BAB II TEORI DASAR. Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik /

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TEORI DASAR. Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik /"

Transkripsi

1 BAB II TEORI DASAR II.1. Pengenalan Desain Struktur Baja II.1.1. Desain Konstruksi Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / keindahan) dan ilmu pengetahuan (science) untuk menghasilkan suatu struktur yang aman dan ekonomis serta memenuhi fungsi tertentu dan persyaratan estetika. Untuk mencapai tujuan ini, seorang perencana/desainer harus mempunyai pengetahuan yang baik tentang : 1. Sifat sifat fisis material. 2. Sifat sifat mekanis material. 3. Analisa Struktur. 4. Hubungan antara fungsi rancangan dan fungsi struktur. II.1.2. Prosedur Desain Prosedur perencanaan / desain terdiri dari 6 langkah utama, yaitu : 1. Pemilihan tipe dan rancangan struktur. 2. Penentuan besarnya beban beban yang bekerja pada struktur 3. Menentukan gaya gaya dalam dan momen yang terjadi pada struktur. 4..Pemilihan komponen komponen struktur beserta sambungannya yang memenuhi kriteria kekuatan, kekakuan dan ekonomis. 5. Pemeriksaan ketahanan struktur akibat beban kerja. 6. Perbaikan akhir. 18

2 II.1.3. Keunggulan Baja Sebagai Material Konstruksi II Kekuatan Tinggi ( High Strength ) Baja struktural umumnya mempunyai daya tarikan (tensile strength) antara 400 s/d 900 Mpa. Hal ini sangat berguna untuk dipakai pada struktur struktur yang memiliki bentang panjang dan struktur pada tanah lunak. II Keseragaman ( Uniformity ) Sifat sifat baja tidak berubah karena waktu. Hampir seluruh bagian baja memiliki sifat sifat yang sama sehingga menjamin kekuatannya. II Elastisitas ( Elasticity ) Baja mendekati perilaku seperti asumsi yang direncanakan oleh perencana, karena mengikuti hukum Hooke, walaupun telah mencapai tegangan yang cukup tinggi. Modulus elastisitasnya sama untuk tarik dan tekan. II Daktalitas ( Ductility ) Daktalitas adalah kemampuan struktur atau komponennya untuk melakukan deformasi inelastik bolak balik berulang diluar batas titik leleh pertama, sambil mempertahankan sejumlah besar kemampuan daya dukung bebannya. Manfaat daktalitas ini bagi kinerja struktural adalah pada saat baja mengalami pembebanan yang melebihi kekuatannya, baja tidak langsung hancur tetapi akan meregang sampai batas daktalitas. Demikian juga pada beban siklik, daktalitas yang tinggi menyebabkan baja dapat menyerap energi yang besar. II Kuat Patah / Rekah ( Fracture Toughness ) Baja dalah material yang sangat ulet sehingga dapat memikul beban yang berulang ulang. Komponen struktur baja yang dibebani sampai mengalami deformasi besar, 19

3 masih mampu menahan gaya gaya yang cukup besar tanpa mengalami fraktur. Keuletan ini dibutuhkan jika terjadi konsentrasi tegangan walaupun tegangan yang masih dibawah batas yang diizinkan. Pada bahan yang tidak memiliki keuletan yang tinggi, keruntuhan dapat terjadi pada tegangan yang rendah dan akan bersifat getas ( keruntuhan secara langsung ). II.1.4. Kelemahan Baja Sebagai Material Konstruksi II Biaya Perawatan ( Maintenance Cost ) Baja bisa berkarat karena berhubungan dengan air dan udara. Oleh sebab itu, baja harus dicat secara berkala II Biaya Penahan Api ( Fire Proofing Cost ) Kekuatan baja dapat berkurang drastis pada temperatur tinggi. II Kelelahan ( Fatigue ) Kelelahan pada baja tidak selalu dimulai dengan yielding ( leleh ) atau deformasi yang sangat besar, tetapi dapat juga disebabkan beban siklik ataupun pembebanan berulang ulang dalam jangka waktu yang lama. Kejadian ini sering terjadi dengan adanya konsentrasi tegangan karena adanya lubang. II Rekah Kerapuhan Struktur baja ada kalanya tiba tiba runtuh tanpa menunjukkan tanda tanda deformasi yang membesar. Kegagalan ini sangat berbahaya dan harus dihindari. Berbeda dengan kelelahan, rekah kerapuhan disebabkan oleh beban statik. II.1.5. Sifat Sifat Mekanis Baja Struktural Menurut SNI , sifat mekanis baja struktural yang digunakan dalam 20

4 perencanaan suatu struktur bangunan harus memenuhi persyaratan minimum yang diberikan. II Tegangan Putus ( Ultimate Stress ) Tegangan Putus untuk perencanaan (Fu) tidak boleh diambil melebihi nilai yang ditetapkan oleh tabel 1.1 II Tegangan Leleh ( Yielding Stress ) Tegangan Leleh untuk perencanaan (Fy) tidak boleh diambil melebihi nilai yang ditetapkan oleh tabel 1.1 II Sifat Sifat Mekanis Lainnya Sifat sifat mekanis lain baja struktural untuk maksud perencanaan ditetapkan sebagai berikut : Modulus Elastisitas : E = Mpa Modulus Geser : G = Mpa Poisson Ratio : µ = 0.3 Koefisien Pemuaian : α = 12 x 10 ^ -6 / ºC II.1.6. Jenis Jenis Baja Struktural yang Umum Digunakan Fungsi struktur merupakan faktor utama dalam menentukan konfigurasi struktur. Berdasarkan konfigurasi struktur dan beban rencana, setiap elemen atau komponen dipilih untuk menyanggah dan menyalurkan beban pada keseluruhan struktur dengan baik. Adapun jenis jenis baja struktural yang umum digunakan adalah profil baja giling ( rolled steel shape ) dan profil baja yang dibentuk dalam keadaan dingin ( cold formed steel shapes ). 21

5 II.1.7. Hubungan Antara Tegangan dan Regangan pada Konstruksi Baja Dalam peraturan AISC 2005, perhitungan rumus kekuatan nominal (Rn) menggunakan tegangan leleh (Fy) maupun tegangan ultimate (Fu), pemilihan tegangan baik itu Fy maupun Fu didasarkan atas kemampuan struktur mempertahankan stabilitasnya setelah beban maksimum diberikan. Grafik diatas menunjukkan hasil pengukuran hubungan tegangan - regangan dalam percobaan tarik baja. Tipikal grafik tersebut hanya dapat diperoleh pada percobaan tarik baja lunak (mild). Benda uji baja diberikan beban tarik sehingga tegangan baja meningkat dari titik O sampai ke titik A. Ordinat titik A disebut tegangan proporsional (Fp). Hubungan tegangan regangan dari titik awal sampai titik A masih linear. Daerah antara titik O 22

