UNIVERSITAS INDONESIA

Ukuran: px
Mulai penontonan dengan halaman:

Download "UNIVERSITAS INDONESIA"

Transkripsi

1 Analisa Pengaruh Panjang Pipa Kapiler 6m dan 3m Berdiameter Inch pada Mesin Pendingin Cascade Temperatur Rendah dengan Campuran Refrigeran Ethane dan CO 2 SKRIPSI Hernadi FAKULTAS TEKNIK PROGRAM STUDI TEKNIK MESIN DEPOK JULI 2012

2 Analisa Pengaruh Panjang Pipa Kapiler 6m dan 3m Berdiameter Inch pada Mesin Pendingin Cascade Temperatur Rendah dengan Campuran Refrigeran Ethane dan CO 2 SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Hernadi FAKULTAS TEKNIK PROGRAM STUDI TEKNIK MESIN DEPOK JULI 2012 ii

3 iii

4 iv

5 KATA PENGANTAR Puji syukur kepada Tuhan Yang Maha Esa yang telah memberikan rahmat, hidayah serta inayah-nya, sehingga penulis dapat menyelesaikan skripsi ini tepat waktu. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Program Studi Teknik Mesin pada Fakultas Teknik Universitas Indonesia. Penulis mengucapkan terima kasih sebesarbesarnya kepada: 1. Ayah dan Ibu tercinta, serta keluarga tercinta atas dukungan spiritual, moral dan materil yang diberikan tanpa hentinya sehingga skripsi ini dapat terselesaikan. 2. Dr.-Ing. Ir. Nasruddin M.Eng. selaku dosen pembimbing yang telah menyediakan waktu, tenaga dan pikiran untuk mengarahkan penulis dalam penyusunan skripsi ini. 3. Bapak Darwin Rio Budi Syaka selaku pembimbing di Laboratorium Teknik Pendingin dan Tata Udara program studi Teknik Mesin yang telah menularkan ilmu dan pengalamannya. 4. Saudara Arnas yang telah banyak membantu dalam pernyelesaian alat penelitian serta menularkan ilmu dan pengalamannya kepada penulis. 5. Muhammad Fachrur Rozi Sok Asik, Indra Mario, Daniel Matil, Surya Fikri Utomo, Hanif, M. Hussin Kubil, Mike Mikhail, Fajar, Bang Regi, Bang Dyas, Pak Guru Helmi, M. Faqih, Fasri Ari Hatomi yang telah banyak membantu dan memberikan ilmu kepada penulis serta atas canda tawanya yang telah menghibur penulis. 6. Para teman-teman seperjuangan di Laboratorium Teknik Pendingin dan Tata Udara program studi Teknik Mesin yang telah banyak membantu dan membagi ilmunya kepada penulis. 7. Teman teman Departemen Teknik Mesin Angkatan 2008 yang telah mendukung, memotivasi, serta menemani penulis dalam proses menuju akhir kuliah ini, YOU RE THE BEST, GUYS. 8. Para sahabat dan semua pihak yang telah membantu dalam bentuk doa yang tidak bisa disebutkan satu-persatu. v

6 Akhir kata, semoga Allah SWT berkenan membalas segala kebaikan semua pihak yang telah disebutkan di atas. Semoga skripsi ini membawa manfaat untuk perkembangan ilmu pengetahuan. Depok, 16 Juli 2012 Hernadi vi

7 vii

8 Abstrak Nama Program Studi Judul : Hernadi : Teknik Mesin : Analisa Pengaruh Panjang Pipa Kapiler 6m dan 3m Berdiameter inch pada Mesin Pendingin Cascade Temperatur Rendah dengan Campuran Refrigeran Ethane dan CO 2 Perkembangan teknologi yang sangat dituntut perkembangannya oleh manusia telah melahirkan banyak sekali kemajuan pada teknologi itu sendiri, salah satunya adalah terdapat pada bidang pengobatan dan biomedis dimana dalam perkembangannya memerlukan cold storage yang mampu mencapai temperatur - 80 o C. Penggunaan sistem refrigerasi siklus tunggal hanya dapat mencapai temperatur efektif sekitar -40 o C. Untuk mecapai temperatur -80 o C digunakanlah sistem refrigerasi dengan menggunakan 2 siklus tunggal (cascade). Selama ini penggunaan refrigeran pada sirkuit temperatur rendah masih menggunakan refrigeran yang mengandung zat perusak ozon atau penyebab pemanasan global, sehingga diperlukan alternatif refrigeran alamiah yang ramah lingkungan seperti hidrokarbon dan CO 2. Sistem refrigerasi cascade memiliki karakteristik yang tergantung pada refrigeran dan komponen dari sistem terutama alat ekspansi yang dalam hal ini digunakan pipa kapiler. Oleh sebab ini dilakukan penelitian optimalisasi variasi panjang pipa kapiler pada mesin pendingin cascade dengan campuran Ethane dan CO 2. Penelitian ini mengivestigasi sistem refrigerasi cascade yang menggunakan komposisi 70% Ethane dan 30% CO 2 dan variasi panjang pipa kapiler dengan diameter inch adalah 6 m dan 3 m. Kata kunci: Cascade, pipa kapiler, campuran, CO 2, Ethane viii

9 Absract Name Study Program Title : Hernadi : Mechanical Engineering : Influence Analysis Of The Capillary Tube Length of 6m and 3m with inch in Diameter on The Cascade Low Temperature Refrigeration System With Ethane and CO 2 Mixture Refrigerant The development of technology is demanded by many people have think out many progress, one of them is on the development of medical and biomedical that requires cold storage that capable of reaching -80 o C temperatur. The use of a single cycle refrigeration system only able to achieve effective cooling temperature of -40 o C. To reach such a low temperature, cascade refrigeration system used. The low temperature-circuit cascade refrigeration systems that exist today still using refrigerants that contain ozone-depleting substances or the cause of global warming, thus it needs alternatives that are environmental friendly natural refrigerans such as hydrocarbon and CO 2. Cascade refrigeration system has characteristics that depend on the refrigeran and the components of the system, especially the expansion device used in this case the capillary tube. Because of that, optimization research was carried out capillary tube length variation in cooling engine cascade with a mixture of Ethane and CO 2. This research investigates cascade refrigeration system that uses 70% Ethane and 30% CO 2 composition in refrigerant mixture and variations of capillary tube length are 6 m and 3m with the diameter is inch. Key word: Cascade, capillary tube, mixture, CO 2, Ethane ix

10 DAFTAR ISI HALAMAN PERNYATAAN ORISINALITAS... iii HALAMAN PENGESAHAN... iv KATA PENGANTAR... v HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI... vii Abstrak Absract..... viii.... ix DAFTAR ISI.... x DAFTAR GAMBAR... xiii DAFTAR TABEL xvi BAB PENDAHULUAN LATAR BELAKANG PERUMUSAN MASALAH TUJUAN PENELITIAN BATASAN MASALAH METODE PENELITIAN SISTEMATIKA PENULISAN... 5 BAB TINJAUAN PUSTAKA SISTEM PENDINGIN KOMPONEN-KOMPONEN UTAMA MESIN PENDINGIN SISTEM REFRIGERASI UNTUK TEMPERATUR SANGAT RENDAH SISTEM REFRIGERASI CASCADE x

11 2.5 PEMILIHAN REFRIGERAN BAB RANCANGAN ALAT UJI DAN PROSEDUR PENGUJIAN ALAT DAN KOMPONEN PENGUJIAN TES KEBOCORAN VACUUM SISTEM CHARGING SISTEM TAHAPAN PENGUJIAN DAN PENGAMBILAN DATA PEMBERIAN BEBAN HEATER BAB HASIL DAN PEMBAHASAN PROPERTIES REFRIGERAN PADA SIKUIT TEMPERATUR RENDAH (LS) ANALISA PENGARUH PANJANG DAN DIAMETER PIPA KAPILER TERHADAP SISTEM CASCADE TANPA BEBAN Analisa Pengaruh Pipa Kapiler terhadap Laju Aliran dan Temperatur Masuk Evaporator LS Analisa Pengaruh Pipa Kapiler Terhadap Temperatur Masuk Evaporator LS dan Perbedaan Temperatur PHE Analisa Pengaruh Pipa Kapiler Terhadap Tekanan Out Kondenser LS dan Temperatur In Evaporator LS ANALISA PENGARUH PANJANG DAN DIAMETER PIPA KAPILER TERHADAP SISTEM CASCADE DENGAN BEBAN Analisa Pengaruh Pipa Kapiler Terhadap Temperatur Kabin Analisa Pengaruh Pipa Kapiler Terhadap Laju Aliran Analisa Pengaruh Pipa Kapiler Terhadap Perbedaan Temperatur Evaporator LS xi

12 4.3.4 Analisa Pengaruh Pipa Kapiler Terhadap Tekanan Discharge LS Analisa Pengaruh Pipa Kapiler Terhadap Tekanan Suction LS BAB KESIMPULAN DAN SARAN KESIMPULAN SARAN DAFTAR PUSTAKA LAMPIRAN xii

13 DAFTAR GAMBAR Gambar 2.1. Diagram Siklus Pendingin... 7 Gambar 2.2. Siklus Pendingin Kompresi Uap... 8 Gambar 2.3. Siklus Pendingin Gas... 9 Gambar 2.4. Siklus Pendingin Absorbsi Gambar 2.5. Siklus Pendingin Cascade Gambar 2.6. Kompresor Hermetic Gambar 2.7. Aliran Refrigeran Pada Kompresor Gambar 2.8. Evaporator Gambar 2.9. Katup TXV Gambar Oil Separator Gambar Refrigerant Sight Glass Gambar 2.12(a)Packless Shut Off Valve Gambar 2.12(b)Back Seated Shut Off Valve 19 Gambar Accumulator Gambar Sistem Refrigerasi Dua Tahap dengan Satu Refrigeran Gambar Two Stage Cascade Refrigeration System Gambar Gambar Survei Umum Refrigeran Alternatif 24 Diagram P-h Karbondioksida Gambar 3.1. Skematik Alat Pengujian Gambar 3.2. Wiring Diagram Pada Sistem Refrigerasi Cascade Gambar 3.3. Condensing unit sirkuit temperatur tinggi dan temperatur rendah32 Gambar 3.4. Kondenser Pada Condensing Unit Gambar 3.5. Alat Penukar Kalor Cascade xiii

14 Gambar 3.6. Alat Ekspansi Gambar 3.7. Alat Ukur Diameter Dalam Pipa Kapiler Gambar 3.8. Filter Dryer Gambar 3.9. Akumulator Gambar Oil Separator Gambar Pipa Tembaga Gambar Shut Off Valve Gambar Evaporator Sirkuit Temperatur Rendah Gambar Preassure Gauge Gambar Preassure Transmitter Gambar Termokopel Gambar Coriolis Gambar Komputer Gambar Tampilan front panel dan block diagram labview Gambar DAQ NI Gambar Power Supply Gambar Tabung Refrigeran R290, R744, dan R Gambar Pompa Vakum Gambar Timbangan Digital Gambar Dimmer Gambar Amperemeter Gambar 4.1. Grafik Perbandingan Temperatur In Evap LS dengan Mass Flow Gambar 4.2. Grafik Perbandingan Temperatur In Evap LS dengan Temperatur Out Kond LS Gambar 4.3. Grafik Perbandingan Temperatur In Evap LS dengan Tekanan Out Kapiler LS xiv

15 Gambar 4.4. Grafik Perbandingan Temperatur Kabin dengan Beban Heater.. 60 Gambar 4.5. Grafik Perbandingan Mass Flow dengan Beban Heater Gambar 4.6. Grafik Perbandingan Perbedaan Temperatur Evap LS dengan Beban Heater Gambar 4.7. Grafik Perbandingan Tekanan Discharge LS dengan Beban Heater Gambar 4.8. Grafik PerbandinganTekanan Suction LS dengan Beban Heater 64 xv

16 DAFTAR TABEL Tabel 2.1 Nilai Mudah Terbakar Beberapa Hidrokarbon. 28 Tabel 3.1 Spesifikasi Kompresor Pada Kondensing Unit 32 Tabel 3.2 Spesifikasi Kondenser Pada Kondenser Unit...33 Tabel 3.3 Spesifikasi Heat Exchanger.. 34 Tabel 3.4 Spesifikasi alat ekspansi Tabel 3.5 Spesifikasi filter dryer.. 36 Tabel 3.6 Spesifikasi akumulator. 37 Tabel 3.7 Spesifikasi oil separator 38 Tabel 3.8 Spesifikasi evaporator.. 40 Tabel 3.9 Spesifikasi pressure gauge 41 Tabel 3.10 Spesifikasi pressure transmitter 42 Tabel 3.11 Spesifikasi termokopel. 43 Tabel 3.12 Spesifikasi coriolis 43 Tabel 3.13 Spesifikasi Komputer Tabel 3.14 Spesifikasi National Instrument Tabel 3.15 Spesifikasi Power Supply. 48 Tabel 3.16 SpesifikasAmpere Meter. 53 Tabel 4.1 Critical Properties Refrigeran Campuran R744/R Tabel 4.2 Properties Dari Karbondioksida dan Ethane Tabel 4.3 Tabel Hasil Percobaan.. 57 xvi

17 1 BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Sistem Refrigerasi atau sistem pendingin merupakan suatu kebutuhan saat ini terutama bagi masyarakat perkotaan. Ketergantungan manusia yang semakin meningkat pada sistem pendingin ini telah membawa sistem ini berkembang dengan pesat sebab hampir di setiap aspek kehidupan manusia sudah menggunakan sistem pendingin ini. Sistem refrigerasi itu sendiri secara singkat dapat diartikan dengan proses pengambilan kalor atau panas dari suatu benda atau ruang untuk menurunkan temperaturnya. Penggunaan sistem refrigerasi ini sudah banyak sekali dinikmati hampir dalam setiap aspek kehidupan manusia mulai dari skala kecil pada rumah tangga hingga skala besar pada aplikasi di industri. Untuk proses pengawetan makanan, perminyakan, serta pengolahana bahan kimia, sistem refrigerasi dibutuhkan untuk menjaga kualitas proses produksinya dimana temperatur yang dibutuhkan berkisar dari -30 C hingga -50 C, bahkan untuk bidang biomedis, dibutuhkan temperatur hingga mencapai -80 C untuk menyimpan specimen biomedis dalam jangka waktu yang lama. Penggunaan sistem refrigerasi yang menggunakan siklus tunggal hanya mampu mencapai suhu pendinginan efektif sekitar -40 o C, dan efisiensinya memburuk di bawah -35 o C karena turunnya tekanan evaporasi. Untuk mendapatkan temperatur sekitar -80 o C, maka digunakanlah sistem bertekanan banyak yang menggunakan lebih dari satu kompresor seperti yang tedapat pada sistem refrigerasi bertingkat (multi stage) atau kombinasi dua atau lebih sistem refrigerasi tunggal (cascade). Sistem refrigerasi cascade menggunakan dua sistem refrigerasi tunggal yang berkerja secara mandiri dimana sistem yang satu berperan sebagai sistem temperatur rendah (low stage/ls) dan yang satu lagi berperan sebagai sistem temperatur tinggi (high stage/hs). Kedua sistem tunggal ini dihubungkan dengan sebuah alat penukar kalor cascade dimana kalor yang dilepaskan kondenser di

18 2 sistem temperatur rendah (low stage/ls) diserap evaporator dari sistem temperatur tinggi (high stage/hs) (ASHRAE, 2006). Refrigeran yang digunakan pada mesin cascade untuk penelitian ini adalah campuran CO 2 dan Ethane pada sirkuit temperatur rendah serta propane pada sirkuit temperatur tinggi. Hal ini disebabkan dilarangnya penggunaan refrigeran CFC seperti R13 atau R503 pada tahun 2010 untuk negara berkembang karena dapat merusak lapisan ozon (Montreal Protocol, 1987). Sementara itu, refrigeran alternatif HFC seperti R23 juga tidak dapat digunakan karena berpotensi dalam memanaskan permukaan buni. Pada siklus refrigerasi cascade ini terdapat 4 komponen utama, yaitu : evaporator, kompresor, kondenser, dan alat ekspansi. Komponen terakhir yaitu alat ekspansi bertujuan untuk menurunkan tekanan cairan refrigeran setelah keluar dari kondenser dan mengatur laju aliran refrigeran yang masuk ke evaporator. Alat ekspansi yang umumnya digunakan adalah pipa kapiler berbentuk koil yang berdiameter sangat kecil biasanya antara 0.5 mm sampai 2 mm dan memiliki panjang antara 1 m sampai 6 m dan biasanya terbuat dari tembaga. Penggunaan pipa kapiler ini memiliki keuntungan serta kerugian. Keuntungan penggunaan pipa kapiler ini terletak pada bentuknya yang sederhana, tidak memiliki bagian yang bergerak, dan relatif murah. Selain itu juga dapat memungkinkan tekanan dari sistem menjada sama selama siklus tidak beroperasi, sehingga motor yang menggerakkan kompresor dapat di start dengan torsi yang rendah. Sementara kerugiannya adalah kerena tidak dapat diatur untuk kondisi beban yang berubah-ubah, mudah tersumbat oleh kotoran, dan hanya dapat digunakan pada sistem yang diberi preparat secara hermetic, yang kurang kemungkinan adannya kebocoran. Pipa kapiler ini dirancang untuk sejumlah kondisi operasi dan setiap perubahan beban kalor atau suhu kondenser dari keadaan yang dirancang yang akan menyebabkan penurunan efisiensi kerja. Adanya perlakuan pada pipa kapiler, baik itu bentuk geometri, dimensi, maupun penempatannya memiliki pengaruh terhadap performa sistem. Sehingga penelitian ini bertujuan untuk menganalisa pengaruh variasi panjang pipa kapiler 6 m dan 3 m dengan dimeter inch pada sistem refrigerasi cascade dengan campuran refrigeran ethane dan CO 2 pada sirkuit temperatur rendah.

