ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan"

Transkripsi

1 JMP : Vol. 8 No., Des. 016, al ISSN ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI Novita Eka Cadra Uiversitas Islam Darul Ulum Lamoga Masriai Mayuddi Uiversitas Islam Darul Ulum Lamoga Siti Alfiatur Romaia Uiversitas Islam Darul Ulum Lamoga ABSTRACT. Kerel adjusted desity estimatio is a modificatio of te regular kerel desity estimatio. Te modificatio is applied to a kerel fuctio. Tis kerel fuctio is derived from te locatio-scale trasformatio. Simulatio study sows tat tis estimatio ave better results ta te regular estimatio because it as smaller MSE value. I additio, if ormal kerel is used as a kerel fuctio te te curve estimatio will be smooter ta oter kerel fuctio suc as uiform kerel ad Epaceikov kerel. Keywords: estimatio, desity, kerel, locatio-scale trasformatio. ABSTRAK. Estimasi desitas kerel adjusted merupaka modifikasi dari estimasi desitas kerel biasa. Modifikasi dari estimasi ii dilakuka pada fugsi kerelya. Fugsi kerel yag diguaka berasal dari trasformasi skala-lokasi. Berdasarka simulasi, estimasi ii memberika asil yag lebi baik dari estimasi desitas kerel yag biasa, karea mempuyai ilai MSE yag lebi kecil. Selai itu, jika kerel yag diguaka kerel ormal maka asil kurva estimasiya lebi alus dibadigka kerel laiya seperti kerel uiform da kerel Epaceikov. Kata Kuci: estimasi, desitas, kerel, trasformasi skala-lokasi. 1. PENDAHULUAN Aalisis data bertujua utuk memperole iformasi dari suatu data, seperti pola sebara data, maupu peyajia data supaya muda dipaami. Pola sebara data dapat diperiksa melalui betuk fugsi desitasya. Dalam praktekya, betuk suatu fugsi destitas biasaya belum diketaui. Utuk megestimasi fugsi desitas tersebut, diguaka pedekata oparametrik, yaitu dega fugsi kerel (Wad da Joes, 1995).

2 34 Novita Eka Cadra d.k.k. Meurut Hardle (1991), pemilia badwidt ( ) da kerel ( K ) sagat petig dalam estimasi desitas kerel. Aka tetapi, pemilia kerel tidak begitu berpegaru dalam estimasi. Ole sebab itu, Sriera da Stute (011) memodifikasi estimasi tersebut pada betuk kerelya dega megguaka trasformasi skala-lokasi, da selajutya disebut estimasi desitas kerel adjusted. Suatu estimasi yag baik dapat diliat berdasarka ilai Mea Square Error (MSE) yag miimum. Pada tulisa ii aka dibadigka estimasi desitas kerel dega estimasi desitas kerel adjusted berdasarka ilai MSE.. ESTIMASI DENSITAS KERNEL Diberika data pegamata dari variabel radom X, i 1,,..., berdistribusi idepede idetik (i.i.d) dega desitas f. Estimasi desitas kerel tergatug pada parameter badwidt ( ) da kerel ( K ). Semaki besar ilai badwidt, maka semaki alus kurva estimasi yag diasilka. Secara umum, defiisi kerel K adala ( ) 1 x K x K. Defiisi.1 (Hardle, 1991) Estimator desitas kerel utuk fugsi desitas f didefiisika ˆ 1 f ( x ) K x X. (1) i i 1 i maka Berikut sifat tak bias asimtotik dari fˆ ( x ). Karea Xi, i 1,,..., i.i.d, ˆ 1 E f ( x ) E K x X i i 1 E K x u K( s) f ( x s) ds. () Dega megguaka perluasa deret Taylor utuk f ( x s), persamaa () mejadi ISSN

