PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS"

Transkripsi

1 PENAKIR RAIO YANG EFIIEN UNTUK RATA-RATA POPULAI PADA AMPLING ACAK EDERHANA MENGGUNAKAN MEDIAN DAN KOEFIIEN KURTOI abarah * Haro H rat Mahawa Program Matematka Doe Jurua Matematka Fakulta Matematka da Ilmu Pegetahua Alam Uverta Rau Kamu Bawda Pekabaru 893 Idoea * ABTRACT Th artcle dcue two rato etmator for the oulato mea mle radom amlg ug the aular varable of the meda ad coeffcet of kurto ad lear combato of rato etmator All etmator are baed etmator the the mea quare error are determed Furthermore the mea quare error of each etmator are comared for howg whch oe the effcet etmator A umercal eamle gve to ela the roblem dcued Keword: rato etmator mle radom amlg meda coeffcet of kurto ad mea quare error ABTRAK Pada artkel dbaha dua eakr rao utuk rata-rata oula ada amlg acak ederhaa megguaka meda da koefe kurto erta komba ler eakr rao Ketga eakr meruaka eakr ba kemuda dtetuka mea quare error elajuta dbadgka mea quare error dar mag-mag eakr utuk medaatka eakr ag efe ebuah cotoh umerk dberka ada akhr embahaa Kata kuc: eakr rao amlg acak ederhaa meda koefe kurto da mea quare error PENDAHULUAN Peakr rao meruaka uatu metode ag dguaka utuk megkatka ketelta uatu eakr dega megambl mafaat hubuga atara varabel da varabel tambaha [] Peakr rao ederhaa utuk rata-rata oula dotaka dega YR da drumuka ebaga Y R X dega da berturut-turut meataka rata-rata amel Y da X erta X meataka rata-rata oula X

2 Dar eakr rao ederhaa ubrama da Kumarada [5] memodfka mejad eakr rao Y da eakr rao regre Y ag megguaka meda Md da koefe kurto gh da Talor [4] megkombaka atara eakr rao da eakr roduk Berdaarka de dar gh da Talor eul megkombaka atara eakr Y dega eakr Y ag dotaka dega Y Peakr dega megguaka metode rao meruaka eakr ba ehgga eakr ag efe utuk eakr ba adalah eakr ag memlk Mea quare Error (ME) terkecl AMPLING ACAK EDERHANA Pegambla amel acak ederhaa meruaka uatu metode utuk megambl ut amel dar N ut oula ehgga eta eleme C amel ag berbeda memua keemata ag ama utuk dlh ebaga ut amel Pegambla amel adalah egambla amel acak taa egembala agar karaktertk ut-ut lebh akurat [] Utuk meetuka ba da ME ada amlg acak ederhaa dguaka teorema vara da kovara Teorema [ : h 7] Aabla amel berukura dambl dar oula berukura N ag berkarakter Y dega amlg acak ederhaa taa egembala maka vara rata-rata amel dotaka dega V atu N V N N f Bukt: Bukt dar teorema daat dlhat ada [] Teorema [ : h 9] Jka adalah ebuah aaga ag bervara dalam ut dalam oula da adalah rata-rata dar amel acak ederhaa berukura maka kovara adalah Cov N f Y X N Bukt: Bukt dar teorema daat dlhat ada [] 3 PENAKIR REGREI UNTUK RATA-RATA POPULAI Model regre ler ederhaa dataka dega eramaa [3]: e ()

3 daumka E e 0 ehgga E Varabel meruaka varabel tak beba ada data egamata ke- da adalah varabel beba ada egamata ke- edagka da adalah arameter (koefe regre) ag aka dtakr da e adalah kealaha egamata ke- Dar eramaa () maka kealaha egamata ke- dtul e dega demka jumlah kuadrat kealaha egamata data terhada gar regre dtul e () Dega memmumka eramaa () maka eakr utuk atu da eakr utuk atu ( )( ) b (3) ( ) a b (4) Peramaa (3) daat dederhaaka mejad b dega 3