19 3 1.2 PERUMUSAN MASALAH Pada sistem refrigerasi cascade, alat ekspansi merupakan salah satu komponen utama pada sistem tersebut. Alat ekspansi ini berfungsi untuk menurunkan tekanan cairan refrigeran setelah keluar dari kondenser dan mengatur laju aliran refrigeran yang masuk ke evaporator. Untuk penelitian kali ini, alat ekspansi yang digunakan adalah pipa kapiler. Dari banyak peneletian yang telah dilakukan oleh beberapa peneliti telah membuktikan bahwa adanya perlakuan pada pipa kapiler, baik itu bentuk geometri, dimensi, maupun penempatannya memiliki pengaruh terhadap performa sistem. Untuk itu dilakukan penelitian untuk mengetahui karakteristik serta pengaruh sistem cascade ini dengan menggunakan pipa kapiler berdiameter inch dengan panjang 6 m dan 3 m. 1.3 TUJUAN PENELITIAN Penulisan skripsi ini bertujuan untuk : Mempelajari karakteristik sistem refrigerasi cascade dengan menggunakan refrigeran alternatif sehingga dihasilkan temperatur evaporasi yang sangat rendah Menganalisa kinerja sistem refrigerasi cascade dengan melakukan variasi panjang dan diameter pipa kapiler. 1.4 BATASAN MASALAH Hal yang akan dibahas dalam makalah ini adalah karakteristik serta pengaruh variasi panjang pipa kapiler terhadap sistem refrigerasi cascade, dengan asumsi dan batasan sebagai berikut : Refrigeran yang digunakan adalah campuran ethane dengan CO 2 untuk sistem temperatur rendah (Low Stage) dan propane untuk sistem temperatur tinggi (High Stage) Variasi panjang pipa kapiler 6 meter dan 3 meter dengan diameter inch Komposisi campuran refrigeran 70% gr ethane 30 % gr CO 2, dan 1200 gram propane. Variasi beban yang digunakan pada kabin evaporator low stage adalah 30, 60, 90, 120, dan 150 Watt.

20 4 Jenis kompresor high stage dan low stage yang digunakan adalah jenis kompresor untuk refrigeran R-22. Sistem dianggap siklus ideal. 1.5 METODE PENELITIAN Metodologi penelitian yang dilakukan adalah sebagai berikut : 1. Studi Literatur Studi literatur merupakan proses pengumpulan informasi yang berkaitan dengan materi bahasan yang berasal dari buku buku, jurnal yang berasal dari dosen maupun perpustakaan. 2. Modifikasi Sistem Refrigerasi Cascade Modifikasi ini meliputi rancang ulang sistem pemipaan, penambahan alat ukur dan tekanan, pergantian kompressor dan evaporator. 3. Peralatan Proses ini meliputi persiapan dan pembelian terhadap alat-alat yang dibutuhkan untuk melakukan pengujian diantaranya pipa tembaga, kawat las, pressure gauge, panel pressure, pressure transmitter, isolator dinding pipa (armalflek), perekat armalflek, panel listrik, kabel-kabel, satu set komputer, NI (DAQ), timbangan digital, pompa vakum, Botol minum sebagai isolasi evaporator dan refrigeran. 4. Perbaikan Alat uji Pada tahap ini meliputi perbaikan, penggantian, dan penambahan alat uji. Hal ini dilakukan untuk mengembalikan dan meningkatkan kondisi alat, sehingga pengujian dapat dilakukan dan data yang diperoleh lebih akurat, perbaikkan dilakukan pada bagian-bagian seperti sambungan pipa, isolator dinding pipa, penambahan alat ukur tekanan dan temperatur. 5. Kalibrasi alat uji Kalibrasi adalah membandingkan alat ukur yang akan kita gunakan dengan alat ukur standar, sebelum pengujian dilakukan dilakukan kalibrasi terhadap alat ukur tekananan dan temperatur agar data yang dihasilkan nantinya lebih akurat.

21 5 6. Pengecekan sistem Setelah semua alat terpasang pada sistem proses selanjutnya adalah pengecekan yang meliputi tes kebocoran, vakum, dan pengetesan kelistrikan 7. Pengujian sistem Pengujian dilakukan dengan memantau data dari alat ukur seperti thermocouple, pressure transmitter melalui data akuisisi(ni Lab view) untuk mengetahui karakteristik refrigeran secara keseluruhan. Proses pengujian ini meliputi pengambilan data pada alat ukur. 8. Analisa dan Kesimpulan Hasil Pengujian Data yang telah diolah, kemudian dianalisa terhadap grafik yang diperoleh. Dari analisa tersebut akan diperoleh kesimpulan terhadap proses pengujian sistem refrigerasi autocascade. 1.6 SISTEMATIKA PENULISAN Agar laporan tugas akhir ini memiliki struktur yang baik dan tujuan penulisan dapat tercapai dengan baik, maka penulisan skripsi ini mengikuti sistematika penulisan sebagai berikut : BAB I PENDAHULUAN Bagian ini berisi tentang latar belakang yang melandasi penulisan skripsi, perumusan masalah, tujuan penulisan, pembatasan masalah, metodologi penelitian, dan sistematika penulisan. BAB II DASAR TEORI Bab ini menjelaskan tentang teor-teori yang mendasari penelitian ini. Dasar teori meliputi: dasar teori tentang sistem refrigerasi dan dasar pemilihan refrigeran. Dasar teori yanng ada dikutip dari beberapa buku dan referensi lain yang mendukung dalam penulisan ini. BAB III METODE PENELITIAN Bab ini berisikan tentang deskripsi alat pengujian yang digunakan, metode persiapan, dan metode pengambilan data yang dilakukan.

22 6 BAB IV BAB V HASIL DAN ANALISA Bagian ini berisikan tentang hasil data yang diperoleh dari proses pengujian, serta berisian tentang analisa dari data yang telah diperoleh yang nantinya dapat ditarik kesimpulan dari analisa tersebut KESIMPULAN Bab ini tentang kesimpulan dari hasil data dan analisa percobaan dan beberapa saran yang diberikan untuk perbaikan pada percobaan yang akan datang.

23 7 BAB 2 TINJAUAN PUSTAKA 2.1 SISTEM PENDINGIN Pendinginan atau refrigerasi adalah salah satu komponen sistem pengkondisian udara dimana terjadi pertukaran kalor antara udara ruangan dengan refrigeran yang ada. (Cengel, 1998). Refrigerasi merupakan proses memindahkan energi panas dari daerah bertemperatur rendah ke daerah yang bertemperatur lebih tinggi. Biasanya daerah pembuangan (heat sink) bertemperatur tinggi adalah lingkungan, atau air pendingin yang memiliki temperatur sama dengan temperatur lingkungan (ASHRAE, 2005). Sistem refrigerasi adalah kombinasi komponen, peralatan, dan perpipaan yang dihubungkan dalam urutan tertentu untuk menghasilkan efek pendinginan. Mesin pendingin atau pengkondisi udara ada beberapa macam, tetapi pada dasarnya memiliki proses yang sama. Gambar dari siklus pendingin pada gambar 2.1. Gambar 2.1. Diagram Siklus Pendinginan Sumber : W. F. Stoecker, Refrigrasi Dan Pengkondisian Udara 2 nd edition, hal 187 Sistem refrigerasi pada dasarnya dapat diklasifikasikan menjadi beberapa sistem, diantaranya yaitu : Siklus pendingin kompresi-uap (vapour compression refrigation cycle) Siklus pendingin jenis yang satu ini merupakan jenis sistem yang banyak digunakan pada alat pendingin, sistem air conditioning, dan heat pumps.

24 8 Pada siklus pendingin kompresi uap yang ideal, refrigeran masuk melalui kompresor dengan keadaan 1 (titik 1) sebagai uap jenuh dan keluar kondensor sebagai cairan jenuh. Temperatur refrigeran akan meningkat selama proses isentropic. Pada keadaan 2 (titik 2) refrigeran masuk ke kondensor sebagai superheated vapour dan berubah menjadi saturated liquid pada keadaan 3 (titik 3), sebagai hasil dari penolakan panas dari lingkungan, (Cengel, 1998). Gambar dari siklus pendingin kompresi-uap (vapour compression refrigation cycle) dapat dilihat pada gambar 2.2. Gambar 2.2. Siklus Pendingin Kompresi Uap Sumber : Yunus A. Cengel, Thermodynamic 4 th edition, hal 567 Siklus Pendingin Gas (Gas Refrigeration Cycle) Siklus ini biasa juga dikenal dengan nama siklus ekspansi gas. Siklus pendingin gas ini berlangsung dalam keadaan superheat. Pada sistem ini tidak ada proses kondensasi dan evaporasi, maka sebagai pengganti komponen kondensor dan evaporator digunakan alat penukar kalor panas ke dingin dari gas ke gas. Pada siklus ini gas akan dikompresi selama proses 1-2. Siklus pendingin gas merupakan proses siklus carnot terbalik. Namun kenyataannya, temperatur gas akan menunjukkan keragaman selama proses perpindahan panas. Hal ini dapat dilihat pada gambar 2.3. dimana gas dengan tekanan dan suhu yang tinggi didinginkan dengan tekanan konstan, dengan cara membuang panas ke lingkungan. Kemudian terjadi penurunan terperatur pada

25 9 turbin, setelah itu gas menyerap panas dari ruangan sehingga temperatur kembali naik. Gambar 2.3. Siklus Pendingin Gas Sumber : Yunus A. Cengel, Thermodynamic 4 th edition, hal 585 Sistem pendingin absorbs (absorbtion refrigation system) Pada sistem pendingin absorbs hampir sama dengan siklus kompresi uap kecuali untuk metode meningkatkan tekanan dari uap refrigeran, kompresor diganti dengan rangkaian absorber, pompa, generator, katup dan generator. Pada siklus ini refrigeran yang digunakan adalah ammonia (NH3) dan air (H 2 O) sebagai fluida kerja dari siklus ini. Adapun cara kerjanya adalah sebagi berikut : gas ammonia meninggalkan evaporator dan masuk dalam absorber, kemudian bercampur degan air. Proses ini akan berlangsung tanpa ada penyerapan panas (reaksi isothermal). Akan tetapi semakin rendah suhu campuran, maka akan semakin banyak ammonia yang diserap. Selanjutnya ammonia akan dipompa menuju generator dengan mengalami perpindahan panas, agar campuran menjadi uap jenuh yang kemudian dilepas menuju kondensor. Untuk proses selanjutnya sama dengan proses pada siklus kompresi uap hingga masuk lagi menjadi absorber. Gambar siklus pendingin absorbs ini dapat dilihat pada gambar 2.4.

26 10 Gambar 2.4. Siklus Pendingin Absorbsi Sumber : Yunus A. Cengel, Thermodynamic 4 th edition, hal 588 Sistem Pendingin Cascade (Cascade Refrigeration Sistem) Siklus pendingin cascade digunakan apabila range temperatur sangat besar, Hal ini disebabkan karena digunakan untuk memperoleh temperatur yang sangat rendah. Gambar dari siklus cascade dapat dilihat pada gambar 2.5. Dengan siklus cascade kerja dari kompresor akan berkurang dan jumlah panas yang diserap dari ruangan akan meningkat, sehingga pada akhirnya COP dari sistem pendingin akan meningkat, (Cengel, 1998, p. 638).

27 11 Gambar 2.5. Siklus Pendingin Cascade Sumber : Yunus A. Cengel, Thermodynamic 4 th edition, hal KOMPONEN KOMPONEN UTAMA MESIN PENDINGIN Mesin pendingin terdapat 4 komponen utama yang dipergunakan, yaitu kompresor, kondensor, evaporator, dan juga katup ekspansi. Sedangkan komponen komponen pendukung yang terdapat dalam mesin pendingin, antara lain yaitu : filter dryer, oil separator, receiver tank, refrigeran sight glass, shut off valve, accumulator, dan lain-lain. 1. Kompresor Kompresor berfungsi untuk menaikkan tekanan refrigeran dan mengalirkan refrigeran tersebut. Kompresor adalah jantung dari sistem kompresi uap, dan pada refrigeran terdiri dari 4 jenis kompresor refrigerasi yang paling umum adalah kompresor torak (reciprocating compressor), (Dossat, 2001). Kompresor mempunyai 2 fungsi utama dalam proses pendinginan, fungsi pertama ialah memompa refrigeran yang terbentuk uap dari evaporator, agar temperatur dan tekanan yang diinginkan pada evaporator dapat dipertahankan secara terus menerus. Sedangkan fungsi yang kedua ialah untuk meningkatkan tekanan refrigeran yang berbentuk uap dengan cara diberi tekanan, dan secara

28 12 perlahan meningkatkan temperatur dari refrigeran yang berbentuk uap tersebut, (Dossat, 2001). Pada industri kompresor yang digunakan dapat digolongkan menjadi 3 macam, yaitu : reciprocating, rotary dan centrifugal. Ketiga kompresor tersebut memiliki kelebihan berbeda-beda, diantaranya pada reciprocating compressor banyak dipakai karena dapat diaplikasikan pada sistem yang memiliki tekanan evaporator di atas tekanan atmosfer, selain itu reciprocating compressor ini dapat juga diaplikasikan pada temperatur rendah sekalipun. Kompresor dapat diklasifikasikan menurut casing-nya menjadi 3 macam, yaitu : Open Compressors, pada kompresor ini motor penggerak dan kompresor, merupakan sebuah unit terpisah. Kompresor ini terbuat dari casing dan di baut menjadi satu dengan menggunakan gasket dari hermetic seals. Daya rotasi dari motor penggerak kompresor ditransmisikan ke kompresor dengan menggunakan mekanisme belt dan pulley atau dapat juga dengan menggunakan roda gigi. Open compressor ini banyak digunakan untuk kapasitas besar dan semua sistem yang menggunakan refrigeran ammonia. Hermetic compressors, pada kompresor ini memiliki motor penggerak elektrik dan unit kompresor yang tertutup dalam suatu tabung (enclosure/can), yang tidak dapat dibuka kembali untuk diperbaiki bila terjadi kerusakan. Kompresor tipe ini digunakan atau dipakai untuk halocarbon refrigeran dengan kapasitas rendah dan beberapa halocarbon refrigeran berkapsitas medium. Semihermatic compressors, kompresor tipe ini terbuat dari casing yang dibaut jadi satu menggunakan gasket yang terbuat dari hermetic seal. Tipe semihermatic compressor ini biasanya digunakan untuk refrigeran halocarbon dengan kapasitas medium dan tinggi. Di dalam sistem pendingin dengan skala kecil, kompresor yang sering dipakai adalah kompresor dengan jenis hermetic compressors, karena harganya yang murah, dan kompresor jenis ini tidak membutuhkan ruang yang besar untuk pemasangannya. Gambar kompresor hermatic dapat dilihat pada gambar 2.6.