6 dengan titik A disebut juga daerah elastis yang artinya jika suatu bahan baja mengalami tegangan tidak melewati titik A dan apabila dilepaskan, maka baja masih dapat kembali ke bentuk atau panjang semula. Ketika beban diperbesar sehingga tegangan baja sampai ke titik B, maka hubungan tegangan regangan tidak linear lagi. Titik B merupakan titik leleh (Fy) dari baja yang ditandai dengan tegangan yang relatif tidak naik dan regangan yang meningkat. Daerah antara titik A dan titik C merupakan daerah plastis, dimana jika suatu batang baja mengalami tegangan sampai melewati titik A ( masuk kedalam daerah A s/d C ) dan beban dilepaskan, maka baja tidak akan kembali ke panjang semula. Dengan demikian terdapat regangan residu yang disebabkan karena inelastis dari bahan tersebut. Apabila beban diperbesar lagi, maka yang terjadi adalah regangan akan terus meningkat tanpa disertai tegangan. Titik C disebut dengan pengerasan regangan, pada titik C terdapat kenaikan tegangan yang disebabkan karena regangan bahan sudah hampir mencapai maksimum. Bahan masih mampu menahan tegangan tambahan sampai pada titik D, yang disebut dengan tegangan ultimate (Fu). Daerah anatara titik C dan titik D merupakan daerah strain hardening yang ditandai dengan peningkatan tegangan dan regangan setelah melewati batas plastis. Jika beban ditambah samapi melewati batas tegangan ultimate, maka baja akan mengalami kegagalan struktural yang ditandai dengan penurunan tegangan dan regangan yang terus bertambah sampai benda uji putus. 23

7 II.2. Struktur Statis Tertentu dan Statis Tak-tentu Dalam analisa struktur kita mengenal tiga jenis permodelan struktur yaitu balok (beams), portal (rigid frames), atau rangka batang (trusses). Balok adalah jenis struktur yang ditujukan hanya untuk memikul beban transversal. Penyelesaian analisa terhadap suatu balok berupa diagram lintang dan diagram momen. Portal adalah jenis struktur yang tersusun dari elemen-elemen yang terhubung oleh penghubung kaku (misalnya: hubungan las). Penyelesaian analisa terhadap suatu portal berupa variasi gaya aksial, gaya lintang dan momen pada sepanjang elemen-elemennya. Sedangkan rangka batang adalah jenis struktur dimana semua anggota/elemennya dianggap terhubung pada perletakan sendi; dalam hal ini momen dan gaya geser pada setiap elemen diabaikan. Penyelesaian analisa terhadap rangka /batang berupa gaya aksial pada setiap anggota/elemennya. Diagram lintang dan momen balok dapat digambar apabila semua reaksi luarnya telah diperoleh. Dalam telaah tentang keseimbangan sistem gaya-gaya sejajar yang sebidang, telah dibuktikan bahwa jumlah gaya yang tak diketahui pada sembarang benda bebas (free body) yang dapat dihitung dengan prinsip statika tidak bisa lebih dari dua buah. Dalam kasus-kasus balok sederhana, overhang, atau kantilever seperti pada Gambar II.2.1a hingga c, kedua gaya yang tidak diketahui tersebut adalah reaksi R1 dan R2. Pada balok yang bersendi-dalam dua seperti pada Gambar II.2.1d, ada tiga bagian balok yang disatukan pada kedua sendi-dalamnya. 24

8 Alhasil, balok sederhana, overhang dan kantilever serta balok dengan jumlah sendi dalamnya sama dengan jumlah reaksi kelebihannya (jumlah reaksi total dikurangi dua) merupakan struktur statis tertentu. 25

9 Gambar II.2.2 Balok Statis Tak Tentu Namun, jika suatu balok tanpa sendi-dalam, seperti kasus pada umumnya, terletak diatas lebih dari dua tumpuan atau jika ada tambahan jepitan pada satu atau kedua ujungnya, maka akan terdapat lebih dari dua reaksi luar yang harus ditentukan. Persamaan statika hanya memberikan dua jenis kondisi keseimbangan untuk sistem gaya sejajar yang sebidang. Dengan demikian hanya dua reaksi yang dapat diperoleh: semua reaksi lainnya merupakan reaksi kelebihan (redundant reaction). Balok dengan reaksi kelebihan semacam itu disebut balok statis tak-tentu. Derajat ke-taktentu-an ditentukan 26

10 oleh jumlah reaksi kelebihannya tersebut. Balok pada Gambar II.2.2a bersifat statis taktentu berderajat dua karena jumlah Gambar II.2.2 Balok statis tak-tentu. reaksi yang tak diketahui ada empat dan statika hanya bisa memenuhi dua kondisi atau dua persamaan keseimbangan; balok pada Gambar II.2.2b bersifat statis tak-tentu berderajat empat; balok pada Gambar II.2.2c bersifat statis tak-tentu berderajat satu karena balok memiliki lima reaksi dan dua sendi-dalam. Pada kenyataannya, jarang sekali suatu balok dibangun dengan sendi-dalam. Namun, keadaan semacam itu dapat terjadi pada perilaku balok dengan beban yang melebihi daya pikulnya. Suatu kerangka kaku/portal bertingkat satu akan bersifat statis tertentu jika reaksi luarnya hanya tiga, karena persamaan statika hanya menyediakan tiga kondisi keseimbangan untuk sistem gaya sebidang umumnya. Jadi, kedua kerangka kaku pada Gambar II.2.3 bersifat statis tertentu. Akan tetapi jika suatu portal bertingkat satu memiliki lebih dari tiga reaksi luar, portal akan bersifat statis tak-tentu, dan derajat ke- 27

11 taktentu-annya sama dengan jumlah reaksi kelebihannya. Portal bertingkat satu pada Gambar II.2.4a bersifat statis tak-tentu berderajat satu; pada Gambar II.2.4b adalah berderajat tiga. Sebagian besar portal kaku umumnya bersifat statis tak-tentu, sesuai dengan tuntutan efisiensi dan kekokohannya. Semakin banyak tingkat kerangka kaku, semakin bertambah derajat ke-taktentu-annya. Syarat agar suatu rangka batang bersifat statis tertentu adalah bahwa jumlah gaya yang tidak diketahui sekurang-kurangnya tiga dan jumlah batang di dalam rangka batang tersebut adalah 2j r, dimana j sama dengan jumlah titik hubungnya (joints) dan r sama dengan jumlah reaksinya. Jika m adalah jumlah batangnya, kondisi perlu untuk keadaan statis tertentu dapat dituliskan: m = 2j r (II.2.1) (Sumber : Buku Intermediate Structural Analysis hal.5) 28