4 Aabla varabel da memua hubuga kaual atau hubuga ebab akbat maka ecara geometr eramaa regre melalu ttk agkal Dar eramaa (4) deroleh b (5) jka koefe regre b berlaku utuk rata-rata amel maka b juga berlaku utuk rata-rata oula ehgga Y bx (6) Dar eguraga eramaa (6) dega eramaa (5) ecara aljabar deroleh Y b X Y debut eakr regre ler utuk rata-rata oula ag dotaka dega ehgga Y RL Y RL b X 4 BIA DAN ME PENAKIR RAIO UNTUK RATA-RATA POPULAI Peakr rao da eakr rao regre utuk rata-rata oula ada amlg acak ederhaa ag megguaka meda da koefe kurto atu Y X Md Md Y bx X Md Md (7) (8) dega b meataka koefe regre Y ata X elajuta komba ler eakr rao dar eramaa (7) da eramaa (8) ag drumuka ebaga Y X Md b( X ) ( X Md) (9) Md Md dega meataka kotata 0 4

5 Ba da ME eakr rao utuk rata-rata oula megguaka meda da koefe kurto ada amlg acak ederhaa atu Ba da ME dar eramaa (7) adalah ME B f Y Y C C C f Y Y C C C C Ba da ME dar eramaa (8) adalah f R B Y ME Y Y f R Ba da ME dar eramaa (9) adalah ME f C R B Y f Y R R 5 PENAKIR RAIO YANG EFIIEN Utuk meetuka eakr ag efe dar eakr ba daat dtetuka dega cara membadgka ME dar eakr Y Y da Y ehgga Perbadga atara MEY jka R dega ME Y deroleh MEY ME Y R W R R Perbadga atara MEY jka dega ME Y deroleh MEY ME Y R 0 W 5

6 3 Perbadga atara MEY dega ME Y deroleh MEY ME Y jka Y C Y C C R 6 CONTOH Cotoh berkut meruaka data dar Kadlar da Cg [] ag dguaka utuk megetahu rata-rata roduk ael Y ag terdaat d dea Turk atu Aegea ada tahu 999 dega memafaatka varabel tambahaa atu baaka oho ael X d dea terebut Dketahu data roduk ael d daerah Aegea terebar d 06 dea eta amel dambl ecara acak ederhaa Iforma ag deroleh dar data lamra adalah ebaga berkut N C C f Md R Dega megguaka forma dar data d ata deroleh bahwa () Y ME Y () Y ME Y () Y ME Y ME jka 007 ME jka ME jka KEIMPULAN Dar embahaa d ata deroleh bahwa eakr Y lebh efe dar eakr Y eakr Y lebh efe dar eakr Y da eakr Y lebh efe dar eakr Y Jad daat dmulka bahwa komba ler eakr rao meruaka eakr ag lebh efe dbadgka eakr laa 6

7 DAFTAR PUTAKA [] Cochra W G 99 Tekk Pearka amel Ed Ketga Terj Dar amlg Techque oleh Rudaah & E R Oma UI Pre Jakarta [] Kadlar C & H Cg 004 Rato Etmator mle Radom amlg Aled Mathematc ad Comutato 5: [3] Ramachadra K M & Chr P T 009 Mathematcal tattc wth Alcato Academc Pre Calfora [4] gh H P & R Talor 005 Etmato of Fte Poulato Mea wth Kow Coeffcet of Varato of a Aular Character tattca ao LXV 3: [5] ubrama J & Kumaraada G 0 Modfed Rato Etmator Ug Kow Meda ad Co-Effcet of Kurto Amerca Joural of Mathematc ad tattc (4):

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN PENAKIR RAIO REGREI LINEAR EDERHANA UNTUK RATA-RATA POPULAI MENGGUNAKANKARAKTER TAMBAHAN Astar Rahmadta *, Harso, Haosa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia ABSTRACT

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia ABSTRACT PENAKI AIO DAN PENAKI EGEI YANG EFIIEN UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN DEVIAI KUATIL DAN KOEFIIEN KEWNE Lda Veroka *, gt ugarto, ustam Efed Mahasswa Program tud Matematka Dose

Lebih terperinci

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA ENAKSI DUAL ATIO-UM-ODUT UNTUK ATA-ATA OULASI ADA SAMLING AAK SEDEHANA hrsta ajata, Frdaus, Haposa Srat Mahasswa rogram Stud S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu egetahua Alam Uverstas

Lebih terperinci

BAB III TEOREMA GLEASON DAN t-desain

BAB III TEOREMA GLEASON DAN t-desain BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk

Lebih terperinci

METODE DETECTABILITY SIMPLE RANDOM SAMPLING (STUDI KASUS : MENAKSIR TOTAL BANYAK KATAK DI SEKELILING DANAU AGATIS UNIVERSITAS INDONESIA)

METODE DETECTABILITY SIMPLE RANDOM SAMPLING (STUDI KASUS : MENAKSIR TOTAL BANYAK KATAK DI SEKELILING DANAU AGATIS UNIVERSITAS INDONESIA) MTOD DTCTABILIT SIMPL RADOM SAMPLIG (STUDI KASUS : MAKSIR TOTAL BAAK KATAK DI SKLILIG DAAU AGATIS UIRSITAS IDOSIA) ADIKA DWI ISFADIARI 0 3 0 3 0 0 0 4 4 UIRSITAS IDOSIA FAKULTAS MATMATIKA DA ILMU PGTAHUA

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

PENAKSIR VARIANSI POPULASI YANG EFISIEN PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI

PENAKSIR VARIANSI POPULASI YANG EFISIEN PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI PENAKIR VARIANI POPLAI YANG EFIIEN PADA AMPLING ACAK EDERHANA MENGGNAKAN KOEFIIEN REGREI Neneng Gutiana Rutam Efendi Harion Mahaiwa Program Matematika Doen Juruan Matematika Fakulta Matematika dan Ilmu

Lebih terperinci

BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA

BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA 9 BAB III REVIEW SIFAT- SIFAT STATISTI PENDUGAAN TIPE ERNE BAGI FUNGSI INTENSITAS PROSES POISSON PERIODI DENGAN PERIODE GANDA 3. Perumua Peduga Malka adala proe Poo ag damat pada terval [0] dega fug teta

Lebih terperinci

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si ANALISIS MULTIVARIAT Pegatar Aal Multvarat Lauta Irlada Gaar M.S Jurua Stattka FMIPA Uad Nota utuk varabel varabel berkala l terval atau rao k bl k Vektor varabel acak: Nla haraa vektor Nla haraa vektor

Lebih terperinci

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA IMPUTAI MEGGUAKA PEAKIR REGREI UTUK MEAKIR RATA-RATA POPUAI PADA AMPIG GADA Berad Fudka Marpaug * Rustam Efed Haposa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEOR. Aal Regre alah atu tuua aal data adalah utuk memperkraka/memperhtugka beara efek kuattatf dar perubaha uatu keada terhadap keada laa. etap kebaka polc, bak dar pemertah maupu wata, elalu

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEOR. Aal Regre Salah atu tuua aal data adalah utuk memperkraka/memperhtugka beara efek kuattatf dar perubaha uatu keada terhadap keada laa. Setap kebaka (polc), bak dar pemertah maupu wata,

Lebih terperinci

PENYELESAIAN PENGOPTIMUMAN PORTOFOLIO FUZZY MENGGUNAKAN PENDEKATAN FUNGSI LAGRANGE. Sugiyarto

PENYELESAIAN PENGOPTIMUMAN PORTOFOLIO FUZZY MENGGUNAKAN PENDEKATAN FUNGSI LAGRANGE. Sugiyarto Prodg ear Naoal Peelta Peddka Peerapa MIPA akulta MIPA Uverta Neger Yogyakarta 6 Me 009 M-8 PENYELEAIAN PENGOPTIMUMAN PORTOOLIO UY MENGGUNAKAN PENDEKATAN UNGI LAGRANGE ugyarto MIPA Matematka Uverta Ahmad

Lebih terperinci

PENAKSIR RASIO DAN PRODUK EKSPONENSIAL YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO DAN PRODUK EKSPONENSIAL YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA Mega Elmaanti 1* Firdau Hapoan irait 1 Mahaiwa Program 1 Matematika Doen Juruan Matematika Fakulta Matematika dan Ilmu

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

BAB III METODE MULTISTAGE CLUSTER SAMPLING. dilakukan melalui dua tahap pengambilan sampel atau lebih (Cochran, 1977:314).

BAB III METODE MULTISTAGE CLUSTER SAMPLING. dilakukan melalui dua tahap pengambilan sampel atau lebih (Cochran, 1977:314). BAB III METODE MULTISTAGE CLUSTER SAMPLIG A. Pedahulua Metode ulttage cluter aplg adalah proe pegabla apel ag dlakuka elalu dua tahap pegabla apel atau lebh (Cochra, 977:34). Pearka apel dega etode ebeara

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS 5//04 Matakulah: T EDALI Tahu : 04 Pertemuaa 45 Tempat eduduka Akar(Root Lou Aaly) Learg Outome Pada akhr pertemua, dharapka mahawa aka mampu : meerapka aal da aplka Tempat keduduka Akar dalam dea tem

Lebih terperinci

PELABELAN-k TOTAL TAK TERATUR SISI DAN NILAI KETAKTERATURAN TOTAL SISI DARI GRAF LINTANG. oleh DWI HANDAYANI M

PELABELAN-k TOTAL TAK TERATUR SISI DAN NILAI KETAKTERATURAN TOTAL SISI DARI GRAF LINTANG. oleh DWI HANDAYANI M PELABELAN-k TOTAL TAK TERATUR SISI DAN NILAI KETAKTERATURAN TOTAL SISI DARI GRAF LINTANG oleh DWI HANDAYANI M 9 SKRIPSI dtul da dauka utuk memeuh ebaga peryarata memperoleh gelar Saraa Sa Matematka FAKULTAS

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

PENAKSIR RASIO DAN REGRESI MENGGUNAKAN DUA VARIABEL TAMBAHAN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO DAN REGRESI MENGGUNAKAN DUA VARIABEL TAMBAHAN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA PENAKI AIO DAN EGEI MENGGUNAKAN DUA VAIAEL TAMAHAN UNTUK ATA-ATA POPULAI PADA AMPLING AAK EDEHANA azat Fauz * Frdaus gt ugarto Mahasswa Program tud Matematka Dose urusa Matematka Fakultas Matematka da

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas X SMA Negeri 1

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas X SMA Negeri 1 8 III. MEODOLOGI PEELIIA A. Popula da Sampel Popula dalam peelta adalah eluruh wa kela X SMA eger Bagurejo Lampug egah tahu pelajara 009/00 ebayak 75 orag yag terdtrbu dalam lma kela dmaa tgkat kemampua

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV Pearka Cotoh Acak Berlas (Stratfed Radom Samlg Pertemua IV Defs Cotoh acak berlas ddaatka dega cara membag oulas mejad beberaa kelomok ag tdak salg tumag tdh, da kemuda megambl secara acak dar seta kelomokkelomok

Lebih terperinci

1. Ilustrasi. Materi 2 Pendugaan Parameter

1. Ilustrasi. Materi 2 Pendugaan Parameter Materi Pedugaa Parameter. Ilutrai Ifereia Statitika : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai megeai oulai dega melakuka egambila amel (amlig) Etimai / Pedugaa Parameter Yaitu

Lebih terperinci

Perancangan Pengendali PID. Institut Teknologi Sepuluh Nopember

Perancangan Pengendali PID. Institut Teknologi Sepuluh Nopember Peracaga Pegedal PID Ittut Tekolog Seuluh Noember Pegatar Mater Cotoh Soal Latha Rgkaa Pegatar Mater Cotoh Soal Peracaga Pegedal P Peracaga Pegedal PI Peracaga Pegedal PD Peracaga Pegedal PID Latha Rgkaa

Lebih terperinci

Proses inferensi pada model logit Agus Rusgiyono. Abstracts

Proses inferensi pada model logit Agus Rusgiyono. Abstracts Proses eres ada model logt Agus Rusgoo Let dstrbuto wth Abstracts 3 rereset the resose o a omal radom varable o Beroull P P where s a arameter wth ukow value. Problems o estmatg used smallest square methods

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statitika Toik Bahaa: Pedugaa Parameter Oleh : Edi M Pribadi, SP, MSc E-mail: edi_m@taffguadarmaacid edi_m@ymailcom Ilutrai Statitika Ifereia : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai

Lebih terperinci

MODIFIKASI PENAKSIR UNTUK RASIO PADA SAMPLING BERPERINGKAT. ABSTRACT 1. PENDAHULUAN

MODIFIKASI PENAKSIR UNTUK RASIO PADA SAMPLING BERPERINGKAT. ABSTRACT 1. PENDAHULUAN MODIFIKAI PAKIR UTUK RAIO PADA AMPLIG BRPRIGKAT Deva rw, Arsma Ada, Rstam fed Devaerw@ahoo.com Mahasswa Program Matematka Dose Jrsa Matematka Fakltas Matematka da Ilm Pegetaha Alam Kamps Bawda Pekabar,893,Idoesa

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP III. METODE PENELITIAN A. Popula da Sampel Popula dalam peelta adalah eluruh wa kela VII emeter gajl SMP Ba Mulya Badar Lampug Tahu Pelajara 0/0 dega jumlah wa ebayak 03 wa yag terbag dalam 3 kela. Sampel

Lebih terperinci

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400 h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai dasar-dasar teori yang akan BAB II LANDASAN TEORI Pada bab aka dbahas megea dasar-dasar teor ag aka dguaka dalam eulsa skrs, atu megea data hrark, model regres -level, model logstk, estmas arameter model logstk, uj sgfkas arameter

Lebih terperinci

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK

RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA. Haposan Sirait 1, Usman Malik 2 ABSTRAK Relatf Efses Peaksr Mome Terhada Peaksr Maksmum Lkelhood RELATIF EFISIENSI PENAKSIR MOMEN TERHADAP PENAKSIR MAKSIMUM LIKELIHOOD UNTUK PARAMATER BERDISTRIBUSI SEGITIGA Haosa Srat, Usma Malk ABSTRAK Makalah

Lebih terperinci

UKURAN SIMPANGAN DAN UKURAN VARIASI UKURAN SIMPANGAN. Rentang= 4/1/2013 KANIA EVITA DEWI S.PD., M.SI.

UKURAN SIMPANGAN DAN UKURAN VARIASI UKURAN SIMPANGAN. Rentang= 4/1/2013 KANIA EVITA DEWI S.PD., M.SI. //03 UKURAN SIMPANGAN DAN UKURAN VARIASI KANIA EVITA DEWI S.PD., M.SI. UKURAN SIMPANGAN Ukura mpaga merupaka tattk yag meggambarka peympaga data-data terhadap rata-rataya Semak bear ukura mpaga emak meyebar

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel Uura Statt. Pedahulua Uura Statt:. Uura Pemuata Bagamaa, d maa data berpuat? Rata-Rata Htug Arthmetc Mea Meda Modu Kuartl, Del, Peretl. Uura Peyebara Bagamaa peyebara data? Ragam, Vara Smpaga Bau Uura

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 5 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Dekrp Data Hal Peelta Setelah melakuka peelta, peelt medapatka hal tud lapaga utuk memperoleh data dega tekk te, etelah dlakuka uatu pembelajara atara kelompok

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA MEA QUARE ERROR TERKEIL DARI KOMBIAI PEAKIR RAIO-PRODUK UTUK RATA-RATA POPULAI PADA AMPLIG AAK BERTRATA R Kurat *, gt ugarto, Ruam Efed Maasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da

Lebih terperinci

UKURAN SIMPANGAN UKURAN SIMPANGAN DAN UKURAN VARIASI. Rentang Antar Kuartil. Rentang= 3/26/2012

UKURAN SIMPANGAN UKURAN SIMPANGAN DAN UKURAN VARIASI. Rentang Antar Kuartil. Rentang= 3/26/2012 /6/0 UKURAN SIMPANGAN UKURAN SIMPANGAN DAN UKURAN VARIASI KANIA EVITA DEWI S.PD., M.SI. Ukura mpaga merupaka tattk yag meggambarka peympaga data-data terhadap rata-rataya Semak bear ukura mpaga emak meyebar

Lebih terperinci

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE.

ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE. Prosdg Semar Nasoal Alkas Sas & Tekolog (SNAST) Yogakarta, 6 November 6 ISSN : 979 9X eissn : 54 58X ESTIMASI PARAMETER REGRESI GANDA MENGGUNAKAN BOOTSTRAP DAN JACKNIFE Noerat, Rka Herda,, Jurusa Statstka,

Lebih terperinci

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Statistik dan Probabilitas 3

Statistik dan Probabilitas 3 Stattk da Probablta BAB II TEKNIK SAMPLING II.. Pegerta Samplg dalam Idutr Dalam dutr bayak pegukura dambl dar ba data. Sebelum lagkah dambl, data perlu dkumpulka dahulu. Malya data yag dperluka utuk megotrol

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

Pengantar. Ilustrasi 29/08/2012. LT Sarvia/ REGRESI LINEAR BERGANDA ( MULTIPLE LINEAR REGRESSION )

Pengantar. Ilustrasi 29/08/2012. LT Sarvia/ REGRESI LINEAR BERGANDA ( MULTIPLE LINEAR REGRESSION ) 9/08/0 ( MULTIPLE LINEA EGEION ) Elty arva, T., MT. Fakulta Teknk Juruan Teknk Indutr Unverta Krten Maranatha Bandung Pengantar Pada e ebelumnya kta hanya menggunakan atu buah X, dengan model Y = a + bx

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

Bab6 PENAKSIRAN PARAMETER

Bab6 PENAKSIRAN PARAMETER Bab6 PENAKSIRAN PARAMETER MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak

Lebih terperinci

PENAKSIR RASIO DAN PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK

PENAKSIR RASIO DAN PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK PENAKI AIO DAN PODUK ANG EFIIEN UNTUK ATA-ATA POPULAI PADA AMPLING AAK ITEMATIK D. L. Pratiwi *, A. Ada,. ugiarto Mahasiswa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

Digraf Eksentrik dari Graf Crown. Fakultas MIPA UNS Surakarta

Digraf Eksentrik dari Graf Crown. Fakultas MIPA UNS Surakarta Dgraf Eksetrk dar Graf Crow NugrohoArf udbo 1, Tr Atmojo Kusmaad 1 Program tud Tekk Iformatka TMIK Duta Bagsa urakarta Fakultas MIPA UN urakarta ABTRAK Dberka G suatu graf dega hmpua berhgga verte V(G)

Lebih terperinci

BAB I. SIFAT-SIFAT PADATAN

BAB I. SIFAT-SIFAT PADATAN BAB I. SIFAT-SIFAT PAATA Beberaa fat adata yag etg dalam emroea adata dataraya adalah:. Betuk adata (morfolog, artcle hae). 2. Ukura artkel adata, melut: Partkel tuggal Camura artkel dega berbaga ukura.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Utu mempermudah dalam meyeleaa pembahaa pada bab, maa aa dbera beberapa def da beberapa teor daar yag meduug... Teor Teor Peduug... Rua Gar Def. Rua Gar Ja ada d R atau 3 R, maa ebuah

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA PEAKI ATAI AIO-CUM-DUAL UTUK ATA-ATA POPULAI PADA AMPLIG GADA Holla Maalu Bustam Haposa rat Mahasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas au Kampus Bawda

Lebih terperinci

PENAKSIR RASIO PROPORSI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

PENAKSIR RASIO PROPORSI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA EAKIR RAIO ROORI AG EFIIE UTUK RATA-RATA OULAI ADA AMLIG ACAK BERTRATA Devr Maulaa *, Arsma Ada, Haosa rat Maasswa rogram Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu egetaua Alam Uveras Rau

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN : Vol. 4. No. 3, 5-59, Deember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agu Rugyoo Jurua Matematka FMIPA UNDIP Abtrak Dberka popula

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Tujua Peelta Berdaarka rumua maalah pada BAB I, peelta kuattatf yag aka dlakaaka bertujua utuk megetahu adaya perbedaa hal belajar peerta ddk pada metode Numbered Head

Lebih terperinci

=, adalah keluaran real negara j, y j. menunjukkan tingkat persaingan negara j terhadap negara i,,

=, adalah keluaran real negara j, y j. menunjukkan tingkat persaingan negara j terhadap negara i,, Salmah Ar S Ch. R I Idah W Bagu S dega ebuah bak berama au uroea Ceral Bak CB. odel megabaka erak ekeral dega egara-egara o uuk eederhaaa. odel memeuh eramaa-eramaa r & m / / / / dega adalah keluara real

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

BAB II KAJIAN LITERATUR

BAB II KAJIAN LITERATUR BAB II Kaja Lteratur 4 BAB II KAJIAN LITERATUR. Jarak Mahalaobs Megut artkel tetag jarak Mahalaobs dar htt://e.wkeda.org ada 8 Maret 008, jarak Mahalaobs adalah ukura jarak yag derkealka oleh Prasata Chadra

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

TE Dasar Sistem Pengaturan

TE Dasar Sistem Pengaturan TE09346 Daar Stem Pegatura Peracaga otroler : otroler Prooroal Itegral Dfereal Ir. Jo Pramujato, M.Eg. Jurua Tekk Elektro FTI ITS Tel. 594730 Fax.59337 Emal: jo@ee.t.ac. Daar Stem Pegatura 06 Objektf:

Lebih terperinci