29 13 Gambar 2.6. Kompresor Hermatic Sumber : Althouse, Modern Refrigeration And Air Conditioning 18 th edition, hal Kondensor Kondenser adalah penukar kalor, maka keduanya memiliki beberapa sifat tertentu. Salah satu penggolongan kondensor dan evaporator dengan memperhatikan apakah refrigeran berada di dalam atau di luar pipa, dan apakah fluida yang mendinginkan kondensor atau yang didinginkan di evaporator berbentuk gas atau cairan. Kondensor dan evaporator yang paling banyak digunakan adalah penukar kalor jenis tabung dan pipa. Karena kondensor berfungsi sebagai penukar kalor, maka pada kompresor fase ini terjadi proses pencairan atau pengembunan refrigeran. Uap refrigeran yang bertekanan dan bertemperatur tinggi pada akhir kompresi dapat dengan mudah dicairkan dengan cara mendinginkannya dengan air pendingin atau dapat juga dengan udara pendingin yang ada pada temperatur normal. Jika digunakan kondensor dengan berpendingin air, maka air dialirkan ke suatu instalasi pendingin untuk pengeluaran kalor yang paling optimal ke atmosfir, (Withman, 2001, p.297). Gambar kondensor dapat dilihat pada gambar 2.7. Pada saat refrigeran mengalami perubahan fasa, dari fasa uap menjadi fasa cair, tekanan dan temperatur pengembunan terjadi secara konstan.

30 14 Gambar 2.7. Aliran Refrigeran Pada Kompresor Sumber : Whitman, Refrigeran And Air Conditioning Technology 5 th edition, hal Evaporator Evaporator mempunyai fungsi sebagai penukar kalor pada siklus refrigerasi atau pendinginan. Tekanan cairan refrigeran yang diturunkan pada katup ekspansi, didistribusikan secara merata ke dalam pipa evaporator oleh distributor refrigeran. Dalam hal ini refrigeran akan menguap dan menyerap kalor dari udara ruangan yang dialirkan melalui permukaan luar dari pipa evaporator. Evaporator memiliki banyak konfigurasi. Gambar evaporator dapat dilihat pada gambar 2.8. jadi apabila udara ruangan tersebut didinginkan, maka air yang ada di dalam udara akan mengembun pada permukaan evaporator, kemudian air tersebut akan ditampung dan dialirkan keluar. Gambar 2.8 Evaporator Sumber : Whitman, Refrigeration And Air Conditioning Technology 5 th edition, hal 393

31 15 4. Katup Ekspansi Katup ekspansi berfungsi untuk mengekspansikan secara adiabatic. Cairan refrigeran yang bertekanan dan bertemperatur tinggi sampai mencapai tingkat keadaan tekanan dan temperatur rendah. Selain itu, katup ekspansi mengatur permasukkan refrigeran sesuai dengan beban pendinginan yang harus dilayani oleh evaporator. Oleh karena itu, katup ekspansi mengatur agar evaporator dapat selalu bekerja sehingga diperoleh effisiensi siklus refrigeran yang maksimal. Katup ekspansi memiliki beberapa macam pada sistem refrigerasi diantaranya adalah TXV (Thermostatic Expansion Valve) dan pipa kapiler. TXV (Thermostatic Expansion Valve) Katup ekspansi TXV atau sering juga disebut katup ekspansi panaslanjut. Katup ekspansi ini berfungsi mengatur laju aliran refrigeran cair yang besarnya sebanding dengan laju penguapan di dalam evaporator, (Dossat, 2001, p.337). Katup ekspansi diperlukan untuk mereduksi bagian valve yang bertemperatur tinggi dengan bagian yang memiliki temperatur rendah pada sebuah sistem. TXV ini merupakan peralatan yang banyak dipakai. TXV dapat beroperasi bila merasakan temperatur dari superheated refrigerant vapour yang meninggalkan evaporator. Ketika TXV beroperasi, temperatur pada sisi luar dari valve lebih rendah dari pada yang berada di sisi dalam. Cara menggerakkan katup ekspansi termostatik adalah sebagai berikut : sebuah bola, pada gambar 2.9 adalah peraba diisi sebagian dengan cairan refrigeran yang sama dengan yang digunakan di dalam sistem. Fluida di dalam bola tersebut disebut fluida daya (power fluid). Bola peraba ini ditempelkan pada saluran keluar evaporator sehingga suhu bola dan fluida daya tersebut sangat dekat dengan suhu gas hisap (suction gas). Tekanan dari fluida ini memberikan dorongan ke sisi atas diafragma, sedangkan tekanan evaporator menekan dari bawah. Disamping itu terdapat sebuah pegas pada tangki katup yang memberikan sedikit gaya ke atas katup tetap tertutup sehingga terbentuk tekanan yang lebih tinggi dari arah atas diafragma, yang mengatasi gaya pegas dan tekanan evaporator. Agar tekanan di atas diafragma lebih tinggi, maka fluida daya harus bersuhu lebih tinggi dari suhu jenuh di dalam evaporator. Oleh karena itu gas hisap harus berfasa panas lanjut agar mendapat fluida daya di atas tekanan yang membuka katup. Gerakan katup tersebut

32 16 bertujuan untuk mempertahankan suhu atau temperatur yang medekati konstan di dalam evaporator. Bila jumlah refrigerans berkurang, maka katup ekspansi ini akan mengimbangi dengan cara membuka katup lebih besar. Gambar 2.9 Katup TXV Sumber : Whitman, Refrigeration And Air Conditioning Technology 5 th edition, hal 445 Pipa Kapiler Katup ekspansi yang berupa pipa kapiler sering kali digunakan untuk sistem refrigerasi yang berkapasitas kecil. Pipa kapiler melayani hampir semua sistem refrigerasi yang berukuran kecil, dan penggunaanya meluas hingga pada kapasitas refrigerasi 10kW. Untuk memenuhi batasan-batasan yang diperlukan, banyak kombinasi antara lubang dan panjang pipa yang dapat dipakai. Sekali pipa kapiler dipilih dan dipasang, maka pipa tersetbut tidak dapat disetel lagi untuk mengatasi perubahan-perubahan pada tekanan buang, tekanan hisap, atau beban. Pipa kapiler ini memiliki beberapa keuntungan dan kerugian. Keuntungan dari pipa kapiler ialah bentuknya sederhana, tidak terdapat bagian-bagian yang bergerak, dan tidak mahal. Pipa-pipa tersebut memungkinkan tekanan di dalam sistem merata selama sistem tidak bekerja, sehingga motor penggerak kompresor mempunyai momen gaya awal yang kecil. Sedangkan kerugiananya ialah pipa kapiler tidak dapat diatur untuk kondisi beban pendinginan yang berubah-ubah,

33 17 mudah terganggu oleh adanya penyumbatan dari benda-benda asing, serta memerlukan jumlah pengisian refrigeran yang berada dekat batas. 5. Komponen-komponen Tambahan yang Digunakan dalam Mesin Pendingin Filter dan Dryer Filter berfungsi untuk menyaring kotoran di dalam sistem, agar tidak sampai masuk ke dalam alat ekspansi dan kompresor. Kotoran tersebut dapat berupa logam yang hancur, potongan logam, sisa solder, flux, endapan, kerak, karat besi dan lain-lain. Namun filter ini hanya dapat menyaring kotoran dan benda padat yang lain, tetapi tidak dapat menyerap uap air, asam dan sebaginya. Hal ini bertujuan agar tidak menyebabkan penurunan tekanan atau membuat sistem menjadi tersumbat. Sedangkan dryer atau pengering berfungsi sebagai menyerap kotoran, seperti : air, uap air, asam, dan kotoran-kotoran lainnya. Untuk dryer dipakai untuk menyaring butir-butir kotoran yang terdapat di dalam sistem. Di dalam dryer diisikan bahan pengering (dessicant) dan kawat saringan, agar dapat menyerap dan menyaring uap air, asam, kotoran, dan bendabenda lain yang tidak diperlukan di dalam sistem. Selain itu dryer juga dapat menyerap air, hasil uraian minyak pelumas, lumpur dan endapat-endapan ikut masuk pada saat sistem bekerja. Oil Separator Berfungsi untuk memisahkan refrigeran dengan uap oli dari kompresor, dan juga membatasi oli yang terbawa bersama refrigeran. Oil separator akan diaktifkan bila temperatur evaporator berada di bawah -15 o C. Minyak pelumas yang terdapat pada kompresor dapat bercampur dengan refrigeran karena pada saat keluar dari kompresor, temperatur refrigeran sangatlah tinggi dan dalam tekanan yang cukup tinggi. Bila refrigeran tidak melalui oil separator, maka uap dari oli (minyak pelumas) akan ikut mengalir keluar kompresor dan akan terbawa keseluruh sistem. Hal ini dapat menyebabkan endapan oli cair di bagian-bagian sistem. Gambar dari oil separator dapat dilihat pada gambar 2.10

34 18 Gambar Oil Separator Receiver Tank Receiver tank digunakan sebagai valve exspansion untuk refrigeran control. Receiver tank disediakan sebagai tempat menyimpan kelebihan refrigeran dalam sistem ketika aliran dari expansion valve yang menuju evaporator telah melampaui batas. Selain itu receiver tank berguna juga sebagai tempat menampung refrigeran cair, dan dapat juga menampung refrigeran untuk menanggulangi kebocoran sistem, sampai sumber kebocoran ditemukan dan diadakan perbaikan. Keberadaan receiver juga menjamin kondisi refrigeran memasuki alat ekspansi tidak mengandung uap selama di receiver terdapat cairan refrigeran. Pada receiver biasanya terdapat gelas ukur untuk mengetahui tinggi muka cairan refrigeran sudah mencapai batas minimal. Keberadaan receiver akan mengakibatkan seluruh muka kondenser dapat dimanfaatkan untuk perpindahan panas, karena tidak membutuhkan tempat penampungan refrigeran cair lagi di dalam kondenser dengan kehadiran receiver. Refrigeran Sight Glass Dalam sebuah sistem pendingin, sight glass diletakkan sedekat mungkin pada liquid receiver. Karena pada lokasi ini, sistem dari pendingin akan menampakkan gelembung-gelembung vapor di dalam liquid stream. Sight glass dapat mengindetifikasi sebuah aliran solid dari liquid yang tiba-tiba sampai pada refrigeran control. Sight glass digunakan untuk mengetahui apakah isi refrigeran

35 19 telah cukup di dalam sistem atau adakah hambatan di dalam saluran cair. Bila yang mengalir di dalam saluran cair adalah cairan, maka sight glass akan terlihat jernih, (Dossat, 2001). Bila terlihat adanya gelembung pada sight glass maka hal ini menandakan kurang lancarnya aliran refrigeran. Gambar dari refrigeran sight glass dapat dilihat pada gambar Gambar Refrigeran Sight Glass Sumber : Whitman, Refrigeran And Air Conditioning Technology 5 th edition, hal 498 Shutt off Valve Berfungsi sebagai pengisolir dari sistem apabila sistem tersebut mengalami kerusakan. Cara ini dapat digunakan untuk menghindari kehilangan refrigeran pada saat penggantian salah satu sistem. Pada bagian sistem yang dapat rusak dipasang duah buah shut off valve, masing-masing pada ujung masuk dan keluar. Pada saat shut down atau sistem tidak dioperasikan semua shut off valve ditutup, dengan tujuan bila terjadi kebocoran maka hanya refrigeran yang terkandung dalam sepenggal sistem (yang berada antara dua buah shut off valve) yang hilang. Gambar dari shut off valve dapat dilihat pada gambar Gambar 2.12 (a) Packless shut off valve, (b) Back seated shut off valve Sumber : Whitman, Refrigeration And Air Conditioning Technology 5 th edition hal 505

36 20 Accumulator Berfungsi sebagai tempat penampung sementara, untuk menahan masuknya campuran dari oil-refrigeran dan untuk mengembalikan campuran oilrefrigeran tersebut, sehingga kompresor dapat dikendalikan dengan aman. Selain itu akumulator juga berfungsi sebagai penampung refrigeran cair agar tidak masuk ke dalam kompresor, dan juga berfungsi sebagai peredam suara pada sisi tekanan rendah dari sistem. Memilih akumulator tidak hanya berdasarkan besarnya fitting yang sama dengan saluran hisap, dan juga tidak berdasarkan tabung yang cukup besar untuk menampung refrigeran cair, karena akumulator yang terlalu kecil ukurannya dapat menyebabkan penurunan tekanan yang besar dan tidak dapat berfungsi dengan sebagaimana mestinya. Dan juga sebaliknya akumulator yang terlalu besar dapat menyebabkan aliran refrigeran menjadi lambat dan minyak pelumas tidak dapat kembali ke dalam kompresor. Gambar dari akumulator dapat dilihat pada gambar Gambar Accumulator Sumber : Althouse, Modern Refrigeration And Air Conditioning 18 th edition, hal SISTEM REFRIGERASI UNTUK TEMPERATUR SANGAT RENDAH Refrigerasi untuk temperatur sangat rendah (Ultralow-temperatur refrigeration) didefinisikan sebagai refrigerasi yang memiliki daerah temperatur dari -50 hingga -100 o C, umumnya diaplikasikan untuk bidang-bidang seperti farmasi, kimia, blast freezing, cold storage, pencairan gas dan lain-lain

37 21 (ASHRAE, 2006). Untuk dapat mencapai daerah temperatur ini, sistem kompresi satu tahap (single-stage) dengan menggunakan jenis kompresor piston (reciprocating compressor) tidak umum untuk diterapkan, karena akan terjadi rasio tekanan yang tinggi. Tingginya rasio tekanan ini berakibat pada tingginya temperatur discharge dan minyak pelumas kompresor serta rendahnya efisiensi volumetrik yang berakibat juga pada rendahnya nilai COP (Stegmann, 2000). Untuk mengatasi kekurangan sistem kompresi satu tahap ini, maka digunakan sistem refrigerasi dua tahap dengan satu refrigeran (two-stage single refrigeran sistem) seperti yang di tunjukkan pada gambar Pada sistem ini, rasio kompresi kompresor pada tiap tahap dapat diset pada daerah yang sesuai dengan spesifikasi kompresor yang digunakan, sehingga temperatur discharge menjadi normal. Namun demikian, batasan temperatur yang dapat dicapai hanya berkisar antara -50 hingga -70 o C, tergantung pada spesifikasi refrigeran yang digunakan [Stegmann, 2000]. Lebih lanjut, penggunaan refrigeran tunggal pada daerah cakupan temperatur yang luas mengakibatkan tekanan evaporator dan volume suction yang sangat rendah atau sangat tinggi tekanan di kondenser [P.K Bansal, 2007]. Gambar Sistem refrigerasi dua tahap dengan satu refrigeran (two-stage single refrigeran sistem) (Singh, 2010). Refrigeran standar tidak dapat beroperasi pada suhu yang sangat rendah karena tekanan saturasi-nya pada suhu rendah menjadi terlalu rendah. Jika tekanan saturasi kurang dari 21 in Hg vacum / 4 psia (28 kpa) maka uap refrigeran akan sangat sedikit yang ditarik ke dalam kompresor. Densitas uap juga sangat rendah

38 22 pada tekanan ini, sehingga aliran massa rendah refrigeran yang mengalir melalui sistem menjadi sangat rendah [Stegmann, 2000]. Refrigeran yang digunakan untuk temperatur rendah pada umumnya dipilih refrigeran yang memiliki tekanan dan densitas uap yang tinggi pada kondisi temperatur yang sangat rendah [ASHRAE, 2006]. Sistem refrigerasi cascade digunakan untuk mengatasi permasalahan dari sistem dengan refrigeran tunggal. Hal ini terjadi karena pada sistem refrigerasi cascade terdiri dari dua sirkuit terpisah, yang masing-masing menggunakan refrigeran sesuai dengan cakupan temperatur yang hendak dicapai [ASHRAE, 2006]. 2.4 SISTEM REFRIGERASI CASCADE Sistem refrigerasi cascade terdiri dari dua sistem refrigerasi siklus tunggal. Sistem pertama disebut high-stage (HS) dan sistem kedua disebut low-stage (LS). Pada prinsipnya efek refrigerasi yang dihasilkan oleh evaporator HS dimanfaatkan untuk menyerap kalor yang dilepas oleh kondenser LS sehingga dihasilkan temperatur yang sangat rendah pada evaporator LS (ASHRAE, 2006). Penggunaan siklus ini banyak diaplikasikan dibidang industri yang pada dasarnya ditujukkan untuk mencapai temperatur evaporator yang sangat rendah. Secara teoritis sistem refrigerasi cascade menjanjikan keunggulan dalam hal penghematan kebutuhan daya kompresor sekaligus meningkatkan kapasitas refrigerasi apabila dibandingkan dengan sistem pendinginan tunggal (Cengel dan Boles, 1998). Untuk mencapai temperatur yang sangat rendah maka dibutuhkan pula perbedaan tekanan yang sangat tinggi, yang berarti kerja kompresor yang semakin berat. Kompresor yang memiliki perbedaan tekanan yang sangat tinggi memiliki efisiensi yang buruk atau rendah. Hal ini mengakibatkan efisiensi dari sistem refrigerasi juga menjadi rendah. Untuk itulah diciptakan sistem refrigerasi yang terdiri dari dua tingkat yang disebut cascade dimana kerja kompresi ditopang oleh dua kompresor dengan perbedaan tekanan yang berbeda. Dengan sistem ini selain bisa menghasilkan temperatur yang sangat rendah juga menghasilkan sistem refrigerasi yang lebih efisien. Hal ini bisa dilihat pada gambar 2.2 dimana dengan

39 23 sistem cascade kerja kompresor dapat dikurangi, sedangkan kapasitas pendinginan dapat ditingkatkan. Hal ini menyebabkan meningkatnya COP dari sistem refrigerasi cascade ini. Gambar Two Stage Cascade Refigeration Cycle (Sumber: Refrigerant & Air Conditioning, EE IIT, Kharagpur, India) 2.5 PEMILIHAN REFRIGERAN Refrigeran merupakan fluida kerja pada sistem refrigerasi atau pompa kalor. Refrigeran ini berfungsi menyerap kalor dari suatu lingkungan yang dikondisikan dan membuangnya ke lingkungan yang lain, hal ini dilakukan melalui proses evaporasi (penguapan) dan kondensasi (pengembunan). Pemilihan refrigeran merupakan kompromi antara beberapa sifat-sifat termodinamik seperti tidak dapat terbakar (non-flammable) dan tidak beracun saat digunakan. Selain itu harga, ketersediaan, efisiensi, dan kecocokan dengan pelumas kompressor dan bahan-bahan dari komponen-komponen sistem refrigerasi juga harus diperhatikan. Pengaruh refrigeran terhadap lingkungan apabila refrigeran tersebut bocor dari suatu sistem harus pula dipertimbangkan (Calm dan Didion, 1998). Untuk mencapai suhu pendinginan sekitar -80 o C pada sirkuit temperatur tinggi dapat menggunakan refrigeran yang umum digunakan misalnya ammonia (R717), Propana (R290), Propilen (R1270), Isobutana (R600a) atau R404A (Getu et all 2008). Hal ini karena pada sistem refrigerasi cascade umumnya di sirkuit temperatur tinggi temperatur evaporasi berkisar antara -15 sampai dengan -40 o C, yang hal ini disesuaikan menurut variasi tekanan dalam sirkuit temperatur rendah

40 24 sehingga kompresor dari tiap sirkuit dapat bekerja pada daerah tekanan yang biasanya digunakan pada sistem refrigerasi (Wu et all, 2007). Sedangkan untuk temperatur rendah, dipilih refrigeran tekanan tinggi dengan densitas uap yang tinggi, karena densitas ini diperlukan agar supaya kompresor yang dibutuhkan jauh lebih kecil untuk menyediakan kapasitas yang diperlukan agar setara jika menggunakan refrigeran standar (ASHRAE, 2006 dan Stegmann, 2000). Selama ini R13 dan R503a merupakan refrigeran yang paling umum dipakai. Namun demikian, refrigeran ini termasuk refrigeran CFC, yang menurut Protokol Montreal bagi negara berkembang, paling lambat pada 2015 sudah tidak dapat dipergunakan lagi (Montreal Protocol, 1987). Sehingga, refrigeran alternatif yang lain harus segera ditemukan untuk menggantikannya. Beberapa alternatif refrigeran ditunjukkan gambar 2.16, refrigeran yang masih mengandung chlorine masih digunakan sebagai transisi yang untuk jangka menengah akan digantikan oleh refrigeran bebas chlorine (Bitzer International, 2004). Gambar2.16. Survei umum refrigeran alternatif (Bitzer International, 2004) Alternatif penggunaan golongan refrigeran HFC (Hydro-fluoro-carbon) seperti R23, R508B dan R508A untuk menggantikan R13 untuk jangka panjang kini sedang dipermasalahkan. Hal ini berkaitan dengan kontribusi HFC terhadap efek rumah kaca (Wu et all, 2007). Oleh karena itu, untuk jangka panjang perlu

41 25 dicari refrigeran alternatif baru bebas terhadap zat halogen dan gas rumah kaca yang diarahkan pada penggunaan refrigeran-refrigeran alamiah semisal karbon dioksida (CO 2 ), ammonia atau hidrokarbon (Lorentzen, 1995). Karena ramah terhadap lingkungan, karbon dioksida dirasa masih lebih menguntungkan dibandingkan dengan amonia atau hidrokarbon. Hal ini dikarenakan refrigeran karbon dioksida murah dan sesuai dengan pelumas dan peralatan pada sistem refrigerasi (Cox, 2007). Sebagian besar penelitian awal refrigeran karbon dioksida difokuskan pada aplikasi pengkondisian udara di bidang otomotif di mana kebocoran refrigeran secara langsung telah menjadi kontributor yang signifikan untuk pemanasan global (Kim et al., 2004). Pada tahun 1990, Prof Gustav Lorentzen mengeluarkan paten untuk sebuah sistem transcritical karbon dioksida di AC mobil (Pearson, 2005). Analisa teoritis dan eksperimantal pada Two-stage transcritical carbon dioxide cycle untuk aplikasi pengkondisian udara juga telah dilakukan oleh Cavallini et al. (2008). Selanjutnya analisa disain dan eksperimental yang dilakukan oleh Cecchinato et al. (2010) membahas mengenai masalah tekanan optimal karbon dioksida. Studi eksperimen yang dilakukan oleh Tao et al. (2010) pada sistem trans-kritis CO 2 untuk aplikasi pengkondisian udara menunjukkan bahwa kinerja-nya dipengaruhi kerugian pendinginan saat proses throttling. Kerugian di katup ekspansi ini selanjutnya dibuktikan lebih lanjut melalui analisa energetik (Tao et al., 2010). Oleh karena itu dalam rangka meningkatkan kinerja sistem pengkondisian udara yang menggunakan CO 2, Lee et al. (2011), mengadakan eksperimen studi pada variasi geometri ejector untuk mendapatkan parameter desain yang optimal. Bagaimanapun juga, prospek untuk siklus transcritical CO 2 masih memerlukan penelitian yang cukup panjang, hal ini terkait dengan masih perlu banyak inovasi yang simultan pada komponen sistem, terutama untuk mengontrol tekanan yang tinggi dan mengembangkan evaporator microchannel untuk mengatasi pembekuan dan kondensasi saat distribusi refrigeran tidak merata (Kim et al., 2004). Adapun solusi trans-kritis CO 2 lebih sesuai untuk iklim dingin, sedangkan sistem cascade NH 3 -CO 2 memiliki konsumsi energi terendah di iklim

42 26 panas. Namun demikian, kedua sistem tersebut merupakan alternatif yang baik untuk sistem R404A untuk sistem refrigerasi di supermarket (Sawalha, 2008). Untuk mencapai suhu pendinginan sekitar -80 o C pada sistem refrigerasi cascade dua tingkat, penggunaan karbon dioksida sebagai refrigeran dibatasi oleh tingginya tekanan dan tingginya temperatur triple (5,2 bar dan 56,6 o C). Tekanan dan temperatur dalam sistem refrigerasi tidak boleh lewat dibawah tekanan dan temperatur triple (gambar 2.17), apabila CO 2 berada dibawah tekanan dan temperatur triple maka, dry ice CO 2 akan terbentuk dan hal ini tidak diinginkan (Reinholdt. Et all, 2007), karena kristal dry ice CO 2 yang terbentuk akan menyumbat pipa evaporator sehingga mengganggu kesetabilan aliran refrigeran. Hal inilah yang membatasi penggunaan karbon dioksida untuk sirkuit temperatur rendah pada sistem refrigerasi cascade. Solusi untuk mengatasi kekurangan ini diantaranya adalah mencampurkan CO 2 dengan refrigeran lain, yang memiliki tekanan kritis yang lebih rendah dari CO 2 sehingga dapat secara efektif mengurangi tekananco Deg.C supercritical Solid Gambar Diagram p-h karbon dioksida (Campbell, 2007 ) Studi simulasi campuran CO 2 dengan HFC telah dilakukan oleh Nicola et all. (2005), menyatakan bahwa campuran CO 2 dengan HFC dapat dipergunakan

43 27 untuk aplikasi temperatur dibawah triple point CO 2 murni. Namun, karena HFC masih tergolong Global Warming Potential, maka perlu ada alternatif yang lain yakni mencampur CO 2 dengan hidrokarbon. Adapun eksperimen yang dilakukan Niu dan Zhang (2007) pada campuran CO 2 dan propana hanya mencapai temperatur minimum 72 o C, karena pada temperatur yang lebih rendah refrigeran campuran CO 2 dan propana akan terjadi kristalisasi. Hidorkarbon yang biasanya digunakan untuk temperatur sangat rendah adalah etana. Etana memiliki performa dan efek refrigerasi yang lebih baik untuk aplikasi temperatur rendah dibandingkan R23 [Rahadiyan 2007]. Etana juga merupakan salah satu refrigeran alami yang memiliki keunggulan dalam hal kinerja dan tekanan kritisyang lebih rendah (4.87MPa) dari CO 2 sehingga dapat secara efektif dapat untuk mengurangi tekanan CO 2. Berdasarkan permodelan matematika untuk rasio campuran CO 2 dan etana yang dilakukan oleh Nui dan Zhang (2007) diketahui bahwa, selama CO 2 kurang dari 50% dalam fraksi massa, dapat digunakan hingga temperatur evaporasi -80 o C tanpa terjadi kristalisasi. Seperti halnya dengan refrigeran hidrokarbon lainnya, kelemahan etana adalah sifat mudah terbakar. Sifat mudah terbakar suatu zat dinyatakan dalam Flammable Limit. Sebuah campuran udara dengan bahan bakar hanya akan terbakar pada konsentrasi campuran antara batas bawah mudah terbakar (Lower Flammable Limit/LFL) atau batas atas mudah terbakar (Upper Flammable Limit) dari campuran tersebut. LFL menggambarkan komposisi campuran bahan bakar (dalam hal ini hidrokarbon) paling sedikit yang masih dapat menyalakan api, sedangkan batas atas mudah terbakar (UFL) merupakan komposisi terbanyak yang yang masih dapat menyalakan api. Adapun untuk Lower ExplosiveLimit (LEL)atau Upper ExplosiveLimit (UEL) memiliki arti yang sama dengan Lower Flammable Limit atau Upper Flammable Limit (Bjerketvedt at al., 1992) Batas mudah terbakar di udara tergantung pada suhu awal dan tekanan. Table 2.1 menunjukkan beberapa nilai mudah terbakar (flammability) beberapa hidrokarbon pada kondisi uji standar adalah 20 C dan 1 atm.

44 28 Tabel 2.1Nilai mudah terbakar (flammability) beberapa hidrokarbon (engineeringtoolbox.com) Hidrokarbon "Lower Explosive atau Flammable Limit" (LEL/LFL) (%) "Upper Explosive atau Flammable Limit" (UEL/UFL) (%) n-butana 1,86 8,41 Etana 3 12,4 Ethylin 2,75 28,6 Isobutana 1,8 9,6 Metana 5 15 n-heptana 1,0 6,0 n-hexana 1,25 7,0 n-pentana 1,4 7,8 iso-pentana 1,32 9,16 Propane 2,1 10,1 Propylene 2,0 11,1 Nilai LEL/UEL dari campuran berbagai hidrokarbon dapat dihitung menggunakan hukum Le Chatelier, yang menyatakan sebagai [Branan, 2002]: L m = 100 / (x 1 /L 1 + x 2 /L x i / L i )% (vol) (2.1) dimana: L m L i = Nilai LEL/UEL campuran gas = Nilai LEL/UEL komponen i

45 29 x i = Konsentrasi komponen i pada campuran gas. Salah satu cara untuk mengurangi sifat mampu bakar etana adalah dengan mencampur etana dengan gas yang tidak dapat terbakar (gas inert). Salah gas inert tersebut adalah CO 2. Apabila etana dicampurkan dengan CO 2, maka penambahan ini akan mengurangi konsentrasi etana dalam campuran tersebut, dan selanjutnya akan mengisolasi oksigen sehingga mengurangi mampu bakar (flammability) etana (Niu et al. 2007). Niu et al. (2007) menyatakan bahwa pada campuran CO 2 etana komposisi 2/8 dalam fraksi massa, telah terjadi penurunan batas ledakan (Explosive Limit/EL) yang signifikan dari yang semula perbandingan batas ledakan bawah dan batas ledakan atas pada etana murni bernilai 3,0/12,4 menjadi 3,5/14,3. Studi eksperimen lebih lanjut yang dilakukan oleh Ilminnafik (2010) menyatakan bahwa campuran hydrocarbon yang telah ditambah CO 2 sebesar 20%. akan berpengaruh terhadap penurunan kecepatan pembakaran. Berdasarkan hal tersebut maka diketahui bahwa semakin besar penambahan karbon dioksida faktor keselamatan juga akan meningkat secara signifikan. Oleh karena itu perlu dicari komposisi campuran karbon dioksida dan etana yang mampu mencapai temperatur -80 o C, namun memiliki flammability yang serendah mungkin. Berdasarkan hal tersebut diatas, studi analisa teoritis yang dilanjutkan dengan validasi eksperimen pada campuran CO 2 dan etana sampai saat ini masih belum dilakukan. Oleh karena itu, penelitian ini dilakukan dengan tujuan untuk menentukan komposisi campuran CO 2 dan etana yang stabil pada temperatur evaporasi temperatur -80 o C dan memiliki mampu bakar (flammability) yang rendah dalam sirkuit temperatur rendah pada sistem refrigerasi cascade.

46 30 BAB 3 RANCANGAN ALAT UJI DAN PROSEDUR PENGUJIAN 3.1 ALAT DAN KOMPONEN PENGUJIAN Dalam melakukan pengujian alat yang digunakan untuk menganalisa pengaruh temperatur di alat penukar kalor sistem refrigerasi cascade pada aplikasi temperatur rendah. menggunakan sistem refrigerasi cascade yang berada di laboratorium pendingin lantai 3 (tiga) Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia (DTM FTUI). Gambar 3.1. Skematik alat pengujian

47 31 Gambar 3-1 menunjukan skematik dari alat penguji dari sistem refrigerasi cascade. Pemasangan alat ukur tekanan (pressure transmitter) dan temperatur (thermocouple) masing-masing di 4 (empat) titik pada high stage maupun low stage yang berbasis komputer dengan menggunakan software labview, penggunaan variasi pipa kapiler sebagai alat ekspansi, perubahan layout pipa sistem refrigerasi cascade, serta pemasangan sitrans FC siemens massflo mass 6000 yang digunakan untuk mengukur laju ukuran massa pada low stage. Gambar 3.2. Wiring diagram pada sistem refrijerasi cascade Wiring diagram pada sistem refrigerasi cascade dapat dilihat pada gambar 3.2, 3 (tiga) mini circuit breaker (MCB) dipasang masing-masing sebagai power utama, kompresor highstage, dan kompresor lowstage. Dimana arus yang terbaca pada amper meter merupakan arus dari masing-masing kompresor akan tetapi pada power meter arus yang tebaca merupakan arus gabungan dari kompresor high stage dan kompresor low stage. Sehingga daya yang di baca adalah daya total dimana daya kompresor high stage dan kompresor low stage. Power utama untuk menyalakan seluruh sistem tergabung, setelah power utama ditekan maka tombol yang aktif selanjutnya adalah kompresor pada bagian high stage dan oleh karenanya jika tombol kompresor low stage ditekan tanpa menyalakan kompresor high stage dan maka kompresor low stage tidak akan menyala, karena aliran listrik tidak langsung terhubung pada kompresor low stage melainkan melalui kompresor high stage terlebih dahulu.

48 32 Condensing Unit Condensing Unit merupakan bagian dari sistem refrigerasi yang didalamnya terdapat kompresor, liquid receiver, kondensor. Kompresor merupakan bagian terpenting dari sistem refrigerasi, yaitu berfungsi untuk memompa refrigeran yang berbentuk uap dari evaporator sehingga menimbulkan perbedaan tekanan dan mengalirkan refrigeran dalam sebuah sistem refrigerasi. Liquid receiver adalah alat yang berfungsi sebagai penampung refrigeran dari kondensor dan memastikan bahwa yang keluar adalah refrigeran berfase cair. Kondensor berfungsi sebagai media pemindah kalor dari refrigeran ke lingkungan untuk mencairkan uap refrigeran yang bertekanan dan bertemperatur tinggi dari kompresor. Gambar 3.3Condensing unit sirkuit temperatur tinggi dan temperatur rendah Tabel 3.1 Spesifikasi kompresor pada kondensing unit Spesifikasi High Stage Low Stage Merk/Model : Tecumseh / CAJ9480T Tecumseh / CAJ9480T Tipe : Hermatik Hermatik Daya : 3/4 hp 1 hp

49 33 Refrigeran : R22 R22 Voltage : 220V - 240V/50Hz 220V - 240V/50Hz Pelumas : Sintetis Sintetis Dimensi : Panjang : 23 cm Lebar : 15 cm Tinggi : 30 cm Panjang : 23 cm Lebar : 15 cm Tinggi : 30 cm Tabel 3.2 Spesifikasi kondenser pada kondenser unit Spesifikasi Kondenser Tipe : Shell and coils water cooled kondenser Material : Pipa tembaga, Polycarbonat Dimensi : Panjang : 32 cm Lebar : 9 cm Tinggi : 28 cm Gambar 3.4Kondenser pada kondensing unit

50 34 Cascade Heat Exchanger Cascade heat exchanger atau alat penukar kalor merupakan komponen dari sistem refrigerasi cascade dalam mentransfer kalor dari low stage ke high stage, dimana pada highstage alat ini sebagai evaporator, sedangkan untuk pada lowstage alat ini sebagai kondenser. Berikut spesifikasi alat penukar kalor yang digunakan pada proses pengujian sistem refrigerasi cascade. Tabel 3.3 Spesifikasi heat exchanger Spesifikasi Heat Exchanger Tipe : Double pipe Material : Pipa tembaga Dimensi : Panjang :32cm Lebar Tinggi : 19 cm : 27,5 cm Gambar 3.5Alat penukar kalor cascade Alat Ekspansi Dalam pengujian yang dilakukan, alat ekspansi yang digunakan adalah needle valve. Penggunaan needle valve ini didasari karena tekanan suction LS dibutuhkan lebih besar dari tekanan lingkungan agar refrigeran yang akan di uji

51 35 dapat masuk dalam jumlah dan tekanan yang cukup untuk pengujian konsentrasi komposisi. Tabel 3.4 Spesifikasi alat ekspansi Spesifikasi High Stage Low Stage Tipe : Swagelok Kapiler 1,2,3, dan 6 meter Diameter : 3/8 inch 0,064 inch, 0,54 inch Gambar 3.6 Alat ekspansi Khusus untuk alat ekspansi pada sistem low stage digunakan pipa kapiler dengan diameter inch dan inch dengan variasi panjang pipa masingmasing 6 m, 3m, dan 1m. Untuk memastikan diameter pipa kapiler yang digunakan sesuai dengan spesifikasi yang dibutuhkan, maka digunakan alat ukur diameter dalam pipa kapiler. Penggunaan alat ukur diameter pipa kapiler ini sangat sederhana, hanya dengan memasukkan alat ukur tersebut ke dalam diameter pipa kapiler. Jika alat ukur tersebut sudah masuk ke dalam pipa kapiler maka pipa kapiler tersebut sudah sesuai dengan spesifikasi yang dibutuhkan.

52 36 Gambar 3.7 Alat Ukur Diameter Dalam Pipa Kapiler Filter Dryer Filterdryer merupakan suatu alat yang berfungsi untuk menyaring partikel-partikel kecil seperti serpihan logam, plastik, dan debu yang dapat membahayakan bagi kerja kompressor. Selain itu alat ini juga bermanfaat untuk menangkap uap air yang dapat menghambat proses perpindahan kalor serta membahayakan kompressor, filterdryeryang digunakan dalam pengujian ini adalah : Gambar3.8Filter dryer Tabel 3.5 Spesifikasi filter dryer Spesifikasi Filter Dryer Tipe : Emerson/EK 163 Refrigeran : CFC, HCFC dan HFC

53 37 Dimensi : Panjang :17,46 cm Lebar : 6,67 cm Akumulator Akumulator merupakan sebuah bejana yang berfungsi untuk memastikan bahwa tidak ada refrigeran yang masuk ke dalam kompresor dengan fasa cair. Karena cairan merupakan fluida tak mampu mampat, masuknya cairan kedalam kompresor dapat menyebabkan kerusakan pada kompresor. Pada sistem akumulator ditempatkan di antara alat ekspansi dan suctionline kompresor, kapasitas akumulator diharuskan minimal 50% dari kapasitas refrigeran dalam sistem. Gambar 3.9 Akumulator Tabel 3.6 Spesifikasi akumulator Spesifikasi Akumulator Tipe : Emerson/A-AS 464 Refrigeran : CFC, HCFC dan HFC Dimensi : Panjang :31,5 cm Diameter : 10,5cm

54 38 Oil separator Oil separator berfungsi untuk memastikan pelumas yang digunakan kompresor untuk kembali ke crankcase kompresor. Sebelum masuk ke kondenser, campuran pelumas dan refrigeran masuk ke inletoilseparator dan melalui serangkaian buffle yang menyebabkan partikel pelumas terkumpul kemudian jatuh ke bagian bawah oilseparator. Pelumas yang telah dipisahkan dari refrigeran dikembalikan ke crankcase dengan prinsip perbedaan tekanan pada oil separator dan crankcase. Karena tekanan pada oil separator lebih tinggi dibandingkan tekanan pada crankcase. Oil separator pada sistem terletak diantara dischargeline kompresor dan kondenser. Pada alat uji ini digunakan 2 (dua) unit oil separator pada high stage dan low stage. Tabel 3.7 Spesifikasi oil separator Spesifikasi Oil Separator Gambar 3.10 Oil separator Tipe : Asian First Brand Refrigeran : CFC, HCFC dan HFC Dimensi : Panjang : 26,04 cm Diameter : 10,16 cm

55 39 Pipa Tembaga Pipa tembaga merupakan medium tempat mengalirnya refrigeran pada sistem dari satu bagian ke bagian lainnya. Pipa tembaga dipilih dengan pertimbangan bahwa material ini memiliki konduktivitas termal yangcukup tinggi sehingga memiliki perpindahan panas yang cukup baik. Gambar 3.11 Pipa tembaga Pipa tembaga yang digunakan merupakan pipa tembaga pabrikan Australia. Pertimbangan dalam pemilihan pipa tersebut karena pipa Australia memiliki sifat fisik yang lebih kuat dibanding merk lain. Dalam percobaan ini digunakan 2 (dua) macam diameter pipa tembaga, yaitu diameter 3/8 inch dan 1/4 inch. Shut Off Valve Gambar 3.12 Shut off valve Penggunaan shutoff dalam percobaan ini diperlukan dalam charging sistem atau proses pemasukan refrigeran. Penggunaan shut off valve dapat memudahkan dalam proses pemasukan refrigeran. Shut off valve yang digunakan berukuran ¼ inch hal ini disesuaikan dengan drat yang ada pada selang refrigeran yang digunakan. Penggunaan shut off valve lainnya adalah pada variasi kapiler.

56 40 Hal ini bertujuan agar dalam proses pengujian tidak bongkar pasang. Bongkar pasang pada sistem mengakibatkan kehilangan banyak refrigeran. Selain itu keuntungannya dalam menggunakan shut off valve adalah selama pengujianvariasi pipa kapiler, kandungan refrigeran dalam sistem memiliki komposisi yang sama. Evaporator Pada pengujian ini evaporator yang digunakan evaporator fin dan tube. Di dalam kabin ini terdapat evaporator yang berfungsi untuk mendinginkan temperatur dalam kabin. Temperatur pada kabin kemudian dimonitor menggunakan termokopel yang dihubungkan pada komputer. Tabel 3.8 Spesifikasi evaporator Spesifikasi Evaporator Gambar 3.13 Evaporator sirkuit temperatur rendah Tipe Dimensi : Fin and tube Panjang 33 cm : Lebar 5 cm Tinggi 15 cm Material : Tembaga dan alumunium

57 41 Alat Ukur Untuk mendapatkan unjuk kerja dari sistem refrigerasi cascade maka pada sistem dipasang beberapa alat ukur yang diperlukan. Berikut adalah spesifikasi alat ukur yang digunakan pada pengujian sistem refrigerasi cascade. Pressure Gauge Tekanan gage (pressure gauge) ini dipasang dengan tujuan memudahkan dalam pengetesan kebocoran dan pemvakuman sistem. Tabel 3.9 Spesifikasi pressure gauge Spesifikasi Pressure Gauge Range : High pressure : 0 35 bar Low pressure : 0 bar Gambar : Gambar 3.14 Pressure gauge Pressure Transmitter Gambar 3.15 Pressure transmitter

58 42 Tabel 3.10 Spesifikasi pressure transmitter Spesifikasi PressureTransmitter Pabrikan : General electric Tipe : Druck PTK 1400 Range : 0 40 bar absolute Analog Output : 4 20 ma Akurasi : 0.15 % Untuk mengukur tekanan yang bekerja pada siklus refrigerasi cascade, pressure transmitter diletakan pada 4 (empat) titik. Untuk mengukur tekanan di tiap titik kita menggunakan pressure transmitter yang datanya kemudian di informasikan melalui labview. Pressure transmitter ditempatkan di 4 (empat) titik highstage dan low stage. Titik-titik tersebut yaitu pada discharge line, sunction line, keluaran kondenser, dan keluaran dari alat ekspansi. Kemudian data hasil pembacaan dari pressure transmitter diinformasikan oleh labview. Termokopel Untuk mengetahui temperatur yang ada pada sistem, alat ukur yang digunakan adalah termokopel tipe K dengan sensor yang masuk ke dalam refrigeran. Kemudian data yang terbaca pada sensor termokopel di konversikan oleh perangkat lunak labview untuk memudahkan dalam proses pengambilan dan penyimpanan data.

59 43 Gambar 3.16 Termokopel Tabel 3.11 Spesifikasi termokopel Spesifikasi Termokopel Tipe : K Range : C C Akurasi : +/- 1 0 C Coriolis Alat ini digunakan untuk mengukur laju massa dari refrigeran pada low stage. Karena coriolis hanya dapat dilakukan pada fluida dengan fasa gas, maka alat ini ditempatkan diantara evaporator dan suction. Tabel 3.12 Spesifikasi coriolis Spesifikasi Coriolis Model : Yokogawa W1010 Volt/Freq : 230/50 Gambar :

60 44 Gambar 3.17 Coriolis Komputer Komputer merupakan alat penunjang dalam pengujian sistem refrigerasi cascade. Komputer digunakan sebagai alat penerima sinyal dari data akusisi dan penyimpan data pengujian. Komputer yang digunakan memiliki port USB dan terinstal perangkat lunak konversi tegangan dan ampere (Labview 8.5). Tabel 3.13 Spesifikasi komputer Spesifikasi Komputer Model : Intel Pentium 4 Dual Core CPU E5400 2,7 GHz Tipe : 2 GB of RAM Jenis : Microsoft XP service pack 2 Output : 4 port USB Software : Notepad, NI dan Labview 8.5

61 45 Gambar 3.18 Komputer Selain komputer, berikut adalah perangkat lain yang terhubung sebagai alat penunjang pengujian. Perangkat Lunak Labview Dalam memudahkan dalam pembacaan dan pengmbilan data baik itu data temperatur, tekanan maupun data yang dihasilkan powermeter maka dalam pengujian ini menggunakan software labview, dengan ini kita dapat melakukan pengambilan data secara otomatis.

62 46 Gambar 3.19 Tampilan front pannel dan block diagram labview Pada gambar 3.19 diatas merupakan tampilan dari perangkat lunak labview. Front panel merupakan menu pada labview yang berfungsi menampilkan informasi yang diterima dari data akuisisi. Informasi yang didapatkan dapat berupa grafik ataupun informasi numerik dari sistem cascade yang dibuat diagram alirnya pada block diagram. Data Akuisisi National instrument merupakan data akuisisi yang digunakan untuk melakukan pengukuran dalam sistem ini, dalam pengujian ini digunakan 4 (empat) panel dimana 1 (satu) panel dengan tipe 9211 untuk pressure transmitter dan 3 (tiga) panel untuk termokopel. Nantinya data dari national instrument ini

63 47 akan di konversikan ke dalam bentuk digital dengan bantuan software labview, sehingga data yang kita peroleh, terukur dengan akurat. Tabel 3.14 Spesifikasi National Instrument Spesifikasi National Instrument Model : 9211 dan 9203 Tipe Dimensi : 4 panel : Panjang 9 cm; Lebar 3 cm;tinggi 7 cm Gambar : Gambar 3.20 DAQ NI Power supply Power supply digunakan untuk memberikan supply tegangan pada instrumen dan alat ukur. Pada cascade, supply tegangan diperlukan untuk memberikan tegangan pada data akusisi dan pressure transmitter. Besar tegangan supply untuk kedua komponen tersebut tidak boleh melebihi tegangan maksimal komponen.

64 48 Gambar 3.21 Power supply Power supply yang digunakan pada alat uji memiliki spesifikasi, sebagai berikut : Tabel 3.15 Spesifikasi power supply Spesifikasi Power Supply Model Tipe Jenis Output : Nagoya : D30 2T : Digital dual output power supply : Arus (A) dan tegangan (V) Refrigeran Refrigeran R290 merupakan fluida kerja yang digunakan pada sisi highstage. Hal ini dikarenakan pada pengujian sebelumnya R290 dinilai cukup optimal dalam sistem refrigerasi cascade yang digunakan.sedangkan untuk low stage fluida yang digunakan adalah R744 dan R170 dengan highpurity (99,99%).

65 49 Gambar 3.22 Tabung refrijeran R290, R744 dan R TES KEBOCORAN Setelah semua sistem pemipaan serta komponennya terpasang, maka terlebih dahulu dilakukan tes kebocoran dengan tujuan agar pada saat dijalankan sistem berjalan dengan baik tanpa adanya kebocoran. Kebocoran pada sistem dapat menurunkan performa dari sistem tersebut. Adapun prosedurnya adalah sebagai berikut : 1. Unit dalam keadaan mati (off). 2. Sistem diisi dengan gas CO 2 hingga tekanan ± 20 bar. 3. Sistem pemipaan di tes kebocoran dengan menggunakan busa sabun. 4. Tandai setiap tempat yang menjadi indikasi kebocoran, untuk dapat diperbaiki. 5. Perbaiki kebocoran. 6. Tandai tekanan yang ada, kemudian tunggu hingga beberapa jam, jika tekanan tersebut berkurang maka ulangi dari langkah ke-3 hingga tekanan dipastikan tidak ada penurunan lagi. 3.3 VACUUM SISTEM Setelah dipastikan tidak ada kebocoran dalam sistem maka proses selanjutnya adalah melakukan evakuasi sistem menggunakan pompa vakum, langkah ini dimaksud untuk memastikan sistem tidak mengandung uap air. Langkah-langkah dalam vacuum sistem adalah sebagai berikut:

66 50 1. Unit sistem dalam keadaan mati (off). 2. Hubungkan selang manifold gauge pada suction kompresor dan pompa vakum. 3. Nyalakan pompa vakum hingga pada jarum pada pressure gauge menunjukan angka dibawah 0 bar (± 30 menit). 4. Tutup katup manifold gauge dan pompa vakum. 5. Matikan pompa vakum. Gambar 3.23 Pompa vakum 3.4 CHARGING SISTEM Setelah proses evakuasi sistem dengan menggunakan pompa vakum selesai maka dilanjutkan dengan pengisian refrigeran ke dalam sistem sesuai dengan kebutuhan. Prosedurnya adalah sebagai berikut : 1. Unit sistem dalam keadaan mati (off). 2. Hubungkan selang manifold gauge pada suction kompresor dan tabung refrigeran yang sebelumnya telah ditimbang terlebih dahulu.