3 Estimasi Desitas Kerel Adjusted 35 dega E f x f x f x K o ˆ ( ) ( ) ( ) ( ) ( ) ( K) s K( s) ds. Utuk koverge ke ol, maka E fˆ ( x ) koverge ke f( x ). Artiya, estimator desitas kerel tak bias asimtotik (Bai da Egelardt, 199). Selajutya, dari persamaa (3), diperole bias dari f ˆ ( x ) sebagai berikut Bias fˆ ( ) ˆ x E f( x) f ( x) f x K o ( ) ( ) ( ), 0. Dari asil tersebut terliat bawa bias merupaka fugsi kuadrat dalam. Dega demikia, utuk meguragi bias dipili ilai yag kecil. Karea X, i 1,,..., i.i.d, maka i dega ˆ 1 Var f ( x ) Var K x X i i 1 1 Var K x u 1 E K x u E K x u 1 1 K f ( x) o, 0, K K () s ds. Terliat bawa bila aik, maka variasi berkurag. Hal ii kotradiksi dega bias. Utuk megatasi al tersebut diguaka MSE yag merupaka kombiasi dari variasi da bias kuadrat dari f ˆ ( x ), ˆ 1 1 MSE f ( x ) f ( x ) K f ( x ) ( K ) o o, 0, (3) Nilai MSE tersebut aka koverge ke ol jika 0,. Hal ii berarti estimator desitas kerel kosiste, yaitu f ˆ ( x) p f ( x) (Bai da Egelardt, 199). ISSN

4 36 Novita Eka Cadra d.k.k. Selajutya, ilai badwidt optimal, op, diperole dari turua pertama MSE fˆ ( x ) teradap sama dega ol, yaitu op f ( x) K f ( x) ( K) 1/5. 3. ESTIMASI DENSITAS KERNEL ADJUSTED Pada tau 011, Sriera da Stute memodifikasi betuk kerel megguaka trasformasi skala-lokasi yag berkaita dega estimator desitas kerel (Cadra, dkk, 015). Betuk kerelya mejadi * ˆ K ( x) f x (4) dega parameter lokasi da 0 parameter skala. Dega megguaka betuk kerel baru Persamaa 4, maka diperole estimator desitas kerel adjusted berikut ˆ x X ( ) i X j fa x K j1 i1. (5) Teorema 3. 1 (Sriera da Stute, 011) Diberika bawa K merupaka fugsi yag simetris da f terdiferesial dua kali secara kotiu pada x, serta E X. Selajutya, jika da 0, sedemikia seigga, maka utuk da 0, da f ( x) f ( x) Bias f x f y y dy f y y dy o ˆ a ( ) ( )( ) ( )( ) ( ) ˆ ( ) ( ) a ( ) (1) Var f x f x f y dy o. Bukti: Dega megguaka persamaa (5), diperole ˆ x z y E fa ( x ) E K ISSN

5 Estimasi Desitas Kerel Adjusted 37 y u K( u) f ( y) f x dydu. Karea K simetris, maka dega megguaka perluasa deret Taylor, diperole E f x f x f y y dy f y y dy o ˆ f ( x) f ( x) ( ) ( ) ( )( ) a ( )( ) ( ). Estimator desitas kerel adjusted tak bias asimtotik apabila koverge ke ol. Utuk meetuka bias dari estimator desitas kerel adjusted, diperole dega selisi atara arga arapaya dega estimator tersebut. Dega demikia, Bias f x f y y dy f y y dy o ˆ f ( x) f ( x) ( ) ( )( ) a ( )( ) ( ). Selajutya, ilai variasiya diperole dega cara berikut. ˆ x X ( ) i y Var fa x Var 3 4 i1. Dega megguaka defiisi variasi, Var( X ) E( X ) ( E( X )) (Bai da Egelardt, 1991), diperole ˆ y1 u Var fa ( x ) K ( u ) K ( v ) f ( y1 ) f ( y1 u v ) f x dy1dvdu 1 f ( x) o( ) f( x) 1 ( ), 0. (q.e.d) f y dy o Selajutya, berdasarka Teorema 3.1, ilai MSE dari estimator desitas kerel adjusted diperole sebagai berikut. ˆ f ( x) f ( x) f ( x) ( ) ( ) ( )( ) MSE fa x f y dy f y y dy f ( y )( y ) dy 1 4 o o( ), 0,. Estimator desitas kerel adjusted kosiste utuk 0,, karea MSEya koverge ke ol. Dega demikia, dapat ditulis fˆ ( x ) p f ( x ) a ISSN

