat ini sudah banyak organisasi yang telah mengadopsi teknologi data warehouse. Penerapan teknologi ini sangat membantu sekali bagi suatu organisasi yang memiliki data yang
Data Warehouse dan Decision Support System. Arif Basofi
Data Warehouse dan Decision Support System Arif Basofi Referensi Data Warehouse, STMIK Global Informatika MDP. M. Syukri Mustafa,S.Si., MMSI, Sistem Basis Data II (Data Warehouse), 2008. Hanim MA, Data
Business Intelligence. Hendrik
Business Intelligence Hendrik } Fragmentasi sistem informasi secara vertical } Menghasilkan pengembangan sistem operasional yang berbasis aplikasi (pengguna) Sales Planning Stock Mngmt... Suppliers Debt
Basis Data Oracle - Business Intelligence System. Ramos Somya, M.Cs.
Basis Data Oracle - Business Intelligence System Ramos Somya, M.Cs. Menurut W.H. Inmon dan Richard D.H., data warehousing adalah koleksi data yang mempunyai sifat berorientasi subjek, terintegrasi, time-variant,
PERANCANGAN DATA WAREHOUSE PENGOLAHAN PERSEDIAAN BUKU PT. GRAMEDIA ASRI MEDIA MAKASSAR
PERANCANGAN DATA WAREHOUSE PENGOLAHAN PERSEDIAAN BUKU PT. GRAMEDIA ASRI MEDIA MAKASSAR Erick A. Lisangan 1, N. Tri Suswanto Saptadi 2 1 [email protected] 2 [email protected] Abstrak Proses dan
BAB I PENDAHULUAN. I.1 Pendahuluan
BAB I PENDAHULUAN I.1 Pendahuluan Dalam kegiatan manusia sehari-hari, terutama dalam kegiatan transaksi, seperti transaksi perbankan, rekam medis, transaksi jual beli dan transaksi lainnya harus dicatat
Tugas Akhir (KI091391) Muhamad Adi Prasetyo
Tugas Akhir (KI091391) Muhamad Adi Prasetyo 5105100159 Prolog Sebuah Program Aplikasi Web yang dibuat untuk melaporkan kuantitas Proses Produksi Menggunakan Metode OLAP pada PT. Aneka Tuna Indonesia (ATI).
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Warehouse Mohammed (2014) mengatakan bahwa data warehouse merupakan database relasional yang dirancang untuk melakukan query dan analisis. Data warehouse biasanya berisi
[Data Warehouse] [6/C2 & 6/D2]
[Data Warehouse] [6/C2 & 6/D2] [ Chapter 3] Arsitektur dan Struktur Data Warehouse Dedy Alamsyah, S.Kom, M.Kom [NIDN : 0410047807] Arsitektur Data Warehouse Menurut Poe, arsitektur adalah sekumpulan atau
IMPLEMENTASI OLAP PADA DATA PENJUALAN BBM MENGGUNAKAN PENTAHO TRIYONO
IMPLEMENTASI OLAP PADA DATA PENJUALAN BBM MENGGUNAKAN PENTAHO TRIYONO 41507120014 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS MERCU BUANA JAKARTA 2013 IMPLEMENTASI OLAP PADA DATA
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Umum Teori umum adalah suatu pernyataan yang dianggap benar secara universal. Teori umum merupakan dasar untuk mengembangkan teori selanjutnya yang lebih khusus (spesifik).
PENDAHULUAN TINJAUAN PUSTAKA
1 Latar Belakang PENDAHULUAN Teknologi basis data saat ini berkembang sangat pesat. Data disimpan dalam basis data, diolah kemudian disajikan sebagai informasi yang bernilai bagi pengguna. Penyimpanan
Perancangan Basis Data
Modul ke: Perancangan Basis Data Fakultas FASILKOM DATA WAREHOUSE Program Studi Sistem Informasi www.mercubuana.ac.id Anita Ratnasari, S.Kom, M.Kom DATA WAREHOUSE Definisi Data Warehouse Salah satu efek
BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan teori umum atau dasar yang digunakan, yaitu sebagai berikut:
BAB 2 LANDASAN TEORI 2.1 Teori Umum Berikut ini akan dijelaskan teori umum atau dasar yang digunakan, yaitu sebagai berikut: 2.1.1 Pengertian Data Menurut Hoffer & Venkataraman (2011: 5) menjelaskan bahwa
DATA WAREHOUSE. Pertemuan ke-3
DATA WAREHOUSE Pertemuan ke-3 Intelligence Enterprise Pengertian Data Warehouse Sebuah tempat penyimpanan data yang lengkap dan konsisten yang berasal dari sumber-sumber yang berbeda dibuat untuk penggunanya
[Data Warehouse] [6/C2 & 6/D2]
[Data Warehouse] [6/C2 & 6/D2] [ Chapter 2] Jenis dan Karakteristik Data Warehouse Dedy Alamsyah, S.Kom, M.Kom [NIDN : 0410047807] Jenis Data Warehouse 1. Functional Data Warehouse (Data Warehouse Fungsional)
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian Data Menurut (Inmon, 2005, p. 493) data merupakan kumpulan faktafakta, konsep-konsep dan instruksi-instruksi yang disimpan dalam media penyimpanan yang
S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha
S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha A cell in the cube may store values (measurements) relative to the combination of the labeled dimensions NY DVD Sales of
Pengantar Datawarehouse Muhammad Subhan [email protected] [email protected] [email protected] http://subhan.blog.binusian.org http://geeks.netindonesia.net/blogs/muhammadsubhan Lisensi Dokumen: Copyright
TUGAS DATA WAREHOUSE & DATA MINING OLAP, OPERASI OLAP & MOLAP
TUGAS DATA WAREHOUSE & DATA MINING OLAP, OPERASI OLAP & MOLAP OLEH: VIVIAN WIJAYA (15 62 003) JURUSAN SISTEM INFORMASI FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS ATMA JAYA MAKASSAR 2017 OLAP, OPERASI OLAP
SISTEM PENUNJANG KEPUTUSAN
SISTEM PENUNJANG KEPUTUSAN IF041-3 2009 Fakultas TeknologiInformasiUniversitasBudi Luhur Jl. CiledugRaya PetukanganUtara Jakarta Selatan 12260 Website: http://fti.bl.ac.id Email: [email protected]
BAB II LANDASAN TEORI. Data adalah sesuatu yang mewakilkan objek dan peristiwa yang memiliki arti
BAB II LANDASAN TEORI 2.1 Data Data adalah sesuatu yang mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi pemakai (Hoffer, Prescott dan McFadden,2007, p6). 2.2 Basis Data Basis
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi...Volume..., Bulan 20..ISSN : PEMBANGUNAN INDEPENDENT DATA MART PADA OPTIK YUDA
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 PEMBANGUNAN INDEPENDENT DATA MART PADA OPTIK YUDA Dinar Priskawati 1, Dian Dharmayanti 2 Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur
ANALISA DATA TRANSAKSIONAL PADA E-COMMERCE DENGAN TEKNOLOGI OLAP (ON-LINE ANALYTICAL PROCESS)
ANALISA DATA TRANSAKSIONAL PADA E-COMMERCE DENGAN TEKNOLOGI OLAP (ON-LINE ANALYTICAL PROCESS) Budi Santosa 1), Dessyanto Boedi P 2), Markus Priharjanto 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran"
Data Warehouse, Data Mart, OLAP, dan Data Mining. arifin, sistem informasi - udinus 1
Data Warehouse, Data Mart, OLAP, dan Data Mining arifin, sistem informasi - udinus 1 Data Warehouse Data warehouse adalah basis data yang menyimpan data sekarang dan data masa lalu yang berasal dari berbagai
BUSINESS INTELLIGENCE
OVERVIEW BUSINESS INTELLIGENCE Business Intelligence (BI) merupakan perkembangan dari aplikasi Knowlegde Management (KM), dengan menambahkan proses data analytics, yaitu dengan memanfaatkan data yang ada
Lecture s Structure. Desain Data Warehouse (I): Dimensional Modelling. Mendisain Sebuah Data Warehouse
Desain Data Warehouse (I): Dimensional Modelling Yudi Agusta, PhD Data Warehouse and Data Mining, Lecture 3 Copyright Yudi Agusta, PhD 2006 Lecture s Structure Merancang Sebuah Data Warehouse Skema Perancangan
6/26/2011. Menurut W.H. Inmon dan Richard D.H. Menurut Vidette Poe
Menurut W.H. Inmon dan Richard D.H. koleksi data yang mempunyai sifat berorientasi subjek,terintegrasi,time-variant, dan bersifat tetap dari koleksi data dalam mendukung proses pengambilan keputusan management
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Data Data adalah sebuah rekaman dari fakta-fakta, konsep-konsep, atau instruksiinstruksi pada media penyimpanan untuk komunikasi perolehan, dan pemrosesan dengan cara otomatis
Pembuatan Aplikasi OLAP Untuk Pelaporan pada PT. Aneka Tuna Indonesia Menggunakan SQL Server 2005
Pembuatan Aplikasi OLAP Untuk Pelaporan pada PT. Aneka Tuna Indonesia Menggunakan SQL Server 2005 Muhamad Adi Prasetyo 1, Ahmad Saikhu 2, Sarwosri 3 Teknik Informatika, Fakultas Teknologi Informasi, ITS
Data Warehouse dan Data Mining Oleh : Asep Jalaludin,S.T.,M.M.
Data Warehouse dan Data Mining Oleh : 1 Definisi : Data Warehouse O Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis
FAST berarti sistem ditargetkan untuk memberikan response terhadap user dengan secepat mungkin, sesuai dengan analisis yang dilakukan.
OLAP OLAP (Online Analytical Processing), merupakan metode pendekatan untuk menyajikan jawaban dari permintaan proses analisis yang bersifat dimensional secara cepat. Pengertian OLAP itu sendiri dapat
Analisis Data dengan Menggunakan ERD dan Model Konseptual Data Warehouse
Analisis Data dengan Menggunakan ERD dan Model Konseptual Data Warehouse Doro Edi 1), Stevalin Betshani 2) Jurusan Sistem Informasi Fakultas Teknologi Informasi, Universitas Kristen Maranatha Jl. Prof.
Arsitektur Data Warehouse. Minggu 4
Arsitektur Data Warehouse Minggu 4 Pengantar Mengapa Pemodelan Data itu penting? Tujuan Meyakinkan semua objek data yang diperlukan oleh database telah terpenuhi. Tabel Relational Tabel Relasional dibangun
BAB II. LANDASAN TEORIse. Menurut McLeod dan Schell (2004, p405), data warehouse adalah sebuah
BAB II LANDASAN TEORIse 2.1 Data Warehouse Menurut McLeod dan Schell (2004, p405), data warehouse adalah sebuah tempat penyimpanan data dimana kapasitas penyimpanannya berskala besar; datanya diakumulasikan
Online Analytical Processing (OLAP)
Online Analytical Processing (OLAP) OLAP 1/16 Outline Keuntungan OLAP Penyajian Data Multidimensi Peralatan OLAP dan Kategorinya Penerapan SQL pada OLAP OLAP 2/16 OLAP : Sintesa dinamis, analisis, dan
PERTEMUAN 13 ARSITEKTUR & MODEL DATA MINING
PERTEMUAN 13 ARSITEKTUR & MODEL DATA MINING bagan lanjut Keterangan : 1. Data cleaning (Pembersihan Data) : untuk membuang data yang tidak konsisten dan noise) 2. Data integration : penggabungan data dari
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI Dalam bab ini akan dijelaskan tentang beberapa konsep tentang supra desa, business intelligence, data warehouse, staging area, ETL, OLAP, ROLAP, Pentaho Data Integration, dan PHP.
DATA WAREHOUSE KONSEP Konsep dasar data warehouse adalah perbedaan antara data dan informasi. Data terdiri dari fakta-fakta yang dapat diamati dan
DATA WAREHOUSE KONSEP Konsep dasar data warehouse adalah perbedaan antara data dan informasi. Data terdiri dari fakta-fakta yang dapat diamati dan direkam yang sering ditemukan dalam sistem operasional
PERANCANGAN DAN IMPLEMENTASI DATA WAREHOUSE MENGGUNAKAN SCHEMA SNOWFLAKE UNTUK MENGETAHUI TREND PRODUKSI DAN PEMASARAN PRODUK
PERANCANGAN DAN IMPLEMENTASI DATA WAREHOUSE MENGGUNAKAN SCHEMA SNOWFLAKE UNTUK MENGETAHUI TREND PRODUKSI DAN PEMASARAN PRODUK Novia Busiarli 1), Mardhiya Hayati 2) 1), 2,)3) Teknik Informatika STMIK AMIKOM
PERANCANGAN DATA MART BAGIAN PENJUALAN MOTOR BEKAS(USED MOTOR CYCLE ) PADA CV. ATLAS MOTOR
PERANCANGAN DATA MART BAGIAN PENJUALAN MOTOR BEKAS(USED MOTOR CYCLE ) PADA CV. ATLAS MOTOR Randy Permana, S. Kom, M. Kom, Fakultas Ilmu Komputer Universitas Putra Indonesia YPTK Padang e-mail : [email protected]
Bab 2 Tinjauan Pustaka 2. 1 Penelitian Terdahulu
Bab 2 Tinjauan Pustaka 2. 1 Penelitian Terdahulu Perancangan dan Pembangunan Data Warehouse pada PLN Salatiga menggunakan skema snowflake. Perusahaan Listrik Negara merupakan suatu aset berharga dibidang
BAB III METODE PENELITIAN
15 BAB III METODE PENELITIAN Sistem informasi geografis persebaran hotspot di Indonesia merupakan suatu sistem yang bertujuan untuk memantau dan memberikan informasi mengenai persebaran hotspot yang ada