67 51 Gambar 3.24 Timbangan digital 3. Shut off valve pada sistem dalam keadaan tertutup, kemudian buka katup pada refrigeran. 4. Flashing refrigeran beberapa saat. 5. Kemudian pastikan selang manifold gauge pada suction kompresor terpasang dengan kencang. 6. Buka perlahan-lahan shut off valve sambil memperhatikan pembacaan timbangan, sesuai dengan berat refrigeran yang masuk kedalam sistem tercapai. 3.5 TAHAPAN PENGUJIAN DAN PENGAMBILAN DATA Adapun prosedur pengambilan data ini adalah sebagai berikut : Langkah Persiapan: 1. Nyalakan seluruh komponen elektrik. 2. Nyalakan komputer, kemudian hubungkan kabel USB Power Meter dan National Instrument. 3. Buka shut off valve pada variasi pipa kapiler yang di uji. 4. Hidupkan MCB utama dari sistem pada panel. Langkah Pengujian: 1. Buka program perangkat lunak labview. 2. Jalankan program. 3. Pada detik ke-10 tekan icon save untuk menjalankan proses penyimpanan data.

68 52 4. Pada detik ke-20 nyalakan high stage. 5. Pada detik ke-1000 nyalakan low stage. 6. Tunggu hingga detik ke (pengujian dilakukan selama ± 3jam). 7. Untuk pengambilan berbagai variasai dibutuhkan waktu steady 10 menit untuk disimpan. 8. Matikan program labview. 9. Matikan low stage, high stage, dan power utama secara berurutan. 10. Matikan komputer. 11. Pengujian selesai. 3.6 PEMBERIAN BEBAN HEATER Pemberian beban pendinginan pada kabin evaporator low system dilakukan dengan mengatur dimmer dan disesuaikan dengan besarnya Watt yang diinginkan. Gambar 3.25 Dimmer Gambar 3.26 Amperemeter

69 53 Tabel 3.16 Spesifikasi Ampere meter Spesifikasi Ampere Meter Model : HIOKI Tipe : Jenis : Power : Use as a single-phase power meter or power factor meter (3 kw to 660 kw) Stacked alkaline battery (6LR61, 6LF22) Amperemeter digunakan untuk mengukur ampere pada heater sekaligus daya heater yang digunakan. Prosedur untuk memberikan beban heater pada kabin evaporator sistem refrijerasi cascade adalah sebagai berikut : 1. Tunggu sampai grafik pada Labview menunjukan pada kondisi yang datar dan tidak ada perubahan atau dalam keadaan steady state 2. Jepit salah satu kabel heater untuk membaca seberapa besar ampere yang terbaca, amper terbaca secara induksi oleh amperemeter. 3. Jepit masing-masing kabel heater oleh penjepit amperemeter yang terhubung langsung dengan kabel pada amperemeter. 4. Besarnya daya yang diberikan pada heater dapat dilihat pada amperemeter. 5. Setelah sistem dipastikan dalam keadaan steady state lalu putar dimmer sehingga display pada panel menunjukan angka seberapa besar tegangan yang diberikan pada heater. 6. Atur putaran dimmer hingga mendapatkan daya yang diinginkan. Masingmasing daya dalam pengujian ini 30, 60, 90, 120, dan 150 Watt

70 54 BAB 4 HASIL DAN PEMBAHASAN 4.1 Properties Refrigeran pada Sirkuit Temperatur Rendah (LS) Properties refrigeran campuran karbondioksida/ethane (R744/R170) dengan fraksi massa berturut-turut 30% dan 70% dengan total massa 220 gram (sumber: REFPROP 8.0): Tabel 4.1 Critical Properties Refrigeran Campuran R744/R170 Estimated Critical Properties Temperatur Pressure 24,845 [ C] 53,859 [bar] kontroldensity 243,08 [kg/m 3 ] Sedangkan properties dari karbondioksida dan ethane sendiri adalah (sumber: REFPROP 8.0): Tabel 4.2 Properties dari Karbon dioksida dan Ethane Karbondioksida Ethane Critical Temperature 30,9 [ C] [ C] Critical Pressure 73,8 [bar] [bar] Critical Density 467,6 [kg/m³] [kg/m³] Minimum Temperature -56,6 [ C] [ C] Maximum Temperature 1726,9 [ C] [ C] Maximum Pressure 8000 [bar] 10000[bar]

71 55 Maximum Density 1638,9 [kg/m³] [kg/m³] Dari tabel diatas bisa dilihat adanya perubahan properties saat ethane dan karbondioksida dicampur. Terjadi penurunan critical temperature menjadi 24,845 C dan critical pressure berubah menjadi 53,859 bar dibandingkan dengan karbondioksida sebelum dicampur. Dalam pengambilan data ini tekanan awal out kapiler HS diatur pada tekanan sekitar 2 bar pada saat mesin bekerja dan variasi beban yang digunakan adalah 30, 60, 90, 120, dan 150 Watt dengan diameter pipa kapiler dan inch. 4.2 Analisa Pengaruh Panjang dan Diameter Pipa Kapiler terhadap Sistem Cascade Tanpa Diberikan Beban Pada percobaan ini, variasi panjang pipa kapiler yang digunakan adalah 6m dan 3 m pada setiap diameternya. Sedangkan massa yang digunakan pada percobaan ini sebesar 220 g. Untuk mengetahui karakteristik sistem cascade ini, data yang didapat diubah ke dalam bentuk grafik untuk membandingkan data pada setiap titik pengambilan data Analisa Pengaruh Pipa Kapiler terhadap Laju Aliran dan Temperatur Masuk Evaporator LS Temperatur In Evap LS [C] Pipa Kapiler Inch 6m Pipa Kapiler Inch 3m Pipa Kapiler Inch 6m Pipa Kapiler Inch 3m -85 Mass Flow [g/min] Gambar 4.1 Grafik Perbandingan Temperatur In Evap LS dengan Mass Flow

72 56 Dari gambar di atas menunjukkan bahwa perubahan panjang serta diameter pipa kapiler sangat berpengaruh terhadap temperatur masuk evap LS dan laju aliran refrigerant pada sistem. Gambar di atas menunjukkan bahwa penurunan temperatur masuk evap LS akan memperlambat laju aliran refrigerant sistem. Penurunan temperatur evap LS ini diakibatkan oleh penurunan tekanan yang dihasilkan oleh pipa kapiler dimana penurunan tekanan ini akan menghasilkan temperatur yang rendah dimana semakin kecil diameter pipa kapiler maka semakin rendah temperature yang dihasilkan. Selain itu, penurunan temperature evap LS juga diakibatkan oleh panjangnya diameter pipa kapiler yang digunakan dimana semakin panjang pipa kapiler yang digunakan akan menambah penurunan tekanan. Dari gambar di atas dapat dilihat bahwa temperature evap ls yang menghasilkan temperature paling rendah adalah yang menggunakan pipa kapiler dengan diameter terkecil dan panjang terbesar, yaitu pipa kapiler inch dengan panjang 6m. Selain itu dapat dilihat pula temperature evap LS yang dihasilkan pipa kapiler inch 3m berdekatan dengan temperature yang dihasilkan pipa kapiler inch 6m. Sehingga dapat dikatakan bahwa untuk mencapai temperature yang sama dengan diameter pipa kapiler yang lebih kecil tidak membutuhkan panjang kapiler yang sama. Dari grafik di atas dapat dilihat bahwa untuk pressure drop sangat dipengaruhi oleh panjang dan diameter pipa kapiler serta dipengaruhi oleh mass flow/ laju aliran dari refrigerant. Hal ini sudah sesuai dengan persamaan pressure drop, yaitu : Dimana : p = pressure drop (Pa) v f L = kecepatan / velocity (m/sec) = koefisien gesek = panjang pipa kapiler (m) = massa jenis refrigerant (kg/m 3 ) D = diameter dalam pipa kapiler (m)

73 57 Tabel 4.3 Tabel Hasil Percobaan Diameter (inch) Panjang (m) T ini Evap LS -81, , , ,5484 T Kabin -79, , , ,0736 Mass Flow 41, , , ,1344 Dari tabel di atas dapat dilihat bahwa penambahan diameter pipa akan menurunkan besarnya pressure drop yang dihasilkan sehingga temperature kabin yang dihasilkan akan lebih tinggi dibandingkan dengan diameter yang lebih kecil. Selain itu panjang pipa kapiler juga sangat berpengaruh terhadap temperature kabin yang dihasilkan. Sesuai dengan persamaan di atas, dapat dilihat bahwa penambahan panjang pipa kapiler akan berdampak semakin besarnya preassure drop yang akan dihasilkan sehingga temperature kabin yang didapat akan semakin rendah. Selain itu, dari tabel di atas dapat dilihat juga bahwa temperatur kabin pada pipa kapiler diameter inch dengan panjang 3 m hampir sama dengan pipa kapiler diameter inch dengan panjang 6 m. Hal ini telah membuktikan bahwa untuk mencapai temperature pada diameter serta panjang pipa kapiler yang lebih besar dengan menggunakan diameter yang lebih kecil membutuhkan panjang pipa kapiler yang lebih pendek. Sehingga dari karakteristik tersebut dapat disimpulkan bahwa untuk pipa kapiler dengan diameter inch dengan panjang 9 m, dapat diperkirakan temperature kabin yang akan didapat hampir sama dengan temperature kabin dengan pipa kapiler berdiameter inch dengan panjang 6 m.

74 Analisa Pengaruh Pipa Kapiler terhadap Temperatur Masuk Evaporator LS dan Perbedaan Temperatur PHE -22,8-23 Temperatur In Evap HS [C] -23,2-23,4-23,6-23, , Temperatur Out Kond LS [C] Pipa Kapiler Inch 6m Pipa Kapiler Inch 3m Pipa Kapiler Inch 6m Pipa Kapiler Inch 3m Gambar 4.2 Grafik Perbandingan Tekanan In Evap LS dengan Temperatur Out Kond LS Dari gambar di atas menunjukkan bahwa pada penggunaan pipa kapiler inch 3m telah terjadi perbedaan temperature di dalam PHE yang sangat signifikan. Dapat dilihat juga bahwa temperatur masuk evaporator HS tidak mempengaruhi perbedaan temperature yang terjadi di dalam PHE dimana perbedaan temperature ketiga jenis pipa kapiler berada di sekitar 3-4 o C dan hal ini sangatlah wajar. Namun untuk pipa kapiler inch 3m terjadi perbedaan temperature yang sangat besar di dalam PHE. Hal ini di akibatkan mass flow sistem HS tidak dapat mengimbangi massflow sistem LS sehingga refrigerant pada evaporator HS tidak dapat menyerap kalor yang dilepaskan oleh condenser LS. Ketidakmampuan evaporator HS untuk menyerap kalor dari condenser LS tentu saja membuat temperature out condenser LS lebih besar dan menyebabkan terjadinya perbedaan yang cukup signifikan di dalam PHE.

75 Analisa Pengaruh Pipa Kapiler terhadap Tekanan Out Kondenser LS dan Temperatur In Evaporator LS Temperatur In Evap LS [C] Pipa Kapiler Inch 6m Pipa Kapiler Inch 3m Pipa Kapiler Inch 6m Pipa Kapiler Inch 3m -84 Tekanan Out Kapiler LS [bar] Gambar 4.3 Grafik Perbandingan Temperatur In Evap LS dengan Tekanan Out Kapiler LS Pada gambar di atas menunjukkan bahwa tekanan keluar kapiler LS sangat berpengeruh terhadap temperature masuk evaporator LS. Penurunan temperature pada masukan evaporator LS diakibatkan oleh penurunan tekanan pada titik yang sama. Selain itu pengurangan diameter dari inch menjadi inch membuat penurunan tekanan semakin signifikan dimana penurunan tekanan yang signifikan ini menghasilkan temperature masukan evaporator LS yang lebih rendah.

76 Analisa Pengaruh Panjang dan Diameter Pipa Kapiler terhadap Sistem Cascade dengan Diberikan Beban Analisa Pengaruh Pipa Kapiler terhadap Temperatur Kabin Gambar 4.4 Grafik Perbandingan Temperatur Kabin dengan Beban Heater Pada gambar di atas menunjukkan bahwa beban heater dapat mempengaruhi temperature kabin yang di dapat. Pertambahan temperature kabin ini terjadi seiring dengan penambahan beban heater pada kabin. Pada pipa kapiler 6m penurunan temperature kabin terjadi secara linear dimana setiap penambahan beban heater terjadi penurunan temperature sebesar 2 o C. Sedangkan pada pipa kapiler 3m, penurunan temperature kabin terjadi secara polynomial dimana penurunan temperature terjadi secara signifikan pada awal penambahan beban heater dan melambat pada akhir penambahan beban heater.

77 Analisa Pengaruh Pipa Kapiler terhadap Laju Aliran Gambar 4.5 Grafik Perbandingan Mass Flow dengan Beban Heater Pada gambar di atas menunjukkan bahwa penambahan beban heater relative tidak mempengaruhi laju aliran refrigerant pada sistem. Perubahan laju aliran pada sistem sangatlah sedikit. Hal ini dikarenakan penurunan temperature masukan menuju keluaran evaporator sangatlah kecil sehingga tidak terlalu berdampak pada laju aliran sistem. Untuk pipa kapiler 6 m, rata-rata penurunan temperature masukan menuju keluaran evaporator sebesar 1 o C sedangkan untuk pipa kapiler 3m sebesar 0.7 o C.

78 Analisa Pengaruh Pipa Kapiler terhadap Perbedaan Temperatur Evaporator LS Gambar 4.6 Grafik Perbandingan Perbedaan Temperatur Evap LS dengan Beban Heater Pada gambar di atas menunjukkan bahwa penambahan besar beban tidak mempengaruhi perbedaan temperature evaporatpr LS. Hal ini diakibatkan penurunan temperature kabin yang relative konstan yaitu sekitar 2 o C pada pipa kapiler 6m dan sekitar 1 o C untuk pipa kapiler 3m.

79 Analisa Pengaruh Pipa Kapiler terhadap Tekanan Discharge LS Gambar 4.7 Grafik Perbandingan Tekanan Discharge LS dengan Beban Heater Gambar 4.11 menunjukan bahwa tekanan pada discharge ls semakin rendah dengan adanya penambahan panjang pipa kapiler. Pada pipa kapiler dengan panjang 6 meter terlihat kenaikan tekanan sisi keluar kompresor yang tidak terlalu signifikan, namun terlihat jelas pada pipa kapiler dengan panjang 3 meter, dengan bertambahnya beban heater yang diberikan pada kabin evaporator maka semakin bertambah pula tekanannya.

80 Analisa Pengaruh Pipa Kapiler terhadap Tekanan Suction LS Gambar 4.8 Grafik Perbandingan Tekanan Suction LS dan Beban Heater Pada gambar di atas menunjukkan bahwa peningkatan beban heater sangat berpengaruh terhadap tekanan suction LS. Sama dengan tekanan discharge LS, penambahan beban heater akan meningkatkan tekanan pada masukan kompresor LS. Peningkatan tekanan inilah yang akan membuat temperatur pada titik yang sama meningkat pula. Namun peningkatan tekanan suction LS tidak terlalu signifikan jika dibandingkan dengan peningkatan temperature suction LS. Selain itu penambahan panjang pada pipa kapiler membuat tekanan suction menjadi lebih rendah.

81 65 BAB 5 KESIMPULAN DAN SARAN 1.2 KESIMPULAN 1. Temperatur terendah yang dapat dicapai pada masuk evaporator pada sistem cascade dengan campuran refrigeran 154 gr Ethane dan 66 gr CO 2 adalah C. 2. Laju aliran refrigeran pada sistem cascade stabil pada penggunaan massa 220 gr campuran refrigeran. 3. Pada percobaan sistem cascade dengan campuran refrigeran tersebut di atas, panjang dan diameter pipa kapiler memiliki pengaruh terhadap tekanan serta temperature yang dihasilkan pada daerah titik pengambilan data. 4. Pada percobaan sistem cascade dengan campuran refrigeran tersebut diatas, semakin pendek pipa kapiler yang digunakan akan semakin besar tekanan, temperature, serta laju aliran yang dihasilkan. 5. Pemberian beban heater pada setiap variasi pipa kapiler mengakibatkan meningkatnya temperature dan tekanan pada beberapa titik daerah pengambilan data. 1.3 SARAN 1. Penyempurnaan isolasi pada sistem cascade mutlak dilakukan sehingga tidak terjadi banyak loses/kerugian, khususnya pada bagian dinding pipa dan kabin. 2. Penggantian Filter Dryer dengan yang baru agar sistem bekerja lebih optimal. 3. Mengurangi panjang serta jumlah belokan pada pipa sehingga dapat dibuat lebih effisien dan minimalis. 4. Mengganti metode pengelasan untuk belokan pipa dengan menggunakan alat yang bernama bending pipe untuk menghasilkan belokan pipa, sehingga diharapkan dapat megurangi kerugian yang terjadi pada belokan tersebut.

82 66 DAFTAR PUSTAKA ASHRAE Handbook, 2005, Fundamentals (SI), American Society of Heating, Refrigerating, and Air-Conditioning Engineer, Atlanta, Georgia. ASHRAE Handbook, 2006, Refrigeration System and Applications (SI), American Society of Heating, Refrigerating, and Air-Conditioning Engineer, Atlanta, Georgia. Bansal, P.K., Jain, S., 2007, Cascade systems: past, present, and future, ASHRAE Trans. 113 (1), (DA ). Basri Karakteristik Hidraulik dan Thermal Aliran Dua Fase pada Pipa Kapiler. Thesis pascasarja Universitas Hasanuddin. Cox, N., 2007, Working towards more environmentally friendly refrigerant blends, 12th European Conference, Milano, Italy, Juni 8 9. Cengel. Y.A., Boles, M., 1998, Themodynamics an enfineering approach, Third Edition, Mcgraw-Hill, International Edition. Darwin Rio Budi Syaka, Nasruddin, 2008, Analisa Thermodinamika Pemilihan Refrigeran Pada Sistem Refrigerasi Cascade, Seminar Nasional Tahunan Teknik Mesin (SNTTM)-VII, Jurusan Teknik Mesin Fakultas Teknik Universitas Sam Ratulangi, Menado, 4 6 November. Dossat, R.J Principle of Refrigeration, second Edition, John Wiley & sons. New York. Ekadewi AH & Agus L Analisis Pengaruh Pipa Kapiler yang Dililitkan pada Line Suction Terhadap Performansi Mesin Pendingin. Jurnal Teknik Mesin Vol.4. No.2. Oktober 2002 Gettu. H.M, Bansal. P.K, 2008, Thermodynamic analysis of an R744-R717 cascade refrigeration system, International Jurnal of Refrigeration, 31, 45-54

83 67 Kim, M.H., Pettersen, J., Bullard, C.W., 2004, Fundamental process and system design issues in CO2 vapor compression systems, Progress in Energy and Combustion Science 30, Lorentzen, G., 1995, the use of natural refrigerants: a complete solution to the CFC/HCFC predicament, Int. J. Refri 9. Vol. 18, No. 3, pp Singh, J., 2010, Lesson of refrigeration, Version 1 ME, IIT Kharagpur. Stegmann, R., 2000, Practical Guide Low Temperature Refrigeration, Air Conditioning and Refrigeration Journal, Issue: July September. Stoecker.WJ Refrigerasi dan Pengkondisian Udara. Edisi Kedua, Erlangga, Jakarta. Wu, J., Gong, M., Zhang, Y., 2007, Refrigerant mixtures used in the lower temperature stage of two-stage cascade refrigeration systems, USPTO Applicaton #: Class: (USPTO).

84 68 LAMPIRAN

BAB I PENDAHULUAN. This document was created with the trial version of Print2PDF! Once Print2PDF is registered, this message will disappear!

BAB I PENDAHULUAN. This document was created with the trial version of Print2PDF! Once Print2PDF is registered, this message will disappear! BAB I PENDAHULUAN 1.1 LATAR BELAKANG Refrigerasi merupakan proses penyerapan kalor dari suatu medium dengan temperatur lebih tinggi, kemudian memindahkan kalor tersebut ke medium lain yang memiliki temperatur

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

BAB II DASAR TEORI 2012

BAB II DASAR TEORI 2012 BAB II DASAR TEORI 2.1 Pengertian Sistem Brine Sistem Brine adalah salah satu sistem refrigerasi kompresi uap sederhana dengan proses pendinginan tidak langsung. Dalam proses ini koil tidak langsung mengambil

Lebih terperinci

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia BAB II DASAR TEORI 2.1 REFRIGERASI DAN SISTEM REFRIGERASI Refrigerasi merupakan proses penyerapan kalor dari ruangan bertemperatur tinggi, dan memindahkan kalor tersebut ke suatu medium tertentu yang memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

BAB II DASAR TEORI. 2.1 Cooling Tunnel

BAB II DASAR TEORI. 2.1 Cooling Tunnel BAB II DASAR TEORI 2.1 Cooling Tunnel Cooling Tunnel atau terowongan pendingin merupakan sistem refrigerasi yang banyak digunakan di industri, baik industri pengolahan makanan, minuman dan farmasi. Cooling

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu:

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu: BAB II LANDASAN TEORI 2.1 Pendahuluan Refrigerasi adalah proses pengambilan kalor atau panas dari suatu benda atau ruang tertutup untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk dari energi,

Lebih terperinci

HANIF BADARUS SAMSI ( ) DOSEN PEMBIMBING ARY BACHTIAR K.P, ST, MT, PhD

HANIF BADARUS SAMSI ( ) DOSEN PEMBIMBING ARY BACHTIAR K.P, ST, MT, PhD HANIF BADARUS SAMSI (2108100091) DOSEN PEMBIMBING ARY BACHTIAR K.P, ST, MT, PhD Contoh aplikasi di bidang pengobatan biomedis yang membutuhkan temperatur -20 C untuk penyimpanan sampel CFC mengandung ODP

Lebih terperinci

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin Galuh Renggani Wilis, ST.,MT ABSTRAKSI Pengkondisian udara disebut juga system refrigerasi yang mengatur temperature & kelembaban udara. Dalam beroperasi

Lebih terperinci

Performa Sistem Autocascade dengan Menggunakan Karbondioksida sebagai Refrigeran Campuran

Performa Sistem Autocascade dengan Menggunakan Karbondioksida sebagai Refrigeran Campuran Jurnal Rekayasa Proses, Vol. 5, No. 1, 2011 17 Performa Sistem Autocascade dengan Menggunakan Karbondioksida sebagai Refrigeran Campuran Nasruddin, Ardi Yuliono* dan Darwin Rio Budi Syaka Departemen Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Refrigerasi Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Refrigerasi dapat berupa lemari es pada rumah tangga, mesin

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 PERALATAN PENGUJIAN Sistem cascade yang digunakan dalam pengujian ini terdapat di gedung P2M (Salemba). Sebelumnya sistem ini dimanfaatkan untuk mendinginkan komponen pesawat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung (Indirect Cooling System) Sistem pendinginan tidak langsung (indirect Cooling system) adalah salah satu jenis proses pendinginan dimana digunakannya

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump BAB II DASAR TEORI 2.1 Pengertian Sistem Heat pump Heat pump adalah pengkondisi udara paket atau unit paket dengan katup pengubah arah (reversing valve) atau pengatur ubahan lainnya. Heat pump memiliki

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB I PENDAHULUAN Latar belakang

BAB I PENDAHULUAN Latar belakang BAB I PENDAHULUAN 1.1. Latar belakang Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Sistem refrigerasi kompresi uap paling umum digunakan di antara

Lebih terperinci

SISTEM REFRIGERASI. Gambar 1. Freezer

SISTEM REFRIGERASI. Gambar 1. Freezer SISTEM REFRIGERASI Sistem refrigerasi sangat menunjang peningkatan kualitas hidup manusia. Kemajuan dalam bidang refrigerasi akhir-akhir ini adalah akibat dari perkembangan sistem kontrol yang menunjang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Simulator Pengertian simulator adalah program yg berfungsi untuk menyimulasikan suatu peralatan, tetapi kerjanya agak lambat dari pada keadaan yg sebenarnya. Atau alat untuk melakukan

Lebih terperinci

BAB III METODOLOGI PENELITIAN Bahan Penelitian Pada penelitian ini refrigeran yang digunakan adalah Yescool TM R-134a.

BAB III METODOLOGI PENELITIAN Bahan Penelitian Pada penelitian ini refrigeran yang digunakan adalah Yescool TM R-134a. 3.1. Lokasi Penelitian BAB III METODOLOGI PENELITIAN Penelitian ini dilakukan di Laboratorium Motor Bakar Jurusan Teknik Mesin Universitas Sebelas Maret Surakarta. 3.2. Bahan Penelitian Pada penelitian

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori. Gambar 2.1 Florist Cabinet (Sumber Gambar: Althouse, Modern Refrigeration and Air Conditioning Hal.

BAB II DASAR TEORI. BAB II Dasar Teori. Gambar 2.1 Florist Cabinet (Sumber Gambar: Althouse, Modern Refrigeration and Air Conditioning Hal. BAB II DASAR TEORI 2.1 Florist Cabinet Florist cabinet merupakan suatu alat yang digunakan untuk proses pendinginan bunga. Florist cabinet beragam dalam ukuran dan konstruksi. Biasanya florist cabinet

Lebih terperinci

UNIVERSITAS INDONESIA KARAKTERISTIK CAMPURAN KARBON DIOKSIDA DAN ETANA DI SIKLUS TEMPERATUR RENDAH PADA SISTEM REFRIGERASI CASCADE DISERTASI

UNIVERSITAS INDONESIA KARAKTERISTIK CAMPURAN KARBON DIOKSIDA DAN ETANA DI SIKLUS TEMPERATUR RENDAH PADA SISTEM REFRIGERASI CASCADE DISERTASI UNIVERSITAS INDONESIA KARAKTERISTIK CAMPURAN KARBON DIOKSIDA DAN ETANA DI SIKLUS TEMPERATUR RENDAH PADA SISTEM REFRIGERASI CASCADE DISERTASI DARWIN RIO BUDI SYAKA 0806400945 FAKULTAS TEKNIK PROGRAM STUDI

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BAB II DASAR TEORI LAPORAN TUGAS AKHIR. 2.1 Blast Chiller

BAB II DASAR TEORI LAPORAN TUGAS AKHIR. 2.1 Blast Chiller BAB II DASAR TEORI 2.1 Blast Chiller Blast Chiller adalah salah satu sistem refrigerasi yang berfungsi untuk mendinginkan suatu produk dengan cepat. Cara pendinginan produk pada Blast Chiller ini dilakukan

Lebih terperinci

Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin

Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin Azridjal Aziz Program Studi Teknik Mesin, Fakultas Teknik, Universitas Riau Kampus Binawidya Km 12,5

Lebih terperinci

PENDINGINAN KOMPRESI UAP

PENDINGINAN KOMPRESI UAP Babar Priyadi M.H. L2C008020 PENDINGINAN KOMPRESI UAP Pendinginan kompresi uap adalah salah satu dari banyak siklus pendingin tersedia yang banyak digunakan. Metode ini merupakan yang paling banyak digunakan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

PEMAHAMAN TENTANG SISTEM REFRIGERASI

PEMAHAMAN TENTANG SISTEM REFRIGERASI PEMAHAMAN TENTANG SISTEM REFRIGERASI Darwis Tampubolon *), Robert Samosir **) *) Staf Pengajar Teknik Mesin, Politeknik Negeri Medan **) Staf Pengajar Teknik Mesin, Politeknik Negeri Medan Abstrak Refrigerasi

Lebih terperinci

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER No. Vol. Thn.XVII April ISSN : 85-87 KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER Iskandar R. Laboratorium Konversi Energi Jurusan Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Perencanaan pengkondisian udara dalam suatu gedung diperlukan suatu perhitungan beban kalor dan kebutuhan ventilasi udara, perhitungan kalor ini tidak lepas dari prinsip perpindahan

Lebih terperinci

Komponen mesin pendingin

Komponen mesin pendingin Komponen mesin pendingin Berdasarkan fungsi atau kegunaannya komponen mesin pendingin sistem kompresi dibedakan menjadi 2 bagian yaitu : A. Komponen pokok Yang dimaksud dengan komponen pokok adalah komponen

Lebih terperinci

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan 1 BAB I PENDAHULUAN 1.1. Latar belakang Sistem refrigerasi telah memainkan peran penting dalam kehidupan sehari-hari, tidak hanya terbatas untuk peningkatan kualitas dan kenyamanan hidup, namun juga telah

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Air Conditioning (AC) atau alat pengkondisian udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk mengkondisikan

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Pengertian Air Conditioner Air Conditioner (AC) digunakan untuk mengatur temperatur, sirkulasi, kelembaban, dan kebersihan udara didalam ruangan. Selain itu, air conditioner juga

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II DASAR TEORI. This document was created with the trial version of Print2PDF! Once Print2PDF is registered, this message will disappear!

BAB II DASAR TEORI. This document was created with the trial version of Print2PDF! Once Print2PDF is registered, this message will disappear! BAB II DASAR TEORI 2.1 SEJARAH REFRIGERAN Sistem kompresi uap untuk refrigerasi pertama kali dipatenkan pada tahun 1834 oleh Jacob Perkins, seorang warga Amerika, dengan menggunakan ethyl ether sebagai

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem refrigerasi kompresi uap merupakan suatu sistem yang menggunakan kompresor sebagai alat kompresi refrigeran, yang dalam keadaan bertekanan

Lebih terperinci

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W PERBANDINGAN UNJUK KERJA FREON R-2 DAN R-34a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W Ridwan Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas Gunadarma e-mail: [email protected]

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI. 2.1 Tinjauan Pustaka

BAB II DASAR TEORI BAB II DASAR TEORI. 2.1 Tinjauan Pustaka BAB II DASAR TEORI 2.1 Tinjauan Pustaka Untuk memperbaiki kualitas ikan, dibutuhkan suatu alat yaitu untuk menjaga kondisi ikan pada kondisi seharusnya dengan cara menyimpannya didalam sebuah freezer yang

Lebih terperinci

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM : LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC Nama Praktikan : Utari Handayani NPM : 140310110032 Nama Partner : Gita Maya Luciana NPM : 140310110045 Hari/Tgl Percobaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Mesin Pendingin Untuk pertama kali siklus refrigerasi dikembangkan oleh N.L.S. Carnot pada tahun 1824. Sebelumnya pada tahun 1823, Cagniard de la Tour (Perancis),

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA PENGARUH TEMPERATUR EVAPORASI SIRKUIT TEMPERATUR TINGGI PADA SISTEM REFRIGERASI CASCADE YANG MENGGUNAKAN REFRIGERAN CAMPURAN ETHANE DAN KARBON DIOKSIDA SKRIPSI ISWANTO PURNOMO 0906604861

Lebih terperinci

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN 1 Amrullah, 2 Zuryati Djafar, 3 Wahyu H. Piarah 1 Program Studi Perawatan dan Perbaikan Mesin, Politeknik Bosowa, Makassar 90245,Indonesia

Lebih terperinci

DASAR TEKNIK PENDINGIN

DASAR TEKNIK PENDINGIN DASAR TEKNIK PENDINGIN Oleh : Agus Maulana Praktisi Mesin Pendingin HP. 0813 182 182 33 PT Mitra Lestari Bumi Abadi Jl.Gading Indah Raya Blok C No. 25 Kelapa Gading - Jakarta, 14240 Siklus Sistem Mesin

Lebih terperinci

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016 STUDI EKSPERIMENTAL PERFORMANSI MESIN PENDINGIN (AC SPLIT) 1PK DENGAN PENAMBAHAN ALAT AKUMULATOR MENGGUNAKAN REFRIGERAN MC-22 SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN Tahapan-tahapan pengerjaan yang dilakukan dalam penelitian ini adalah sebagai berikut : 1. Tahap Persiapan Penelitian Pada tahapan ini akan dilakukan studi literatur dan pendalaman

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA OPTIMISASI TERMOEKONOMI DAN ANALISIS EXERGY DARI SISTEM REFRIGERASI CASCADE MENGGUNAKAN CAMPURAN REFRIGERAN KARBON DIOKSIDA DAN HIDROKARBON PADA SIRKUIT TEMPERATUR RENDAH SKRIPSI

Lebih terperinci

SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011. Materi Tujuan Ket.

SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011. Materi Tujuan Ket. SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011 No Minggu ke 1 1-2 20 Feb 27 Feb Materi Tujuan Ket. Pendahuluan, Jenis dan Contoh Aplikasi system Refrigerasi Siswa mengetahui

Lebih terperinci

BAB III SIMULASI SISTEM REFRIGERASI

BAB III SIMULASI SISTEM REFRIGERASI BAB III SIMULASI SISTEM REFRIGERASI 3.1 PENDAHULUAN Proses simulasi ini ditujukan untuk memprediksi kinerja sistem refrigerasi tanpa harus menjalankan sistem tersebut melalui eksperimen. Hasilnya dapat

Lebih terperinci

SISTEM REFRIGERASI KOMPRESI UAP

SISTEM REFRIGERASI KOMPRESI UAP SISTEM REFRIGERASI KOMPRESI UAP PADA UNIT PEMBEKUAN DI PT MITRATANI DUA TUJUH, JEMBER Oleh : KHAFID SUDRAJAT F14103081 Di bawah bimbingan : Prof. Dr. Ir. Armansyah H. Tambunan, M.Agr SISTEM REFRIGERASI

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA PENGARUH PERUBAHAN KONSENTRASI KOMPOSISI REFRIGERAN CAMPURAN CO2/ETHANE SEBAGAI REFRIGERAN ALTERNATIF RAMAH LINGKUNGAN DALAM REFRIGERASI CASCADE SKRIPSI INDRA PUTRA TEMAGANGKA 0806368622

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Florist Cabinet Florist cabinet merupakan suatu alat yang digunakan untuk proses pendinginan bunga. Florist cabinet sangat beragam dalam ukuran dan konstruksi. Biasanya florist cabinet

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Penyimpanan Energi Termal Es merupakan dasar dari sistem penyimpanan energi termal di mana telah menarik banyak perhatian selama beberapa dekade terakhir. Alasan terutama dari penggunaan

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian dilakukan pada bulan Januari 2015 sampai Maret Yang

BAB III METODE PENELITIAN. Penelitian dilakukan pada bulan Januari 2015 sampai Maret Yang BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan pada bulan Januari 2015 sampai Maret 2015. Yang meliputi uji coba dan pengolahan data, dan bertempat di Laboratorium Fakultas

Lebih terperinci

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap Azridjal Aziz 1,a* dan Boby Hary Hartanto 2,b 1,2 Jurusan Teknik Mesin, Fakultas Teknik

Lebih terperinci

BAB III METODELOGI PENELITIAN. Data data yang diperoleh dari penulisan Tugas Akhir ini : pendingin dengan refrigeran R-22 dan MC-22.

BAB III METODELOGI PENELITIAN. Data data yang diperoleh dari penulisan Tugas Akhir ini : pendingin dengan refrigeran R-22 dan MC-22. BAB III METODELOGI PENELITIAN 3.1 Metode Penelitian Data data yang diperoleh dari penulisan Tugas Akhir ini : 1. Data dari hasil pengujian Data diperoleh dari hasil pengujian alat praktikum mesin pendingin

Lebih terperinci

Refrigerant. Proses pendinginan atau refrigerasi pada hakekatnya merupakan proses pemindahan energi panas yang terkandung di dalam ruangan tersebut.

Refrigerant. Proses pendinginan atau refrigerasi pada hakekatnya merupakan proses pemindahan energi panas yang terkandung di dalam ruangan tersebut. TEKNIK PENDINGIN Refrigerant Proses pendinginan atau refrigerasi pada hakekatnya merupakan proses pemindahan energi panas yang terkandung di dalam ruangan tersebut. Untuk keperluan pemindahan energi panas

Lebih terperinci

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage BAB 5. HASIL DAN PEMBAHASAN Prinsip Kerja Instalasi Instalasi ini merupakan instalasi mesin pendingin kompresi uap hibrida yang berfungsi sebagai mesin pendingin pada lemari pendingin dan pompa kalor pada

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Skema Oraganic Rankine Cycle Pada penelitian ini sistem Organic Rankine Cycle secara umum dibutuhkan sebuah alat uji sistem ORC yang terdiri dari pompa, boiler, turbin dan

Lebih terperinci

BAB IV HASIL DAN ANALISA

BAB IV HASIL DAN ANALISA BAB IV HASIL DAN ANALISA 4.1 HASIL PENGUJIAN STEADY SISTEM CASCADE Dalam proses pengujian pada saat menyalakan sistem untuk pertama kali, diperlukan waktu oleh sistem supaya dapat bekerja dengan stabil.

Lebih terperinci

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3 BAB II DASAR TEORI 2.1 Pengering Udara Pengering udara adalah suatu alat yang berfungsi untuk menghilangkan kandungan air pada udara terkompresi (compressed air). Sistem ini menjadi satu kesatuan proses

Lebih terperinci

Basic Comfort Air Conditioning System

Basic Comfort Air Conditioning System Basic Comfort Air Conditioning System Manual Book (CAC BAC 09K) 5 PERCOBAAN 32 5.1. KOMPONEN KOMPONEN UTAMA DALAM SISTEM PENDINGIN TUJUAN: Setelah melakukan percobaan ini siswa akan dapat : 1. Memahami

Lebih terperinci

2.1 SEJARAH REFRIGERAN

2.1 SEJARAH REFRIGERAN BAB II DASAR TEORI 2.1 SEJARAH REFRIGERAN Sistem kompresi uap untuk refrigerasi pertama kali dipatenkan pada tahun 1834 oleh Jacob Perkins, seorang warga Amerika, dengan menggunakan ethyl ether sebagai

Lebih terperinci

Analisa Pengaruh Panjang Pipa Kapiler Diameter Inchi pada Mesin Pendingin Autocascade dengan Empat Campuran Refrigeran Hidrokarbon SKRIPSI

Analisa Pengaruh Panjang Pipa Kapiler Diameter Inchi pada Mesin Pendingin Autocascade dengan Empat Campuran Refrigeran Hidrokarbon SKRIPSI Analisa Pengaruh Panjang Pipa Kapiler Diameter 0.028 Inchi pada Mesin Pendingin Autocascade dengan Empat Campuran Refrigeran Hidrokarbon SKRIPSI Deny Eva Tri Pambudi 0806329962 FAKULTAS TEKNIK PROGRAM

Lebih terperinci

BAB II LANDASAN TEORI. 2.1 Sistem Pendinginan Tidak Langsung (Indirect System)

BAB II LANDASAN TEORI. 2.1 Sistem Pendinginan Tidak Langsung (Indirect System) BAB II LANDASAN TEORI 2.1 Sistem Pendinginan Tidak Langsung (Indirect System) Melinder (2010) menjelaskan sistem refrigerasi tidak langsung yang menggunakan secondary refrigerant telah lama banyak digunakan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet BAB II DASAR TEORI 2.1 Blood Bank Cabinet Darah merupakan suatu cairan yang sangat penting bagi manusia karena berfungsi sebagai alat transportasi serta memiliki banyak kegunaan lainnya untuk menunjang

Lebih terperinci

EFEKTIVITAS PENGGUNAAN THERMOSTATIC EXPANTION VALVE PADA REFRIGERASI AC SPLIT. Harianto 1 dan Eka Yawara 2

EFEKTIVITAS PENGGUNAAN THERMOSTATIC EXPANTION VALVE PADA REFRIGERASI AC SPLIT. Harianto 1 dan Eka Yawara 2 EFEKTIVITAS PENGGUNAAN THERMOSTATIC EXPANTION VALVE PADA REFRIGERASI AC SPLIT Harianto 1 dan Eka Yawara 2 Abstract Vapor compression refrigeration is one of refrigeration systems that is most widely used

Lebih terperinci

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008 TERMODINAMIKA II Semester Genap TA 007/008 Siklus Kompresi Uap Ideal (A Simple Vapor-Compression Refrigeration Cycle) Mempunyai komponen dan proses.. Compressor: mengkompresi uap menjadi uap bertekanan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Penyejuk udara atau pengkondisi udara atau penyaman udara atau erkon atau AC (air conditioner) adalah sistem atau mesin yang dirancang untuk menstabilkan suhu udara

Lebih terperinci

Oleh: Daglish Yuliyantoro Dosen Pembimbing: Ari Bachtiar K.P. ST.MT.PhD

Oleh: Daglish Yuliyantoro Dosen Pembimbing: Ari Bachtiar K.P. ST.MT.PhD Oleh: Daglish Yuliyantoro 2107100518 Dosen Pembimbing: Ari Bachtiar K.P. ST.MT.PhD JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 Konvensi Wina dan Protokol

Lebih terperinci

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Oleh : TRI

Lebih terperinci

PENGARUH PENGGUNAAN KATUP EKSPANSI JENIS KAPILER DAN TERMOSTATIK TERHADAP TEKANAN DAN TEMPERATUR PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP HIBRIDA

PENGARUH PENGGUNAAN KATUP EKSPANSI JENIS KAPILER DAN TERMOSTATIK TERHADAP TEKANAN DAN TEMPERATUR PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP HIBRIDA PENGARUH PENGGUNAAN KATUP EKSPANSI JENIS KAPILER DAN TERMOSTATIK TERHADAP TEKANAN DAN TEMPERATUR PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP HIBRIDA Eko Saputra 1, Azridjal Aziz 2, Rahmat Iman Mainil 3 Laboratorium

Lebih terperinci

BAB IV LANGKAH PENGERJAAN

BAB IV LANGKAH PENGERJAAN BAB IV LANGKAH PENGERJAAN 4.1 Peralatan yang Digunakan Sebelum melakukan instalasi hal utama yang pertama dilakukan adalah menyiapkan peralatan. Peralatan yang digunakan pada instalasi sistem refrigerasi,

Lebih terperinci

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy, Pengaruh Kecepatan Udara Pendingin Kondensor Terhadap Kooefisien Prestasi PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy Jurusan

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem Refrigerasi Freezer Freezer merupakan salah satu mesin pendingin yang digunakan untuk penyimpanan suatu produk yang bertujuan untuk mendapatkan produk dengan kualitas yang

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

Studi Eksperimen Pengaruh Panjang Pipa Kapiler dan Variasi Beban Pendinginan pada Sistem Refrigerasi Cascade

Studi Eksperimen Pengaruh Panjang Pipa Kapiler dan Variasi Beban Pendinginan pada Sistem Refrigerasi Cascade JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-593 Studi Eksperimen Pengaruh Panjang Pipa Kapiler dan Variasi Beban pada Sistem Refrigerasi Cascade Aprilia Choirul Lathifah Fuad

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

ANALISA PENGARUH PANJANG DAN DIAMETER PIPA KAPILER TERHADAP PERFORMA SISTEM REFRIGERASI CASCADE

ANALISA PENGARUH PANJANG DAN DIAMETER PIPA KAPILER TERHADAP PERFORMA SISTEM REFRIGERASI CASCADE LAPORAN TUGAS AKHIR ANALISA PENGARUH PANJANG DAN DIAMETER PIPA KAPILER TERHADAP PERFORMA SISTEM REFRIGERASI CASCADE DENGAN REFRIGERAN R-600A DAN R-134A HERU DWI CAHYONO NIM. 201354065 DOSEN PEMBIMBING

Lebih terperinci

PENGARUH ALAT EKSPANSI TERHADAP TEMPERATUR DAN TEKANAN PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP

PENGARUH ALAT EKSPANSI TERHADAP TEMPERATUR DAN TEKANAN PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP PENGARUH ALAT EKSPANSI TERHADAP TEMPERATUR DAN TEKANAN PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP Boby Hary Hartanto 1, Azridjal Aziz 2 Laboratorium Perawatan, Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

BAB V PEMILIHAN KOMPONEN MESIN PENDINGIN

BAB V PEMILIHAN KOMPONEN MESIN PENDINGIN BAB V PEMILIHAN KOMPONEN MESIN PENDINGIN 5.1 Pemilihan Kompresor Kompresor berfungsi menaikkan tekanan fluida dalam hal ini uap refrigeran dengan temperatur dan tekanan rendah yang keluar dari evaporator

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

BAB II DASAR TEORI. 2.1 Air-Water System

BAB II DASAR TEORI. 2.1 Air-Water System BAB II DASAR TEORI 2.1 Air-Water System Kekurangan pada all air system yaitu penggunaannya yang tidak dapat dikontol di tiap-tiap ruangan tertentu karena pada setiap ruangan menggunakan supply air yang

Lebih terperinci

Pengaruh Penggunaan Suction Liquid Heat Exchanger dan Tube in Tube Heat Exchanger Pada Refrigerator Terhadap Daya Kompresor dan Waktu Pendinginan

Pengaruh Penggunaan Suction Liquid Heat Exchanger dan Tube in Tube Heat Exchanger Pada Refrigerator Terhadap Daya Kompresor dan Waktu Pendinginan Pengaruh Penggunaan Suction Liquid Heat Exchanger dan Tube in Tube Heat Exchanger Pada Refrigerator Terhadap Daya Kompresor dan Waktu Pendinginan Ega Taqwali Berman * Jurusan Pendidikan Teknik Mesin, FPTK

Lebih terperinci

IV. METODOLOGI PENELITIAN

IV. METODOLOGI PENELITIAN IV. METODOLOGI PENELITIAN 4.1 Waktu dan Tempat Pengujian dilakukan pada bulan Desember 2007 Februari 2008 bertempat di Laboratorium Energi dan Elektrifikasi Pertanian Institut Pertanian Bogor (IPB) yang

Lebih terperinci

JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: ( Print) B-151

JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: ( Print) B-151 JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: 2337-3539 (2301-9271 Print) B-151 Performansi Sistem Refrigerasi Cascade Menggunakan MC22 Dan R407F Sebagai Alternatif Refrigeran Ramah Lingkungan Dengan Variasi

Lebih terperinci

MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA REFRIGERASI (REF) Koordinator LabTK Dr. Pramujo Widiatmoko

MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA REFRIGERASI (REF) Koordinator LabTK Dr. Pramujo Widiatmoko MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA REFRIGERASI Koordinator LabTK Dr. Pramujo Widiatmoko FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI BANDUNG 2016 Kontributor: Ir. Johnner Sitompul,

Lebih terperinci

REFRIGERAN & PELUMAS. Catatan Kuliah: Disiapakan Oleh; Ridwan

REFRIGERAN & PELUMAS. Catatan Kuliah: Disiapakan Oleh; Ridwan REFRIGERAN & PELUMAS Persyaratan Refrigeran Persyaratan refrigeran (zat pendingin) untuk unit refrigerasi adalah sebagai berikut : 1. Tekanan penguapannya harus cukup tinggi. Sebaiknya refrigeran memiliki

Lebih terperinci

Bab III. Metodelogi Penelitian

Bab III. Metodelogi Penelitian Bab III Metodelogi Penelitian 3.1. Kerangka Penelitian Analisa kinerja AC split 3/4 PK dengan mengunakan refrigeran R-22 dan MC-22 variasi tekanan refrigeran dengan pembebanan terdapat beberapa tahapan

Lebih terperinci