6 38 Novita Eka Cadra d.k.k. (Bai da Egelardt, 1991). Dega megambil ilai EX ( ), ilai MSEya mejadi Selajutya, diambil ˆ f ( x) f ( x) Var( X ) MSE fa ( x ) f ( y ) dy. (6) a, akibatya persamaa (6) mejadi ˆ f ( x) a f ( x) Var( X ) MSE fa ( x ) f ( y ) dy a. (7) Dega melakuka turua pertama pada persamaa (7) teradap a sama dega ol, diperole ilai badwidt optimal da optimal berikut opt 1/5 4. SIMULASI opt f ( x) Var( X ) f ( x) f ( y) dy Simulasi dilakuka utuk meliat kierja suatu estimator, yaitu dega membadigka ilai MSE atara estimator desitas kerel dega estimator desitas kerel adjusted. Estimator yag memiliki ilai MSE lebi miimum merupaka estimator terbaik. Dalam simulasi ii, peulis megguaka data acak yag berdistribusi Normal, da tiga jeis kerel yaitu kerel Uiform, Epaceikov, serta Normal (Gaussia). Selai itu, diguaka pula ilai optimal 1/5, mea dari data adala, da stadar deviasi dari data adala. Hasil simulasi ditampilka pada Tabel 1. 1/5. Tabel 1. Perbadiga Nilai MSE dari f ˆ ( x ) da f ˆ a ( x ) dega Kerel Berbeda Jumla Data Kerel MSE fˆ ( x ) 0 50 MSE fˆ a ( x ) Uiform 0,9567 0, Epaceikov 0, ,94958 Normal 0, , Uiform 1, , Epaceikov 1, , ISSN

7 Estimasi Desitas Kerel Adjusted Normal 1, , Uiform 0, , Epaceikov 0, ,7371 Normal 0, , Dari Tabel 1 terliat bawa ilai MSE utuk estimator desitas kerel adjusted lebi kecil dibadigka ilai estimator desitas kerel. Lebi lajut, kerel ormal megasilka ilai MSE lebi kecil dibadigka kerel uiform da Epaceikov. Selai itu, berikut ii ditampilka kurva estimasi desitas dari masigmasig kerel utuk 0 (kiri: estimasi desitas kerel da kaa: estimasi desitas kerel adjusted). Gambar 1. Kurva Estimasi Desitas utuk 0 Dari Gambar 1 terliat bawa estimator desitas kerel adjusted memberika kurva estimasi yag lebi alus dibadigka kurva estimasi desitas kerel. Selai itu, dega kerel Normal, kurva estimasi yag diasilka lebi alus dibadigka dega megguaka kerel laiya. 5. KESIMPULAN Estimator desitas kerel adjusted merupaka estimator yag diperole dega memodifikasi estimator desitas kerel biasa. Estimator ii dapat direpresetasika pada persamaa (5). Dari asil simulasi utuk sampel sebayak 0, 50, da 100, diperole ISSN

8 40 Novita Eka Cadra d.k.k. bawa estimator desitas kerel adjusted lebi baik dari estimator desitas kerel biasa karea mempuyai ilai MSE yag lebi kecil. Hasil simulasi juga meujukka bawa pegguaa kerel ormal dapat memberika asil yag lebi baik dibadig kerel laiya seperti kerel uiform da kerel Epaceikov. DAFTAR PUSTAKA Bai, L. J. da Egleardt, M., Itroductio to Probability ad Matematical Statistics, Duxbury Press, 199. Cadra, N. E., Haryatmi, S. da Zulaela, Regresi Noparametrik Kerel Adjusted, Jural Ilmia Matematika da Pedidika Matematika, 7(1) (015), Hardle, W., Smootig Teciques wit Implemetatio i S, Spriger-Verlage, Sriera, R. da Stute, W., Kerel Adjusted Desity Estimatio, Statistics ad Probability Letters, 81 (011), Wad, M. P. da Joes, M. C., Kerel Smootig, Capma ad Hall, ISSN