12 Keabsahan persamaan diatas dapat diamati dengan mengubah persamaan tersebut menjadi m + r = 2j, dimana m + r adalah jumlah gaya yang tidak diketahui dan 2j adalah jumlah persamaan yang bisa diperoleh dengan prinsip statika apabila setiap titik hubungnya kita pandang sebagai suatu benda bebas (free body). Gambar II.2.5 Rangka batang yang memenuhi kondisi perlu untuk bangunan statis tertentu. Selama titik hubung suatu rangka batang berada dalam keadaan seimbang, peninjauan sekumpulan titik hubung (yang manapun) atau seluruh rangka batang sebagai suatu benda bebas tidak akan menghasilkan lagi persamaan keseimbangan bebas lainnya. Namun 29

13 demikian, agar suatu rangka batang bersifat statis tertentu dan stabil. m buah anggota yang dimaksudkan di dalam persamaan m = 2j r haruslah diatur secara bijaksana, artinya semua reaksi dan gaya aksial di dalam setiap batang harus dapat ditentukan. Maka pada Gambar II.2.5a dan b bersifat statis tertentu dan stabil, sedangkan pada Gambar II.2.5c rangka batang meskipun memenuhi persamaan, tetapi bersifat statis tak stabil. Apabila suatu rangka batang memiliki sekurang-kurangnya tiga reaksi yang tak diketahui dan jumlah batangnya, m dan lebih besar dari 2j r maka rangka batang bersifat statis tak tentu dan derajat ke-taktentu-annya, yakni i, menjadi i = m (2j r) (II.2.2) Jadi, rangka batang pada Gambar II.2.6a merupakan rangka batang statis tak-tentu berderajat dua, pada Gambar II.2.6b dan c merupakan rangka batang statis tak-tentu berderajat tiga. II.3. Kinematisme struktur Selain pengklasifikasian struktur statis tertentu atau statis tak-tentu, kita juga dapat mengklasifikasikan permodelan struktur berdasarkan kinematismenya. Kinematisme adalah pergerakan atau perubahan yang mungkin terjadi akibat pembebanan statis ataupun dinamis. Beberapa jenis kinematisme yang kita kenal dalam analisa struktur yaitu perpindahan vertikal, horisontal dan angular. Jenis-jenis kinematisme ini bekerja hanya pada titik diskrit. Sebagai contoh, permodelan struktur portal sederhana bertingkat satu seperti pada Gambar II.3.1 termasuk ke dalam struktur kinematis tak-tentu berderajat empat. Derajat ke-taktentu-an kinematis ini ditentukan berdasarkan jumlah perpindahan yang mungkin terjadi akibat pembebanan statis. Pada 30

14 titik B, akibat gaya W1akan menyebabkan titik B berpindah sebesar u1 dan akibat W2 dan W3 akan mengakibatkan putaran sudut pada titik B sebesar θ1. Demikian juga pada titik C, terjadi dua jenis perpindahan yaitu u2 dan θ2. Dengan demikian, jumlah perpindahan yang mungkin terjadi adalah empat sehingga permodelan struktur ini memiliki 4 derajat ke-taktentu-an secara kinematis. Derajat ke-taktentu-an kinematis sering juga disebut juga sebagai Degree Of Freedom (DOF). II.4. Metode Perencanaan Konstruksi Baja II.4.1. Metode ASD ( Allowable Stress Design ) Metode ASD (Allowable Stress Design) merupakan metode yang paling konvensional dalam perencanaan konstruksi. Metode ini menggunakan beban servis sebagai beban yang harus dapat ditahan oleh material konstruksi. Agar konstruksi aman maka harus direncanakan bentuk dan kekuatan bahan yang mampu menahan beban tersebut. Tegangan maksimum yang diizinkan terjadi pada suatu konstruksi saat beban servis bekerja harus lebih kecil atau sama dengan tegangan leleh (σy). Untuk memastikan bahwa tegangan yang terjadi tidak melebihi tegangan leleh (σy) maka diberikan faktor keamanan terhadap tegangan izin yang boleh terjadi. σσ σσ FFFF ΩΩ σσ(ii.4.1) Dimana : σσ= Tegangan Terjadi (MPa) σσ = Tegangan Izin (MPa)... ΩΩ = Safety Factor 31

15 FFFF = Tegangan Leleh Baja (Mpa) Besaran faktor keamanan yang diberikan lebih kurang sama dengan 1,5 ; sehingga boleh dipastikan bahwa tegangan maksimum yang diizinkan terjadi adalah 2/3 Fy yang berarti juga akan terletak pada daerah elastis. Perencanaan memakai ASD akan memberikan penampang yang lebih konvensional. II.4.2. Metode LRFD ( Load Resistance Factor Design ) Metode LRFD ( Load Resistance Factor Design ) lebih mementingkan perilaku bahan atau penampang pada saat terjadinya keruntuhan. Seperti kita ketahui bahwa suatu bahan (khususnya baja) tidak akan segera runtuh ketika tegangan yang terjadi melebihi tegangan leleh (Fy), namun akan terjadi regangan plastis pada bahan tersebut. Apabila tegangan yang tejadi sudah sangat besar maka akan terjadi strain hardening yang mengakibatkan terjadinya peningkatan tegangan sampai ke tegangan runtuh / tegangan ultimate (FU). Pada saat tegangan ultimate dilampaui maka akan terjadi keruntuhan bahan. Metode LRFD umumnya menggunakan perhitungan dengan menggunakan tegangan ultimate (FU) menjadi tegangan izin, namun tidak semua perhitungan metode LRFD menggunakan tegangan ultimate (FU) ada juga perhitungan yang menggunakan tegangan leleh (Fy), terutama pada saat menghitung deformasi struktur yang mengakibatkan ketidakstabilan struktur tersebut. Metode LRFD menggunakan beban terfaktor sebagai beban maksimum pada saat terjadi keruntuhan. Beban servis akan dikalikan dengan faktor amplikasi yang tentunya lebih besar dari 1 dan selanjutnya akan menjadi beban terfaktor. Selain itu kekuatan nominal (kekuatan yang dapat ditahan bahan) akan diberikan faktor resistansi juga 32

16 sebagai faktor reduksi akibat dari ketidak sempurnanya pelaksanaan dilapangan maupun di pabrik. ξξξξ = φφrr nn (II.4.2) Dimana : ξξ = LLLLLLLL FFFFFFFFFFFF P = Beban Servis (kn) φφ = Faktor Resistansi RR nn = Kekuatan Nominal Bahan (kn) Besaran faktor resistansi berbeda beda untuk setiap perhitungan kekuatan yang ditinjau, misalnya : untuk kekuatan tarik digunakan faktor reduksi 0,9 dan untuk kekuatan tekan digunakan faktor reduksi 0,75. Dapat dilihat bahwa untuk penampang yang sama hasil kekuatan nominal yang akan didapat dari metode LRFD akan lebih tinggi dari metode ASD. II.5. Teori Metode Elemen Hingga (FEM) Balok cellular yang merupakan material baja yang nonlinear dapat di analisismelalui rumus pendekatan yang berdasarkan metode elemen hingga. FEM merupakansalah satu metode yang digunakan untuk menghitung gaya-gaya dalam yang terjadidalam suatu komponen struktur. Finite element methode juga dapat dipakai untukperhitungan struktur, fluida, elektrik, static, dinamik, dan lain-lain. FEM juga dikenalsebagai metode kekakuan atau displacement methode karena yang didapat terlebih dahulu dari perhitungan adalah perpindahan baru kemudian mencari gaya batang. Dikarenakan perhitungan matematis yang kompleks, FEM secara utama dikembangkan untuk deformasi linear yang kecil dimana matriks kekakuan konstan.pada kasus deformasi yang besar, matriks kekakuan dan gaya dalam menjadi fungsi dari 33

17 perpindahan. Nonlinear FEM digunakan untuk memperbaiki parameter materialdari pandangan pelat elastis yang tinggi. Dalam bab ini, dikembangkan model FEM nonlinear untuk deformasi geometri yang besar. dalam hal ini akan digunakan suatu model untuk memperbaiki deformasi yang ada pada struktur balok. Suatu balok merupakan suatu batang, yang berarti satu dimensi lebih besardari dua elemen struktur yang dapat menahan gaya transversal pada perletakan yangada. Balok yang umum dapat digunakan sebagai struktur tersendiri ataudikombinasikan untuk membentuk struktur portal bangunan yang umum digunakan pada bangunan dan dapat digunakan pada varisai beban secara luas dengan berbagaiarah. Karena kita bekerja pada gambaran struktur 2D, maka digunakan suatu balok sederhana yang membentuk suatu balok 3D di bawah pengaruh gaya yang dipakai pada balok. II.5.1. Deskripsi Model Matematis. Euler-Bernoulli beam (EB) teori secara luas digunakan untuk memodelkandeformasi yang kecil. Timoshenko beam (TB) teori memperluas persamaan EB untukmemperjelas untuk efek nonlinear seperti geser. Untuk lebih teliti, elemen kinematikpada balok dijelaskan dengan 3 dof per node yaitu perpindahan aksial pada sumbu X(Ux), perpindahan transversal pada sumbu Y (Uy) dan rotasi pada penampangmelintang (θ). Teori EB mengasumsikan bahwa penampang melintang meninggalkan gaya normal untuk membentuk sumbu longitudinal, di mana TB menghapus kendala normal dengan memperkenalkan deformasi geser. Sebagai tambahan, kedua teori mengacuhkan perubahan dimensi dari bentuk penampang balok yang mengalami deformasi. Teori TB dapat digunakan untuk perilaku geometri nonlinear 34

18 akibat perpindahan dan perputaran yang besar. walaupun lebih kompleks teori TB yang muncul agar lebih efisien dalam hal perhitungan FEM. Balok tersebut dibagi menjadi beberapa bagian ( elemen hingga ). elemenelemenbalok lurus dan memiliki 2 node. Maka dikumpulkan semua nodal dof kedalam sistem vektor dof yang dinamakan vektor tetap : UU = [uuuu1 uuuu1 θθ1 uuuuuu uuuuuu θθθθ] TT (II.5.1.1) Dalam hal ini, diasumsikan untuk mengetahui material properti dari modelyang ada seperti E modulus elastisitas, G yaitu modulus geser. Materialnya masihtetap linear elastis. gaya-gaya yang ada bekerja pada node balok yang dikumpulkan untuk membentuk vektor gaya yaitu : ff = [ffff1 ffff1 ff θθ1 ffxxxx ffffff ff θθθθ ] TT (II.5.1.2) dengan n adalah total jumlah node yang ada pada model balok Regangan merupakan suatu ukuran untuk mengubah bentuk objek, dalam halini yaitu panjang, sebelum dan sesudah terjadi deformasi yang diakibatkan beberapabeban yang ada. Tegangan adalah distribusi gaya-gaya dalam per satuan luas yangseimbang dan bereaksi terhadap gaya luar yang terjadi pada balok. Dalam kasus teoritb, ada tiga perbedaan komponen tegangan per elemen balok : regangan aksial yangdiukur berdasarkan besar ukuran balok ( e ), regangan geser yang diukur berdasarkanperubahan sudut antara dua garis pada balok sebelum dan sesudah deformasi ( γ ),dan ukuran perubahan kurva ( k ). Dari hal di atas, dapat dikumpulkan menjadi suatuvektor regangan balok secara umum : h TT = [ ee 1 γγ 1 kk 1 ee nn 1 γγ nn 1 kk nn 1 ] (II.5.1.3) 35

19 Resultan tegangan pada teori TB ditentukan gaya aksial N, gaya lintang Vdan momen lentur M per satuan luas dari penampang melintang. Resultan tegangansecara umum : zz = [ NN 1 VV 1 MM 1 NN nn 1 VV nn 1 MM nn 1 ] (II.5.1.4) Di mana n-1 adalah jumlah dari elemen balok. Energi regangan dalam model sepanjang balok dapat ditulis sebagai integralpanjang: UU = LL ZZ TT hddxx (II.5.1.5) Di mana L adalah panjang balok. Vektor gaya dalam bisa didapat dengan mengambilvariasi pertama dari energi regangan sehubungan dengan perpindahan nodal : PP = = LL BBTT (uu)zzzzzz (II.5.1.6) Persamaan ini dievaluasi dengan penggabungan satu titik Gauss. B adalahmatrik regangan-perpindahan. akhirnya, variasi pertama pada gaya dalammendefinisikan matriks kekakuan tangensial : KK TT = = BBTT LL + ZZ dddd = (KK MM + KK GG ) (II.5.1.7) Di mana KT adalah kekakuan material dan KG adalah kekakuan geometri. Kekakuanmaterial adalah konstan dan identik dengan matriks kekakuan linear pada balokeuler-bernoulli C1. kekakuan geometri mendatangkan variasi dari B dimanaresultan tegangan tetap dan membawa balok nonlinear pada deformasi geometri yangbesar. II.6. Pembebanan Beban adalah gaya luar yang bekerja pada suatu struktur. Pada umumnya penentuan besarnya beban hanya merupakan perkiraan. Meskipun beban yang bekerja pada suatu 36

20 lokasi dari struktur dapat diketahui secara pasti, namun distribusi beban dari elemen ke elemen lainnya umumnya memerlukan asumsi dan pendekatan. Jenis beban yang biasa diperhitungkan pada perencanaan struktur bangunan antara lain sebagai berikut: II.6.1Beban Mati Menurut (peraturan pembebanan Indonesia,1983), beban mati merupakan berat dari semua bagian dari suatu struktur yang bersifat tetap selama masa layannya, termasuk segal unsur tambahan, penyelesaian-penyelesaian, mesin-mesin serta peralatan tetap yang merupakan bagian yang tidak terpisahkan dari struktur tersebut. Yang termasuk beban mati adalah berat struktur sendiri dan juga semua benda yang tetap pada posisinya selama struktur berdiri. Beban mati tetap berada pada struktur dan tidak berubah sesuai dengan sistem struktur dan material yang digunakan. Tabel II berat bangunan berdasarkan SNI F No Konstruksi Berat Satuan 1 Baja 7850 Kg/m 3 2 Beton Bertulang 2400 Kg/m 3 3 Beton 2200 Kg/m 3 4 Dinding pas. Bata ½ bt 250 Kg/m 3 5 Dinding pas. Bata 1 bt 450 Kg/m 3 6 Curtain wall + rangka 60 Kg/m 3 7 Cladding + rangka 20 Kg/m 3 8 Pasangan Batu kali 2200 Kg/m 3 9 Finishing lantai (tegel) 2200 Kg/m 3 10 Plafon + penggantung 20 Kg/m 3 11 Mortar 2200 Kg/m 3 12 Tanah, Pasir 1700 Kg/m 3 13 Air 1000 Kg/m 3 14 Kayu 900 Kg/m 3 15 Aspal 1400 Kg/m 3 16 Instalasi Plumbing 50 Kg/m 3 37

21 II.6.2Beban Hidup Menurut (Peraturan Pembebanan Indonesia, 1983), beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu struktur termasuk bebanbeban pada lantai yang berasal dari berat manusia, barang-barang yang dapat berpindah, mesin-msin serta peralatan yang tidak merupakan bagian yang tidak terpisahkan dari struktur dan dapat diganti selama masa layan dari struktur tersebut sehingga menyebabkan perubahan dalam pembebanan lantai dan atap tersebut. Khusus untuk atap, beban hidup dapat termasuk beban yang berasal dari air hujan, baik akibat genangan maupun akibat tekanan jatuh butiran air. Tabel II beban hidup menurut kegunaan Berdasarkan SNI F Beban Hidup Lantai Bangunan Besar Beban Perkantoran, Ruang kuliah, Hotel, Asrama, Dll 250 Kg/m 2 Tangga dan Bordes 300 Kg/m 2 Beban Pekerja 100 Kg/m 2 Lantai Atap 100 Kg/m 2 II.6.3Beban Angin Menurut (Peraturan Pembebanan Indonesia, 1983), beban angin dadalah semua beban yang bekerja pada struktur atau bagian struktur yang disebabkan oleh selisih dalam tekanan udara. Tekanan angin di Indonesia adalah 80 kg/m 2 pada bidang tegak sampai setinggi 20 m. Beban angin yang bekerja terhadap struktur adalah menekan dan menghisap struktur dan sulit diprediksi. Faktor-faktor yang mempengaruhi daya tekan dan hisap angin terhadap struktur adalah kecepatan angin, kepadatan udara, permukaan bidang dan bentuk dari struktur. Beban angin sangat bergantung dari lokasi dan ketinggian dari struktur. Besarnya tekanan tiup harus diambil minimum sebesar 25 kg/m 2, kecuali untuk bangunan-bangunan berikut: 38

22 Pinggir laut hingga 5 km dari pantai minimum tekanan tiup 40 kg/m 2 Bangunan di daerah yang tekanan tiupnya lebih dari 40 kg/m 2, harus diambil sebesar P= -v 2 /16 Kg/m 2. V adalah kecepatan angin dalam m/s Untuk cerobong, tekanan tiup dalam kg/m harus ditentukan dengan rumus (42,4+0,6h) dengan h adalah tinggi cerobong seluruhnya. Koefisien angin yang diambil untuk struktur tertutup dengan sudut pangkal atap dinyatakan dengan β adalah sebagai berikut: o β < 22` untuk bidang lengkung dipihak angin - Pada seperempat busur pertama -0,6 - Pada seperempat busur kedua -0.7 o β < 22` untuk bidang dibelakang angin - Pada seperempat busur pertama -0,5 - Pada seperempat busur kedua -0.2 o β < 22` untuk bidang lengkung dipihak angin - Pada seperempat busur pertama -0,5 - Pada seperempat busur kedua -0.6 o β < 22` untuk bidang lengkung dibelakang angin - Pada seperempat busur pertama -0,4 - Pada seperempat busur kedua

23 II.7. Castellated Beam Castellated beam merupakan suatu profil baja yang mempunyai bukaan berbentuk segi enam. Castellated mengalami proses pemotongan pada bagian badan profil dengan pola zigzag salah satu bagian yang telah dipotong lalu diangkat dan disatukan bagian badannya dan terakhir dilakukan pengelasan pada bagian badan yang menempel; hal ini dilakukan untuk meningkatkan tinggi dari profil awal (h) dengan tinggi potongan yang ada (d). Bentuk castellated beam ditampilkan dalam gambar II.7.1 Gambar II.7.1. proses pembentukan castellated beam Adapun keuntungan dari penggunaan castellated beam. Keuntungan yang utama yaitu meningkatkan kekakuan lentur secara vertikal; castellated beam telah dib uktikan lebih efisien untuk beban medium pada bentang panjang dimana perencanaannya dikontrol dengan kapasitas momen dan lendutan. Balok castellated, karena rasio kuat tariknya yang tinggi dengan berat dan pemeliharaan yang kecil, kadang-kadang secara menguntungkan dapat menggantikan penggunaan girder. Mereka digunakan dalam bangunan bertingkat, bangunan komersial dan bangunan industri, dan juga untuk rangka 40

24 portal. Keuntungan balok castellated juga mencakup penampilan mereka yang mengesankan dan memungkinkan penggunaan daerah bukaan untuk pelayanan instalasi. Adapun juga kerugian dari penggunaan balok castellated. Akibat adanya bukaan pada bagian badan profil, perilaku struktur dari balok casatellated akan berbeda dari balok baja yang biasa. Karena perbedaan kemungkinan moda kegagalan atau moda kegagalan yang baru, mereka merupakan struktur nonlinear, dimana tidak bisa dianalisi dengan metode sederhana. Kapasitas geser pada bagian badan profil adalah suatu faktor yang terbatas, dan balok acstellated tidak cocok untuk bentang pendek yang dibebani dengan berat. Deformasi geser pada bagian T nya sangat signifikan dan abalisa lendutan lebih kompleks daripada balok yang bagian badan profil padat II.7.1 Analisa dan perencanaan balok castellated Geometri dari balok castellated terdapat tiga parameter yaitu sudut potongan pada bukaan badan profil (Ø). Rasio ekspansi (α), dan panjang pengelasan (c) yang ditungukkan pada gambar II.6.2 Gambar II Parameter pada castellated beam 41

25 GambarII Castellated Beam di lapangan Sudut potongan (Ø) Sudut potongan mempengaruhi jumlah proses pemotongan balok castellated (N) per unit panjang dari balok N akan kecil ketika suduit itu rata dan akan besar ketika bertahap. Percobaan telah menunjukkan bahwa peningkatan jumlah N mempunyai pengaruh yang kecil untuk kekakuan elastis pada balok castellated, itu akan meningkatkan daktilitas dan kapasitas rotasim percobaan yang ada menunjukkan bahwa penyesuaian pada sudut 60 adalah suatu sudut standart yang efisien terhadap bangunan industri. Rasio ekspansi (α) Rasio ekspansi merupakan suatu ukuran dari peningkatan tinggi balok yang dicapai pada proses pemotongan, dalam teori tinggi balok baja yang biasa 42

26 dapat hampir dua kali lipat, tetapi tinggi seluruhnya dari profil T adalah suatu faktor batas dalam pelasanaan, tinggi dari potongan d adalah setengah bagian dari tinggi h s, maka: h TT = h ss, h 4 cc = h ss + h, = h cc 2 h 1,5 (II.6.1.1) Panjang pengelasan (c) Jika panjang pengelasan terlalu pendek, kemudian las pada bagian badan yang disambung akan mengalami kegagalan geser horizontal, dan apabila terlalu panjang akan mengalami kegagalan dalam lentur vierendeel, jadi keseimbangan yang beralasan antara dua moda kegagalan ini yaitu c = h s / 4. Balok harus memiliki kekuatan yang cukup untuk memikul momen lentur dan gaya geser yang ditimbulkan oleh beban-beban yang bekerja. Kinerja dari balok bergantung kepada geometri, dimensi fisik, dan bentuk dari penampangnya. Hingga saat ini, masih belum tersedia metode desain yang dapat diterima secara luas karena kerumitan dari perilaku balok castella serta bentuk kerusakan yang menyertainya. Kekuatan dari balok dengan berbagai jenis bukaan pada pelat badan ditentukan berdasarkan interaksi antara lentur dan geser pada bukaannya. Terdapat beberapa jenis bentuk kerusakan yang perlu diperhitungkan di dalam desain balok dengan bukaan yang meliputi mekanisme Vierendeel, mekanisme lentur, tekuk torsi lateral, patah pada sambungan las dan tekuk pada badan yang disambung (web post). Did alam perencanaan balok castella, beberapa kriteria berikut perlu diperhitungkan: 1. Kapasitas lentur balok Momen maksimum akibat beban luar M U tidak boleh melebihi kapasitas plastis M p dari balok castella. 43

27 M M = A F H (1) U P LT Y U dimana A LT adalah luas dari penampang T bawah, F Y adalah tegangan leleh baja dan H U adalah jarak antara pusat berat penampang T atas dan bawah. 2. Kapasitas geser balok Di dalam perencanaan balok castella, terdapat dua bentuk kerusakan geser yang perlu diperiksa. Yang pertama adalah kapasitas geser vertikal yang akan dipikul oleh penampang T atas dan bawah. Jumlah dari kapasitas geser dari penampang T atas dan bawah perlu diperiksa dengan persamaan (2). P VY 3 = FY A (2) WUL 3 Yang kedua adalah kapasitas geser horisontal yang timbul pada web post karena adanya perubahan gaya aksial di dalam penampang T seperti ditunjukkan pada Gambar 5. Web post dengan panjang las yang terlalu pendek dapat mempercepat terjadinya kerusakan pada saat gaya geser horisontal melebihi kekuatan leleh. Kapasitas geser horisontal perlu diperiksa dengan persamaan(3). P VH 3 = FY A (3) WP 3 dimana A WUL adalah total luas badan dari penampang T dan A WP adalah luas minimum dari web post. 44

28 y t V i V i-1 T i d A A T i-1 V hi s Gambar 5Gaya geser horisontal di dalam webpost pada balok castella Dengan mengasumsikan gaya geser vertikal V i dan V i+1 adalah sama dan garis kerja gaya aksial T i dan T i+1 berada pada titik pusat penampang T, gaya geser horisontal dapat ditentukan dengan menggunakan persamaan keseimbangan berdasarkan pada diagram free-body yang ditunjukkan pada Gambar 5. V hi P = V (4) i ( H 2y ) S t dimana H S adalah tinggi total balok castella seperti ditunjukkan pada Gambar 1.2(b). 3. Kekuatan lentur dan tekuk dari web post Dengan mengasumsikan pelat sayap tertekan dari balok castella terkekang secara lateral oleh pelat lantai, kekuatan tekuk torsi lateral balok castella dapat diabaikan dalam perencanaan. Kapastis lentur dan tekuk dari webpost pada balok castella dapat dihitung dengan menggunakan persamaan (5). M M MAX E = C α α (5) 2 1 C2 C3 dimana M MAX adalah momen maksimum izin dari web post dan M E adalah kapasitas web post pada potongan A-A seperti terlihat pada Gambar 5. C 1, C 2, dan C 3 adalah konstan yang diperoleh dari persamaan(6),(7) dan (8)

29 2 C = + (6) β β 2 C = β 0. β (7) C = β 0. β (8) dimana α = S/d dan β = 2d/t w, S adalah jarak antar lubang, d adalah kedalaman potongan dari bukaan, t w adalah tebal pelat badan. 4. Mekanisme Vierendeel Bentuk kerusakan ini diakibatkan oleh gaya internal lokal di sekitar satu bukaan. Kekuatan balok terhadap kerusakan melalui mekanisme Vierendeel ini dapat dihitung dengan menggunakan metode desain untuk penampang T. Kapasitas momen plastis dari penampang T di atas dan di bawah bukaan akan dihitung secara terpisah. Interaksi antara momen tahanan dan gaya geser lokal serta gaya aksial pada penampang T perlu diperhitungkan. Total kapasitas tahanan terhadap lentur VierendeelM vrd, adalah jumlah dari kapasitas tahanan Vierendeel dari penampang T atas dan bawah harus memenuhi ketentuan pada persamaan(9). M > V l (9) vrd sd eff dimana V sd adalah gaya geser yang yang perlu disalurkan melalui bukaan, dan l eff adalah panjang efektif dari bukaan. 46

BAB II TEORI DASAR. seorang perencana / desainer harus mempunyai pengetahuan yang baik tentang :

BAB II TEORI DASAR. seorang perencana / desainer harus mempunyai pengetahuan yang baik tentang : BAB II TEORI DASAR II.1. Pengenalan Desain Struktur Baja A. Desain Konstruksi Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / keindahan) dan ilmu pengetahuan (science) untuk

Lebih terperinci

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK... DAFTAR ISI HALAMAN LEMBAR JUDUL... i KATA PENGANTAR...... ii UCAPAN TERIMA KASIH......... iii DAFTAR ISI...... iv DAFTAR TABEL...... v DAFTAR GAMBAR...... vi ABSTRAK...... vii BAB 1PENDAHULUAN... 9 1.1.Umum...

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan sarjana teknik sipil Anton Wijaya 060404116 BIDANG

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB II TEORI DASAR. struktur yang memikul beban yang bekerja tegak lurus dengan sumbu. longitudinalnya. Hal ini menyebabkan balok itu melentur.

BAB II TEORI DASAR. struktur yang memikul beban yang bekerja tegak lurus dengan sumbu. longitudinalnya. Hal ini menyebabkan balok itu melentur. BAB II TEORI DASAR II.1. Teori balok umum Balok ataupun batang lentur adalah salah satu diantara elemen-elemen struktur yang paling banyak dijumpai pada setiap struktur. Balok adalah elemen struktur yang

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Perencanaan suatu struktur bangunan gedung didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Pengertian

Lebih terperinci

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax: Kuliah ke-6 Bar (Batang) digunakan pada struktur rangka atap, struktur jembatan rangka, struktur jembatan gantung, pengikat gording dn pengantung balkon. Pemanfaatan batang juga dikembangkan untuk sistem

Lebih terperinci

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan BAB II TINJAUAN PUSTAKA 2.1 Profil C Baja adalah salah satu alternatif bahan dalam dunia konstruksi. Baja digunakan sebagai bahan konstruksi karena memiliki kekuatan dan keliatan yang tinggi. Keliatan

Lebih terperinci

T I N J A U A N P U S T A K A

T I N J A U A N P U S T A K A B A B II T I N J A U A N P U S T A K A 2.1. Pembebanan Struktur Besarnya beban rencana struktur mengikuti ketentuan mengenai perencanaan dalam tata cara yang didasarkan pada asumsi bahwa struktur direncanakan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 10 BAB III LANDASAN TEORI A. Baja 1. Pengertian Baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985).

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985). BAB II TINJAUAN PUSTAKA 2.1 Baja Bahan konstruksi yang mulai diminati pada masa ini adalah baja. Baja merupakan salah satu bahan konstruksi yang sangat baik. Baja memiliki sifat keliatan dan kekuatan yang

Lebih terperinci

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan.

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. II. KONSEP DESAIN A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. Beban yang bekerja pada struktur bangunan dapat bersifat permanen (tetap)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR Diajukan sebagai salah satu persyaratan menyelesaikan Tahap Sarjana pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BAL KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI Jusak Jan Sampakang R. E. Pandaleke, J. D. Pangouw, L. K. Khosama Fakultas Teknik, Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Beton Beton didefinisikan sebagai campuran antara sement portland atau semen hidraulik yang lain, agregat halus, agregat kasar dan air, dengan atau tanpa bahan tambahan yang

Lebih terperinci

Meliputi pertimbangan secara detail terhadap alternatif struktur yang

Meliputi pertimbangan secara detail terhadap alternatif struktur yang BAB II TINJAUAN PIISTAKA 2.1 Pendahuluan Pekerjaan struktur secara umum dapat dilaksanakan melalui 3 (tiga) tahap (Senol,Utkii,Charles,John Benson, 1977), yaitu : 2.1.1 Tahap perencanaan (Planningphase)

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

5- STRUKTUR LENTUR (BALOK)

5- STRUKTUR LENTUR (BALOK) Pengertian Balok 5- STRUKTUR LENTUR (BALOK) Balok adalah bagian dari struktur bangunan yang menerima beban tegak lurus ( ) sumbu memanjang batang (beban lateral beban lentur) Beberapa jenis balok pada

Lebih terperinci

Desain Struktur Beton Bertulang Tahan Gempa

Desain Struktur Beton Bertulang Tahan Gempa Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan 13, 14 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK

Lebih terperinci

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON BAB IV BALOK BETON 4.1. TEORI DASAR Balok beton adalah bagian dari struktur rumah yang berfungsi untuk menompang lantai diatasnya balok juga berfungsi sebagai penyalur momen menuju kolom-kolom. Balok dikenal

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan konstruksi bangunan menggunakan konstruksi baja sebagai struktur utama. Banyaknya penggunaan

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal BAB I PENDAHULUAN 1.1 Umum Ilmu pengetahuan yang berkembang pesat dan pembangunan sarana prasarana fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal tersebut menjadi mungkin

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perancangan struktur suatu bangunan gedung didasarkan pada besarnya kemampuan gedung menahan beban-beban yang bekerja padanya. Disamping itu juga harus memenuhi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi BAB I PENDAHULUAN I.1 Umum Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi suatu area pada konstruksi seperti rumah, gedung bertingkat, dan jenis konstruksi lainnya. Umumnya,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE

PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE Nama : Rani Wulansari NRP : 0221041 Pembimbing : Winarni Hadipratomo, Ir UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 28 BAB II TINJAUAN PUSTAKA II.1 Material Beton II.1.1 Definisi Material Beton Beton adalah suatu campuran antara semen, air, agregat halus seperti pasir dan agregat kasar seperti batu pecah dan kerikil.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

PENDAHULUAN. 1.1 Latar Belakang

PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN PENDAHULUAN 1.1 Latar Belakang Kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah berhenti dan terus mengalami perkembangan dari masa ke masa. Berbagai

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN BAB III METODELOGI PENELITIAN 3.1 Pendahuluan Pada penelitian ini, Analisis kinerja struktur bangunan bertingkat ketidakberaturan diafragma diawali dengan desain model struktur bangunan sederhanan atau

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom

BAB II TINJAUAN PUSTAKA. dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom BAB II TINJAUAN PUSTAKA II.1. Steel Plate Shear Walls Steel Plate Shear Walls adalah sistem penahan beban lateral yang terdiri dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Langkah Kerja Dalam tugas akhir tentang perencanaan gedung beton bertulang berlantai banyak dengan menngunakan sistem perkakuan menggunakan shearwall silinder berongga

Lebih terperinci

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA Roland Martin S 1*)., Lilya Susanti 2), Erlangga Adang Perkasa 3) 1,2) Dosen,

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Umum Balok tinggi adalah elemen struktur yang dibebani sama seperti balok biasa dimana besarnya beban yang signifikan dipikul pada sebuah tumpuan dengan gaya tekan yang menggabungkan

Lebih terperinci

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR Pendahuluan POKOK BAHASAN 1 PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan

Lebih terperinci

BAB IV EVALUASI KINERJA DINDING GESER

BAB IV EVALUASI KINERJA DINDING GESER BAB I EALUASI KINERJA DINDING GESER 4.1 Analisis Elemen Dinding Geser Berdasarkan konsep gaya dalam yang dianut dalam SNI Beton 2847-2002, elemen struktur dinding geser tidak dicek terhadap kegagalan gesernya.

Lebih terperinci

ϕ b M n > M u ϕ v V n > V u

ϕ b M n > M u ϕ v V n > V u BAB II TINJAUAN PUSTAKA 2.1. Perencanaan Struktur Baja Baja merupakan material yang sudah umum digunakan dalam dunia konstruksi, tujuan utamanya adalah untuk membentuk rangka bangunan maupun untuk mengikat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan BAB II TINJAUAN PUSTAKA 2.1 Dasar-dasar Pembebanan Struktur Dalam merencanakan suatu struktur bangunan tidak akan terlepas dari beban-beban yang bekerja pada struktur tersebut. Agar struktur bangunan tersebut

Lebih terperinci

TINJAUAN KEPUSTAKAAN

TINJAUAN KEPUSTAKAAN BAB II TINJAUAN KEPUSTAKAAN II.1. Pengenalan Desain Struktur Baja A. Desain Konstruksi Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / keindahan) dan ilmu pengetahuan (science)

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 Sub Pokok Bahasan : Perilaku Mekanis Baja Pengantar LRFD Untuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan BAB I PENDAHULUAN 1.1 Umum Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan oleh kebutuhan ruang yang selalu meningkat dari tahun ke tahun. Semakin tinggi suatu bangunan, aksi gaya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pembebanan Struktur bangunan yang aman adalah struktur bangunan yang mampu menahan beban-beban yang bekerja pada bangunan. Dalam suatu perancangan struktur harus memperhitungkan

Lebih terperinci

BAB I PENDAHULUAN. Berbagai inovasi yang ditemukan oleh para ahli membawa proses pembangunan

BAB I PENDAHULUAN. Berbagai inovasi yang ditemukan oleh para ahli membawa proses pembangunan BAB I PENDAHULUAN 1.1. Latar Belakang Kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah berhenti dan terus mengalami perkembangan dari masa ke masa. Berbagai inovasi yang

Lebih terperinci

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini BAB I PENDAHULUAN I.1 Latar Belakang Pada saat ini kolom bangunan tinggi banyak menggunakan material beton bertulang. Seiring dengan berkembangnya teknologi bahan konstruksi di beberapa negara, kini sudah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Pemilihan Struktur Desain struktur harus memperhatikan beberapa aspek, diantaranya : Aspek Struktural ( kekuatan dan kekakuan struktur) Aspek ini merupakan aspek yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Balok Lentur Pertemuan 11, 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

PERHITUNGAN SLAB LANTAI JEMBATAN

PERHITUNGAN SLAB LANTAI JEMBATAN PERHITUNGAN SLAB LANTAI JEMBATAN JEMBATAN PANTAI HAMBAWANG - DS. DANAU CARAMIN CS A. DATA SLAB LANTAI JEMBATAN Tebal slab lantai jembatan t s = 0.35 m Tebal trotoar t t = 0.25 m Tebal lapisan aspal + overlay

Lebih terperinci

LENTUR PADA BALOK PERSEGI ANALISIS

LENTUR PADA BALOK PERSEGI ANALISIS LENTUR PADA BALOK PERSEGI ANALISIS Ketentuan Perencanaan Pembebanan Besar beban yang bekerja pada struktur ditentukan oleh jenis dan fungsi dari struktur tersebut. Untuk itu, dalam menentukan jenis beban

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gempa di Indonesia Tahun 2004, tercatat tiga gempa besar di Indonesia yaitu di kepulauan Alor (11 Nov. skala 7.5), gempa Papua (26 Nov., skala 7.1) dan gempa Aceh (26 Des.,skala

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Pada Studi Pustaka ini akan membahas mengenai dasar-dasar dalam merencanakan struktur untuk bangunan bertingkat. Dasar-dasar perencanaan tersebut berdasarkan referensi-referensi

Lebih terperinci

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perencanaan merupakan langkah awal dari suatu pembangunan fisik berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman oleh perencana agar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Suatu struktur bangunan yang direncanakan harus sesuai dengan peraturan - peraturan yang berlaku, sehingga mendapatkan suatu struktur bangunan yang aman secara kontruksi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 7.1 Umum Salah satu tahapan yang penting dalam perencanaan suatu struktur adalah pemilihan jenis material yang akan digunakan. Jenis-jenis material yang selama ini digunakan adalah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus menerus mengalami peningkatan, kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan teknologi dalam bidang konstruksi terus - menerus

BAB I PENDAHULUAN. Perkembangan teknologi dalam bidang konstruksi terus - menerus BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus - menerus mengalami peningkatan, khususnya bangunan yang menggunakan material baja. Baja banyak digunakan untuk

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan konstruksi selalu terjadi hingga saat ini yang dapat dilihat dengan usaha para ahli yang selalu melalukan inovasi untuk dapat menemukan

Lebih terperinci

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural BAB III LANDASAN TEORI 3.1 Kolom Pendek Menurut McComac dan Nelson dalam bukunya yang berjudul Structural Steel Design LRFD Method yang berdasarkan dari AISC Manual, persamaan kekuatan kolom pendek didasarkan

Lebih terperinci

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi BAB I PENDAHUUAN I. 1 Umum Baja adalah salah satu bahan kontruksi yang paling penting, sifat-sifatnya yang terutama dalam penggunaan konstruksi adalah kekuatannya yang tinggi dan sifat yang keliatannya.

Lebih terperinci

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan BAB I PENDAHULUAN 1.6 Latar Belakang Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan kolom, baik yang terbuat dari baja, beton atau kayu. Pada tempat-tempat tertentu elemen-elemen

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

KONSEP DAN METODE PERENCANAAN

KONSEP DAN METODE PERENCANAAN 24 2 KONSEP DAN METODE PERENCANAAN A. Perkembangan Metode Perencanaan Beton Bertulang Beberapa kajian awal yang dilakukan pada perilaku elemen struktur beton bertulang telah mengacu pada teori kekuatan

Lebih terperinci