MEMBANGUN DATA WAREHOUSE
MEMBANGUN DATA WAREHOUSE A. Menentukan Bentuk Data Warehouse Data warehouse memiliki berbagai macam bentuk yang sering digunakan. Jadi sebelum membangun suatu data warehouse kita harus memutuskan bentuk
PERANCANGAN DATA WAREHOUSE CALON MAHASISWA BARU POLITEKNIK NEGERI LHOKSEUMAWE
PERANCANGAN DATA WAREHOUSE CALON MAHASISWA BARU POLITEKNIK NEGERI LHOKSEUMAWE Nanang Prihatin 1 1 Dosen Politeknik Negeri Lhokseumawe ABSTRAK Bagi sebuah perguruan tinggi, penerimaan calon mahasiswa merupakan
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi... Volume..., Bulan 20.. ISSN :
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 PEMBANGUNAN DATA WAREHOUSE PADA INSTITUSI BALAI PENGKAJIAN TEKNOLOGI PERTANIAN (BPTP) JAWA BARAT Hengky Saputra Teknik Informatika Universitas Komputer
DATA WAREHOUSE (The Building Blocks)
DATA WAREHOUSE (The Building Blocks) { 1. Review Definisi Data warehouse 2. Feature Data warehouse 3. Data warehouse Vs Data Mart 4. Komponen/Building Block Data warehouse 5. Pengenalan Metadata Pendahuluan
DBMS contains information about a particular enterprise Collection of interrelated data Set of programs to access the data An environment that is
DBMS contains information about a particular enterprise Collection of interrelated data Set of programs to access the data An environment that is both convenient and efficient to use Database Applications:
Business Intelligence. Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Business Intelligence Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization DEFINISI DATA WAREHOUSE Data warehouse adalah database yang saling bereaksi yang dapat digunakan
BAB 2 LANDASAN TEORI. Database adalah suatu koleksi / kumpulan dari data yang persistent, yaitu ada
BAB 2 LANDASAN TEORI 2.1 Teori Database Database adalah suatu koleksi / kumpulan dari data yang persistent, yaitu ada yang berbeda satu dengan yang lainnya dan biasanya merupakan data yang bersifat sementara
DATAWAREHOUSE FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO. DATA dlm suatu ORGANISASI
DATAWAREHOUSE FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO www.fsolihin.co.cc DATA dlm suatu ORGANISASI Dari mana data itu berasal? Berapa tahun data customer disimpan dan digunakan? Berapa Tahun data keuangan
Pentingnya Data Warehouse dalam Dunia Bisnis. By : Feris Thia PT. Putera Handal Indotama
Pentingnya Data Warehouse dalam Dunia Bisnis By : Feris Thia PT. Putera Handal Indotama Agenda Apa itu Data Warehouse? Pemanfaatan Data Warehouse oleh Stakeholder Perusahaan / Business Entity. Apa saja
BAB 2 2 LANDASAN TEORI. Menurut Inmon (2002, p388), data adalah rekaman dari fakta-fakta, konsepkonsep,
BAB 2 2 LANDASAN TEORI 2.1 Pengertian Data Menurut Inmon (2002, p388), data adalah rekaman dari fakta-fakta, konsepkonsep, atau instruksi-instruksi pada media penyimpanan untuk komunikasi, pengambilan,
ABSTRAK. Kata Kunci: ETL, Data Warehouse, Visualisasi Data, Bagan. Universitas Kristen Maranatha
ABSTRAK Implementasi dari sistem ETL (Extract-Transform-Load) basis data, Data Warehouse, dan Visualisasi Data akan dilakukan untuk PT.Wahana Karet Persada sebagai bentuk tindak lanjut pengolahan data
PERKEMBANGAN BASIS DATA SAAT INI
PERKEMBANGAN BASIS DATA SAAT INI Sejak tahun 1960-an penggunaan basis data sudah digunakan untuk bidang komersial, dimana pemrosesan file-nya masih berbasis manajemen file tradisional. Perkembangan komputer
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teknologi Informasi Menurut Alter (2000, p42) teknologi informasi adalah perangkat keras dan piranti lunak yang digunakan dalam sistem informasi. Perangkat keras Mengarah pada
PEMANFAATAN DATA WAREHOUSE SEBAGAI SARANA PENUNJANG PENYUSUNAN BORANG AKREDITASI STANDAR 3 PADA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR
PEMANFAATAN DATA WAREHOUSE SEBAGAI SARANA PENUNJANG PENYUSUNAN BORANG AKREDITASI STANDAR 3 PADA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR Windarto Program Pascasarjana Magister Ilmu Komputer
Arsitektur Data Warehouse. Minggu 4
Arsitektur Data Warehouse Minggu 4 Pengantar Mengapa Pemodelan Data itu penting? Tujuan Meyakinkan semua objek data yang diperlukan oleh database telah terpenuhi. Tabel Relational Tabel Relasional dibangun
KARAKTERISTIK DATA WAREHOUSE
KARAKTERISTIK DATA WAREHOUSE Karakteristik data warehouse menurut Inmon, yaitu : 1. Subject Oriented (Berorientasi subject) Data warehouse berorientasi subject artinya data warehouse didesain untuk menganalisa
BAB II LANDASAN TEORI. Dasar-dasar teori tersebut akan digunakan sebagai landasan berpikir dalam
BAB II LANDASAN TEORI Dalam merancang dan membangun suatu sistem informasi, dasar-dasar teori yang akan digunakan sangatlah penting untuk diketahui terlebih dahulu. Dasar-dasar teori tersebut akan digunakan
PERANCANGAN DATA WAREHOUSE DENGAN PENDEKATAN ENTERPRISE ARCHITECTURE (STUDI KASUS: PT. TELEKOMUNIKASI INDONESIA Tbk.)
PERANCANGAN DATA WAREHOUSE DENGAN PENDEKATAN ENTERPRISE ARCHITECTURE (STUDI KASUS: PT. TELEKOMUNIKASI INDONESIA Tbk.) Kusuma Ayu Laksitowening Institut Teknologi Telkom [email protected] ABSTRACT As the
Achmad Yasid, S.Kom
Achmad Yasid, S.Kom http://achmadyasid.wordpress.com [email protected] 1. 2. 3. 4. 5. Review Definisi Data warehouse Feature Data warehouse Data warehouse Vs Data Mart Komponen/Building Block Data warehouse
PENDAHULUAN TINJAUAN PUSTAKA
Latar Belakang PENDAHULUAN Analisis data historis dan pengolahan data multidimensi bukan merupakan hal yang baru untuk mendukung suatu pengambilan keputusan. Namun perubahan objek data yang dicatat, membuat
Analisis Data Minimarket dengan Menggunakan ERD dan Model Konseptual Data Warehouse
Analisis Data Minimarket dengan Menggunakan ERD dan Model Konseptual Data Warehouse Sandro Alfeno 1, Siti Fatimah 2 Jurusan Sistem Informasi, STMIK Raharja 1 Email : sandro 2 Email : [email protected]
Database Management. Addr : :
Database Management Systems email Addr : [email protected] : [email protected] 4.1 Contact No : 081318170013 2006 by Prentice Hall The Data Hierarchy Data field adalah unit terkecil dari
Organizing Data and Information
Organizing Data and Information Chapter 5 Heru Lestiawan, M.Kom 1 Principles and Learning Objectives Pendekatan Database untuk manajemen data memberikan keuntungan yang signifikan atas pendekatan berbasis
DATAMULTIDIMENSI. DATAWAREHOUSE vs DATAMART FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO
DATAMULTIDIMENSI FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO DATAWAREHOUSE vs DATAMART DATAWAREHOUSE Perusahaan, melingkupi semua proses Gabungan datamart Data didapat dari proses Staging Merepresentasikan data
Proses Extraction, Transformation, and Loading Pada Pemodelan Data Warehouse PO. Sumber Alam Kutoarjo
Proses Extraction, Transformation, and Loading Pada Pemodelan Data Warehouse PO. Sumber Alam Kutoarjo Agustinus Fritz Wijaya 1, Antonius Teddy Sugiarto 2 Program Studi Sistem Informasi, Fakultas Teknologi
[Data Warehouse] [6/C2 & 6/D2]
[Data Warehouse] [6/C2 & 6/D2] [ Chapter 6] Pemodelan Data Warehouse Dedy Alamsyah, S.Kom, M.Kom [NIDN : 0410047807] Pemodelan Data Ada dua pendekatan yang diterima sebagai best practice untuk memodelkan
BAB 2 LANDASAN TEORI. each unit of data is relevant to some moment in time, atau kurang lebih dapat
7 BAB 2 LANDASAN TEORI 2.1 Pengertian Data Warehouse Menurut Inmon (2002, p389), A data warehouse is a collection of integrated, subject oriented database designed to support the DSS function, where each
Proses Extraction, Transformation, and Loading Pada Pemodelan Data Warehouse PO. Sumber Alam Kutoarjo
Proses Extraction, Transformation, and Loading Pada Pemodelan Data Warehouse PO. Sumber Alam Kutoarjo Agustinus Fritz Wijaya 1, Antonius Teddy Sugiarto 2 Program Studi Sistem Informasi, Fakultas Teknologi
PEMODELAN DATA WAREHOUSE PADA JURUSAN TEKNIK INFORMATIKA UNIKOM
bidang TEKNIK PEMODELAN DATA WAREHOUSE PADA JURUSAN TEKNIK INFORMATIKA UNIKOM DIAN DHARMAYANTI, ADAM MUKHARIL BACHTIAR, ANDRI HERYANDI Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer
ABSTRAK. Kata Kunci : Data Warehouse, Real Time Data Warehouse, Change Data Capture, Audit Log. vii
ABSTRAK Kebutuhan akan pengolahan informasi dari berbagai sumber untuk kemudian dijadikan dasar analisa pengambilan keputusan didalam perusahaan semakin besar. Data Warehouse merupakan teknologi dengan
MINI PROJECT - 4. Kelompok 4 : Kecerdasan Bisnis (Kelas B)
MINI PROJECT - 4 Kecerdasan Bisnis (Kelas B) Kelompok 4 : Muhammad Farhan N (5213100045) Izzatun Nafsi A (521300067) Nur Sofia Arianti (5213100077) Nance Arsita Citra (5213100084) Fitri Larasati (5213100175)
PROSES EXTRACT, TRANSFORM DAN LOAD PADA DATA WAREHOUSE
PROSES EXTRACT, TRANSFORM DAN LOAD PADA DATA WAREHOUSE Oktavian Abraham Lantang ABSTRAK Saat ini seiring dengan perkembangan teknologi informasi yang semakin pesat, ketergantungan proses bisnis suatu perusahaan
PERANCANGAN DATA WAREHOUSE PADA PERPUSTAKAAN UNIVERSITAS NASIONAL
PERANCANGAN DATA WAREHOUSE PADA PERPUSTAKAAN UNIVERSITAS NASIONAL Heni Jusuf 1, Ariana Azimah 2 Jurusan Sistem Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional Jl. Sawo Manila,
DATA WAREHOUSE PERTEMUAN I S1 TEKNIK INFORMATIKA TITUS KRISTANTO, S.KOM
DATA WAREHOUSE PERTEMUAN I 22032013 S1 TEKNIK INFORMATIKA TITUS KRISTANTO, S.KOM METODE PEMBELAJARAN Kuliah Diskusi Presentasi Latihan Tugas Quiz UTS UAS BUKU ACUAN Apress Building A Data Warehouse With
Perancangan Data Warehouse pada Perpustakaan. STMIK AMIKOM Yogyakarta
Perancangan Data Warehouse pada Perpustakaan STMIK AMIKOM Yogyakarta Armadyah Amborowati STMIK AMIKOM Yogyakarta [email protected] Abstraksi Data merupakan aset penting dalam sebuah organisasi yang
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Pembuatan data warehouse telah banyak dilakukan oleh perusahaanperusahaan industri yang berorientasi profit. Data warehouse diharapkan mampu
Data Warehouse, Data Mart, OLAP, dan Data Mining CHAPTER 6
1 Data Warehouse, Data Mart, OLAP, dan Data Mining CHAPTER 6 Data Warehouse 2 Data warehouse adalah basis data yang menyimpan data sekarang dan data masa lalu yang berasal dari berbagai sistem operasional
Administrasi Basis Data. Yoannita
Administrasi Basis Data Yoannita Database Users Pengguna database dibedakan berdasarkan keperluan dan cara mereka berinteraksi dengan sistem. Application programmers interact with system through DML calls