REGRESI KERNEL DENGAN METODE NADARAYA WATSON. Oleh : Esty

REGRESI KERNEL DENGAN METODE NADARAYA WATSON. Oleh : Esty REGRESI KERNEL DENGAN METODE NADARAYA WATSON REGRESI KERNEL DENGAN METODE NADARAYA WATSON Ole : SKRIPSI Diajuka Kepada Fakultas Matematika da Ilmu Pegetaua Alam Uiversitas Negeri Yogyakarta Utuk Memeui

Lebih terperinci

BAB I PENDAHULUAN. X Y X Y X Y sampel

BAB I PENDAHULUAN. X Y X Y X Y sampel BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Aalisis regresi merupaka metode aalisis data yag meggambarka hubuga atara variabel respo dega satu atau beberapa variabel prediktor. Aalisis regresi tersebut

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

BAB V PENUTUP. Berdasarkan pembahasan pada bab-bab sebelumnnya baik secara matematis maupun dalam studi kasus, diperoleh kesimpulan sebagai berikut:

BAB V PENUTUP. Berdasarkan pembahasan pada bab-bab sebelumnnya baik secara matematis maupun dalam studi kasus, diperoleh kesimpulan sebagai berikut: BAB V PENUTUP 5. Kesimpula Berdasarka pembaasa pada bab-bab sebelumya baik secara matematis maupu dalam studi kasus, diperole kesimpula sebagai berikut:. Dari asil studi kasus pada 74 sugai di Idoesia

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

BAB III PEMBAHASAN. bagaimana respon sebuah peubah Y terhadap perubahan yang terjadi pada peubah

BAB III PEMBAHASAN. bagaimana respon sebuah peubah Y terhadap perubahan yang terjadi pada peubah BAB III PEMBAHASAN A. Estimasi Noparametrik Tujua dasar dalam sebua aalisa regresi adala utuk mempelajari bagaimaa respo sebua peuba Y teradap perubaa yag terjadi pada peuba lai yaitu X. Hubuga atara X

Lebih terperinci

PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI

PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI Nadya Zulfa Negsih, Bustami Mahasiswa Program Studi S Matematika Dose Jurusa Matematika

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

= μ RANDOM SAMPLING, DISTRIBUSI SAMPLING

= μ RANDOM SAMPLING, DISTRIBUSI SAMPLING RANDOM SAMPLING, DISTRIBUSI SAMPLING Total observasi yag diamati, apakah jumlahya terbatas (fiite) atau takterbatas (ifiite) disebut sebagai Populasi. Da Sample adalah himpua bagia (subset) dari populasi

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES Jural Matematika UNAND Vol. 3 No. 4 Hal. 52 59 ISSN : 233 29 c Jurusa Matematika FMIPA UNAND PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan:

BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan: BAB II TINJAUAN PUSTAKA 2.1 Regresi Parametrik Regresi parametrik merupaka metode statistika yag diguaka utuk megetahui pola hubuga atara variabel prediktor dega variabel respo, dega asumsi bahwa telah

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK 8 B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK A. D I F E R E N S I A S I N U M E R I K Misal diberika set data Diketaui set data (, ), (, ), (, ),., (, ) ag memeui relasi = f() Aka ditetuka d/d dalam iterval,

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

Bab III METODE PENELITIAN

Bab III METODE PENELITIAN perpustakaa.us.ac.id digilib.us.ac.id Bab III METODE PENELITIAN Metode yag diguaka dalam peelitia ii adalah studi literatur beserta peerapaya yaitu dega megumpulka referesi berupa buku, artikel, jural

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN PENDAHULUAN

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN PENDAHULUAN PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN W. ISMAYULIA, I W. MANGKU, SISWANDI Abstrat I tis mausript, estimatio of te periodi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

PENDUGA RATAAN GEOMETRIK PADA SAMPEL HIMPUNAN TERURUT UNTUK DISTRIBUSI NORMAL

PENDUGA RATAAN GEOMETRIK PADA SAMPEL HIMPUNAN TERURUT UNTUK DISTRIBUSI NORMAL JURNAL GANTANG Vol. III No., Maret 208 p-issn. 2503-067, e-issn. 2548-5547 Tersedia Olie di: ttp://ojs.umra.ac.id/idex.pp/gatag/idex PENDUGA RATAAN GEOMETRIK PADA SAMPEL HIMPUNAN TERURUT UNTUK DISTRIBUSI

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

Jurnal Ilmiah Matematika dan Terapan, vol.7, no. 1, Mei 2010, hal PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL

Jurnal Ilmiah Matematika dan Terapan, vol.7, no. 1, Mei 2010, hal PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL Jural Ilmiah Matematika da Teraa, vol.7, o., Mei 0, hal. -7. Abstrak PERBANDINGAN MODEL REGRESI NONPARAMETRIK DENGAN REGRESI SPLINE DAN KERNEL Lilis Laome ) ) Jurusa Matematika FMIPA Uiversitas Haluoleo

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN PEDUGA RASIO UTUK RATA-RATA POPULASI MEGGUAKA KUARTIL VARIABEL BATU PADA PEGAMBILA SAMPEL ACAK SEDERHAA DA PEGATURA PERIGKAT MEDIA ur Khasaah, Etik Zukhroah, da Dewi Reto Sari S. Prodi Matematika Fakultas

Lebih terperinci

REGRESI NONPARAMETRIK MENGGUNAKAN METODE ROBUST DAN CROSS-VALIDATION (STUDI KASUS MAHASISWA STIA MUHAMMADIYAH SELONG)

REGRESI NONPARAMETRIK MENGGUNAKAN METODE ROBUST DAN CROSS-VALIDATION (STUDI KASUS MAHASISWA STIA MUHAMMADIYAH SELONG) Jural UJMC, Volume 3, Nomor, Hal. 9-6 pissn : 460-3333 eissn : 579-907X REGRESI NONPARAMETRIK MENGGUNAKAN METODE ROBUST DAN CROSS-VALIDATION (STUDI KASUS MAHASISWA STIA MUHAMMADIYAH SELONG) Rata Yuiarti,

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

ESTIMASI MODEL LINEAR PARSIAL DENGAN PENDEKATAN KUADRAT TERKECIL DAN SIMULASINYA MENGGUNAKAN PROGRAM S-PLUS

ESTIMASI MODEL LINEAR PARSIAL DENGAN PENDEKATAN KUADRAT TERKECIL DAN SIMULASINYA MENGGUNAKAN PROGRAM S-PLUS Jural Matematika Muri da Terapa Vol.6 No.2 Desember 2012 : 1-12 ESTIMASI MODEL LINEAR PARSIAL DENGAN PENDEKATAN KUADRAT TERKECIL DAN SIMULASINYA MENGGUNAKAN PROGRAM S-PLUS Nur Salam, Dewi Sri Susati da

Lebih terperinci

Distribusi Sampel & Statistitik Terurut

Distribusi Sampel & Statistitik Terurut Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar

Lebih terperinci

Perbandingan Beberapa Metode Pendugaan Parameter AR(1)

Perbandingan Beberapa Metode Pendugaan Parameter AR(1) Jural Vokasi 0, Vol.7. No. 5-3 Perbadiga Beberapa Metode Pedugaa Parameter AR() MUHLASAH NOVITASARI M, NANI SETIANINGSIH & DADAN K Program Studi Matematika Fakultas MIPA Uiversitas Tajugpura Jl. Ahmad

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP) PADA GENERAL LINEAR MIXED MODEL ri Hadhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Uiversitas Guadarma trihadika@staff.guadarma.ac.id

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

PENDUGA KEPEKATAN KERNEL BAGI FUNGSI KEPEKATAN PELUANG GAMMA. Oleh: MERYALDI G

PENDUGA KEPEKATAN KERNEL BAGI FUNGSI KEPEKATAN PELUANG GAMMA. Oleh: MERYALDI G PENDUGA KEPEKATAN KERNEL BAGI FUNGSI KEPEKATAN PELUANG GAMMA Oleh: MERYALDI G5400 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 006 PENDUGA KEPEKATAN KERNEL

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman Online di:

JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman Online di: JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahu 2012, Halama 179-188 Olie di: http://ejoural-s1.udip.ac.id/ide.php/gaussia OPTIMASI WAKTU EFEKTIF APLIKASI HERBISIDA PADA TANAMAN KELAPA SAWIT (ELAEIS GUINEENSIS

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK Jural Matematika UNAND Vol. 2 No. 2 Hal. 71 75 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK SUCI SARI WAHYUNI,

Lebih terperinci

BAB III MODEL THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC (TGARCH)

BAB III MODEL THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC (TGARCH) BAB III MODEL HRESHOLD GENERALIZED AUOREGRESSIVE CONDIIONAL HEEROSCEDASIC (GARCH 3.1 Desai Peelitia Dalam skrisi ii, eulis meeraka model hreshold Geeralized Autoregressive Coditioal Heteroscedastic (GARCH

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

ANALISIS REGRESI DAN KORELASI

ANALISIS REGRESI DAN KORELASI MODUL KULIAH ANALISIS REGRESI DAN KORELASI Oleh: Drs. I WAYAN SANTIYASA, M.Si JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 016 RANCANGAN AKTIVITAS TUTORIAL (RAT)

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

PENGANTAR MODEL LINEAR Oleh: Suryana

PENGANTAR MODEL LINEAR Oleh: Suryana PENGANTAR MODEL LINEAR Oleh: Suryaa Model liear meyagkut masalah statistik yag ketergatugaya terhadap parameter secara liear. Betuk umum model liear adalah 0 1X1... px p, dega = Variabel respo X i = Variabel

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

Perbandingan Metode Regresi Robust Estimasi Least Trimmed Square, Estimasi Scale, dan Estimasi Method Of Moment

Perbandingan Metode Regresi Robust Estimasi Least Trimmed Square, Estimasi Scale, dan Estimasi Method Of Moment PRISMA 1 (2018) https://joural.ues.ac.id/sju/idex.php/prisma/ Perbadiga Metode Regresi Robust Estimasi Least Trimmed Square, Estimasi Scale, da Estimasi Method Of Momet Muhammad Bohari Rahma, Edy Widodo

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Barisan dan Deret EXPERT COURSE. #bimbelnyamahasiswa

Barisan dan Deret EXPERT COURSE. #bimbelnyamahasiswa Barisa da Deret EXPERT COURSE #bimbelyamahasiswa Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, 118-70, Desember 003, ISSN : 1410-8518 INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL Akhmad Fauzy Statistika FMIPA UII Yogyakarta & siswa Ph.D

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 86-88 Latiha 2 Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b.

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Metode Pegumpula Data Dalam melakuka sebuah peelitia dibutuhka data yag diguaka sebagai acua da sumber peelitia. Disii peulis megguaka metode yag diguaka utuk melakuka pegumpula

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

ANALISIS PENGENDALIAN KUALITAS PRODUK LABELSTOCK MENGGUNAKAN DIAGRAM KONTROL KERNEL DI PT. X

ANALISIS PENGENDALIAN KUALITAS PRODUK LABELSTOCK MENGGUNAKAN DIAGRAM KONTROL KERNEL DI PT. X ANALISIS PENGENDALIAN KUALITAS PRODUK LABELSTOCK MENGGUNAKAN DIAGRAM KONTROL KERNEL DI PT. X Ika Estuigtyas, Wibawati Jurusa Statistika, Fakultas Matematika da Ilmu Pegetahua Alam Istitut Tekologi Sepuluh

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci