Karakteristik Limit dari Proses Kelahiran dan Kematian

Ukuran: px
Mulai penontonan dengan halaman:

Download "Karakteristik Limit dari Proses Kelahiran dan Kematian"

Transkripsi

1 Karakteristik Limit dari Proses Kelahiran dan Kematian Disusun guna memenuhi tugas mata kuliah Pengantar Proses Stokastik Disusun oleh : Saidun Nariswari Setya Dewi Lisa Apriana Marvina Puspito Nita Eka Rusi Yanun JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SEBELAS MARET SURAKARTA 2

2 Karakteristik Limit dari Proses Kelahiran dan Kematian Secara umum proses kelahiran dan kematian tidak memiliki state terabsorsi, dapat dibuktikan bahwa lim P ( t) = (6.26) t i ada dan independen dari awal state i. Persamaan ini mungkin teradi ika = untuk semua state. Jika limit positif, maka = = (6.27) Persamaan tersebut merupakan distribusi probabilitas, dengan syarat cukup, yaitu distribusi limit dari proses. Distribusi limit uga merupakan distribusi stasioner yaitu = i= P i (t) (6.28) i yang mengatakan bahwa ika proses dimulai di state i dengan probabilitas i, maka pada setiap waktu t di state i memiliki probabilitas sama dengan i. Bukti (6.28) diperoleh dari (6.9) dan (6.26) ika kita misalkan t dan menggunakan i = = i Secara umum model dari proses kelahiran dan kematian sebagian besar berasal dari persamaan umum untuk menentukan apakah mempunyai distribusi limit dan apa nilai yang ketika itu teradi. Persamaan ini berasal dari p p ( t) = λ p.( t) + p. ( ) ' i. i µ i t ' i. ( i. i + + i. + t t) = λ p ( t) ( λ ) p ( t) µ p ( ),, (6.29) dengan kondisi awal p ) = δ. Untuk limit t pada (6.29) yang pertama i ( i diamati adalah limit sisi kanan (6.29) ada menurut (6.26). Oleh karena itu limit ' sisi kiri, derivatif ( ), uga ada. Selama probabilitas konvergen ke konstan, p i. t limit dari derivativ harus nol. Sehingga, melalui limit dari (6.29) akan menghasilkan

3 λ = o o = λ ( λ ) + +, (6.3) Penyelesaian dari persamaan (6.3) diperoleh dengan induksi. Dengan menganggap λλ... λ i θ = dan θ = untuk (6.3) µ µ... µ dengan = λ / µ = θ 2 Kemudian, dengan asumsi bahwa k = θk untuk k =,...,, sehingga = λ ( λ ) + +, µ + + = ( λ ) λ = λ ) θ λ θ ( = λ θ θ λ θ = λ θ θ λ θ ) = λ θ sehingga diperoleh + = θ + ( Agar urutan { } mendefinisikan sebuah distribusi harus memiliki = Jika θ < kemudian dapat diumlahkan = θ = θ 2 = θ = ( θ k ) Untuk melihat bahwa = / θ k dan k = θ = θ = untuk =,,... (6.32) θ k= k

4 Jika θ k =, maka = dan = θ untuk semua dan tidak ada distribusi limit ( lim ( t) = untuk semua ). P i t Contoh : Pertumbuhan linier dengan imigrasi sebagaimana dielaskan dalam contoh pada akhir bagian 6.3.3, proses ini memiliki parameter kelahiran λ = a + λn dan parameter kematian µ = n untuk n =,,... dimana λ > n n µ adalah lau kelahiran individu, a > adalah lau dari imigrasi kedalam populasi, dan µ > adalah lau kematian individu. Andaikan <. Terlihat pada bagian 6.3 bahwa rata-rata populasi () konvergen ke /( ) dengan. Akan ditentukan distribusi limit dari proses dengan kondisi yang sama pada saat <. Kemudian =, = =/, = 2 =(+)/(2), = =(+)(+2)/(2)(3) dan secara umum, = (+) +( ) ()! = (/)(/)+ (/)+! = (/)+ (/)+(/) (/)! = (/)+ (/)+(/)!!!(/) = (/)+ Dengan menggunakan persamaan binomial tak terbatas, (+) = + untuk <, Untuk menentukan = (/)+ = (/) ketika <. Jadi = = = (/) dan = (/)(/)+ (/)+ (/)!

5 Untuk. Contoh : Model Tukang Reparasi. Sebuah sistem terdiri dari mesin. Dengan dapat beroperasi dalam suatu waktu; dan sisanya Waktu luang. Ketika sebuah mesin beroperasi, mesin tersebut beroperasi dengan arak waktu random sampai mengalami kerusakan. Andaikan waktu kerusakan berdistribusi exponensial dengan parameter. FAKTOR Kapasitas = Jumlah Kerusakan = Waktu luang oooooo () = umlah dari mesin yang baik Waktu tunggu untuk di perbaiki BENGKEL Kapasitas = Jumlah Perbaikan = oooooo () = umlah dari mesin yang rusak Gambar 6.5 Repairman Model Ketika sebuah mesin rusak, menalani perbaikan. Sebanyak mesin dapat diperbaiki pada suatu waktu. Waktu perbaikan berdistribusi eksponensial dengan parameter. Jadi, sebuah mesin dapat dibagi menadi empat keadaan: (i) beroperasi, (ii) baik tapi tidak beroperasi dengan kata lain luang, (iii) dalam perbaikan, (iv) menunggu untuk diperbaiki. Ada total mesin dalam sistem. Sebanyak dapat beroperasi. Sebanyak dapat diperbaiki. Keadian tersebut disketsakan pada gambar 6.5.

6 Misalkan () merupakan umlah dari mesin baik pada waktu t, salah satunya beroperasi atau luang. Kemudian, (dianggap) umlah yang beroperasi adalah min{(),} dan umlah mesin luang adalah max{,() }. Misal ()= () menadi umlah dari mesin rusak. Kemudian umlah mesin yang dalam perbaikan adalah min {(),} dan umlah menunggu untuk diperbaiki adalah max {,() }. Dari persamaan sebelumnya dapat dimungkinkan untuk menentukan umlah dari mesin dengan kategori lain, saat () tidak diketahui. Kemudian () adalah bagian terhitung proses kelahiran dan kematian dengan parameter = {,} =,,, = ( ) = +,, Dan = {,}= =,,, =+,, Untuk menentukan probabilitas distribusi limit dari suatu nilai untuk,,,,. (Lihat latihan no. 7 dan 3 pada halaman terakhir dari bagian ini). Hubungan untuk limit probabilitas,,, dari beberapa banyaknya bagian adalah : Rata-rata mesin beroperasi = ( + + ) Lama penggunaan = = +( + + ) Average Idle Repair Capacity = (Rata-rata tidak bekera saat memperbaiki kapasitas) Persamaan tersebut dan yang seenisnya, dapat digunakan untuk mengevaluasi keinginan penambahan kemampuan memperbaiki, penambahan cadangan mesin, dan perbaikan lain yang mungkin. Distribusi stasioner diasumsikan ke dalam bentuk sederhana pada kasus khusus yang nyata. Contohnya, mengingat kasus khusus dengan M = N = R. Situasi yang muncul, sebagai contoh, ketika operator mengalami kegagalan saat

7 melakukan perbaikan mesin. Kemudian = ( ) dan = untuk n=,,,n, berdasarkan (6.3), ditentukan =, =/, = ()( )/(2) dan bentuk umumnya Dari persamaan (6.3) λλ... λ i θ = µ µ... µ 2 = ( ) ( +) ()(2) () = = =, dst =.() (()). = () () =! Dengan menggunakan rumus Binomial (+) = dihasilkan = =+ Jadi =+(/) =/(+) dan = /(+) = (6.33) Persamaan (6.33) lebih dikenal dengan Distribusi Binomial Contoh : Proses logistic, andaikan dianggap populasi yang berukuran X(t) arak diantara dua bilangan bulat yang tetap dan (<) untuk semua diasumsikan bahwa nilai kelahiran dan kematian tiap-tiap individu pada waktu, diberikan dengan = () =(() )

8 dan setiap anggota dari populasi tersebut tidak saling berpengaruh antara satu dengan yang lainnya. Hasil nilai kelahiran dan kematian populasi menadi =( ) =( ). Untuk menelaskan hal tersebut diamati ika ukuran dari suatu populasi () adalah, dan setiap individu dari memiliki lau kelahiran yang sangat kecil, maka =( ). Analog untuk. Selain syarat diatas akan diharapkan proses untuk fluktuasi diantara dua konstanta dan, sebagai contoh, ika () dekat dengan dan mendekati maka nilai kematian tinggi dan nilai kelahiran rendah. Pada akhirnya proses memperlihatkan fluktuasi yang tetap diantara dua limit dan. Distribusi stasionernya dalam hal ini adalah = =,,2,, Dimana adalah constanta penentu adi didapat =. Untuk mengetahuinya diperlihatkan sebagai berikut = = (+) (+ )( ) ( +) (+) (+)! = (+) (+ )( ) ( +) (+) (+)! = = = ( ) ( +) ( )! (+)! ( )! ( )! (+)( )!! ( )! (+)( )!!

9 = (+) Contoh Beberapa model genetik. Sebuah populasi berukuran individu dimana tipe gen-nya atau. State dari proses () menunukkan umlah individu gen pada waktu. Diasumsikan bahwa probabilitas yang statenya berubah selama selang waktu (,+h) adalah h+(h) independen dari nilai () dan probabilitas dari dua atau lebih perubahan yang teradi dalam interval waktu h adalah o(h). Perubahan struktur populasi dilakukan sebagai berikut. Satu individu diganti dengan individu lain yang dipilih secara random dari populasi. Misal, ika ()=, maka tipe dipilih untuk digantikan dengan probabilitas dan tipe- A dengan probabilitas. Kemudian, kelahiran teradi oleh aturan tersebut. Pilihan lain yang dibuat secara acak dari populasi untuk menentukan tipe dari individu untuk menggantikan individu yang meninggal. Model ini memperkenalkan tekanan mutasi berlaku untuk kemungkinan bahwa tipe dari individu baru dapat diubah saat lahir. Secara khusus, misal menunukkan kemungkinan bahwa tipe-tipe A, dan menganggap probabilitas mutasi tipe-a ke tipe-a. untuk menunuk Probabilitas bahwa individu baru ditambahkan ke dalam populasi tipe a adalah ( )+ (6.34) Dapat disimpulkan persamaan tersebut sebagai berikut: probabilitas bahwa dipilih enis dan mutasi tidak teradi ( ) ( ). Selain itu, tipe terakhir mungkin tipe-a, ika kita pilih tipe A, yang kemudian dialihkan untuk berikutnya di mutasi ke dalam type-a. Probabilitas yang mungkin adalah ( ). Kombinasi dari dua kemungkinan diberikan pada(6.34) Ditegaskan bahwa probabilitas bersyarat bahwa (+) ()=, ketika perubahan state teradi, adalah

10 ( )+, dimana ()=..(6.35) Faktanya, ukuran populasi type-a dapat meningkatkan hanya ika tipe A-mati (diganti). Probabilitas ini adalah ( ). Faktor kedua adalah probabilitas bahwa individu baru adalah type-a seperti pada persamaan (6.34) Pada keadaan yang sama didapatkan bahwa probabilitas bersyarat (+) ()= ketika perubahan state teradi adalah ( )+, dimana ()= Proses stokastik yang dielaskan adalah proses kelahiran dan kematian dengan seumlah state limit yang menemukan lau kelahiran dan kematian yang sangat kecil = ( ) Dan = + ( ) masing sesuai dengan ukuran enis populasi, Walaupun parameter ini tampak agak rumit, menarik untuk melihat apa yang teradi dengan ukuran stasioner{ } ika dianggap ukuran populasi dan probabilitas mutasi per individu and cenderung nol sedemikian rupa yang and, dimana <, <. Pada saat yang sama, akan diubah state dari proses ke dalam interval [,] dengan mendefinisikan state-state baru, yaitu type-a dalam populasi. Untuk mengui kepadatan populasi tetap ke x, dimana <<, akan

11 dievaluasi dengan dalam keadaan yang sama =, dimana [xn] adalah bilangan bulat terbesar kurang dari atau sama dengan xn. Dengan menaga keterkaitan ini dapat ditulis Dan kemudian = () ( )+, dimana =, = () ( )+, dimana =. log = log log = log+ log+ +log log( )+ Dengan menggunakan ekspansi Dapat uga ditulis log(+)= 2 +, <, 3 + = +, Dimana adalah pendekatan batas limit dengan syarat. Oleh karena itu, dengan menggunakan keterkaitan Didapatkan ~log dengan syarat + ~log + dengan syarat dengan cara yang sama didapatkan

12 log+ ~ karena () + Dimana pendekatan batas limit dengan syarat. Menggunakan hubungan di atas kita dapati log ~ () () as Dimana = +, yang mendekati limit, disebut C, dengan. Perhatikan bahwa dan dengan. Karena = didapat, untuk. ~ ( ). Dari persamaan (6.36) didapat ~ Karena itu, ~ Karena dengan cenderung dianggap sisi kanan sebagai perkiraan umlah Reimann dari demikian ( ). ~ ( ), Sehingga kepadatan yang dihasilkan pada [,] adalah ~ () = () (), () Seak ~/. Ini adalah distribusi beta dengan parameter dan.

13 Exercises Untuk perbaikan dalam contoh kedua, anggaplah bahwa ==5, =,= 2, dan =. Gunakan distribusi limit untuk sistem, Tentukan a) Rata-rata mesin beroperasi Penyelesaian : Rata-rata mesin beroperasi = ( + ) = ( + ) = b) Lama Penggunaan Penyelesaian : Lama Penggunaan = = = = ( + + ) +( + ) = = = 5 ( ) c) Average Idle Repair Capacity (Rata-rata tidak bekera saat memperbaiki kapasitas) Penyelesaian : Average Idle Repair Capacity = = =

14 8. Tentukan distribusi stasioner, dimana ada proses kelahiran dan kematian dengan parameter konstan = untuk =,, dan = untuk =,2, Penyelesain : Diketahui : = = =,, =,2, Ditanya : distribusi stationer? Jawab : = = =... = = Jika =, maka = dan =. =, dan tidak ada limit distribusi lim ()=.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

BAB IV PROSES BIRTH-DEATH DAN APLIKASINYA DALAM SISTEM ANTRIAN. Kebanyakan sistem antrian dimodelkan menggunakan interarrival times dan

BAB IV PROSES BIRTH-DEATH DAN APLIKASINYA DALAM SISTEM ANTRIAN. Kebanyakan sistem antrian dimodelkan menggunakan interarrival times dan BAB IV PROSES BIRTH-DEATH DAN APIKASINYA DAAM SISTEM ANTRIAN 4. Distribusi Eksponensial Dalam Proses Birth-Death Kebanyakan sistem antrian dimodelkan menggunakan interarrival times dan service times berdistribusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

6.3 PROSES KELAHIRAN DAN KEMATIAN

6.3 PROSES KELAHIRAN DAN KEMATIAN 6.3 PROSES KELAHIRAN DAN KEMATIAN Penjelasan dari proses-proses kelahiran murni dan kematian murni telah diskusikan pada bagian 6.1 dan 6.2 bahwa X(t) memungkinkan untuk naik ataupun turun. Jadi, apabila

Lebih terperinci

PROSES KEMATIAN MURNI (Pure Death Processes)

PROSES KEMATIAN MURNI (Pure Death Processes) PROSES KEMATIAN MURNI (Pure Death Processes) Komplemen dari bertambahnya proses kelahiran murni adalah dengan penurunan proses kematian murni. Hal itu ditunjukkan keberhasilan melewati state,,, 2, dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*

Lebih terperinci

Makalah Matematika Asuransi MODEL PARAMETRIK TAHAN HIDUP

Makalah Matematika Asuransi MODEL PARAMETRIK TAHAN HIDUP Makalah Matematika Asuransi MODEL PARAMETRIK TAHAN HIDUP Disusun Oleh : 1. Intan Wijaya M0108018. Nariswari Setya D. M01080 3. Rahmawati Oktriana M0108061 4. Sri Maria Puji L. M0108108 JURUSAN MATEMATIKA

Lebih terperinci

dengan probabilitas laju kelahiran dengan probabilitas laju kematian

dengan probabilitas laju kelahiran dengan probabilitas laju kematian 6.5 Proses Kelahiran(kemunculan) dan Kematian(kehilangan) dengan State Absorpsi Proses kelahiran dan kematian dimana 0 (kondisi awal laju kelahiran sama dengan nol, atau dapat dikatakan bahwa tidak ada

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

MINGGU KE-9 MACAM-MACAM KONVERGENSI

MINGGU KE-9 MACAM-MACAM KONVERGENSI MINGGU KE-9 MACAM-MACAM KONVERGENSI Kita telah mengetahui bahwa untuk n besar dan θ kecil sedemikian hingga nθ = λ, distribusi binomial bisa dihampiri oleh distribusi Poisson. Mencari hampiran distribusi

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

6.6 Rantai Markov Kontinu pada State Berhingga

6.6 Rantai Markov Kontinu pada State Berhingga 6.6 Rantai Markov Kontinu pada State Berhingga Markov chain kontinu 0 adalah proses markov pada state 0, 1, 2,.... Diasumsikan bahwa probabilitas transisi adalah stasioner, pada persamaan, (6.53) Pada

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 18 BAB III METODE PENELITIAN Pada bab ini akan dikemukakan metode-metode yang akan digunakan pada bab selanjutnya. Metode-metode pada bab ini yaitu metode Value at Risk dengan pendekatan distribusi normal

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM INFERENSI PARAMETER POPULASI SERAGAM

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM INFERENSI PARAMETER POPULASI SERAGAM PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM INFERENSI PARAMETER POPULASI SERAGAM Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro 52-6

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

BAB II KAJIAN TEORI. dalam pembahasan model antrean dengan disiplin pelayanan Preemptive,

BAB II KAJIAN TEORI. dalam pembahasan model antrean dengan disiplin pelayanan Preemptive, BAB II KAJIAN TEORI Pada bab ini akan dijabarkan tentang dasar-dasar yang digunakan dalam pembahasan model antrean dengan disiplin pelayanan Preemptive, mencangkup tentang teori antrean, pola kedatangan

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

BAB III DARI MODEL ANTRIAN M/M/1 DENGAN POLA KEDATANGAN BERKELOMPOK KONSTAN. 3.1 Model Antrian M/M/1 Dengan Pola Kedatangan Berkelompok Acak

BAB III DARI MODEL ANTRIAN M/M/1 DENGAN POLA KEDATANGAN BERKELOMPOK KONSTAN. 3.1 Model Antrian M/M/1 Dengan Pola Kedatangan Berkelompok Acak BAB III PERUMUSAN PROBABILITAS DAN EKSPEKTASI DARI MODEL ANTRIAN M/M/1 DENGAN POLA KEDATANGAN BERKELOMPOK KONSTAN 3.1 Model Antrian M/M/1 Dengan Pola Kedatangan Berkelompok Acak Model antrian ini para

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi Garansi dapat diartikan sebagai jaminan yang diberikan secara tertulis oleh pabrik atau supplier kepada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

Uji Hipotesis dan Aturan Keputusan

Uji Hipotesis dan Aturan Keputusan Uji Hipotesis dan Aturan Keputusan oleh: Khreshna Syuhada, PhD. 1. Pendahuluan Pada perkuliahan tingkat 2, telah dikenalkan masalah uji hipotesis sebagai berikut: Seorang peneliti memberikan klaim bahwa

Lebih terperinci

BAB III SIMULASI SISTEM ANTRIAN M/M/1. paket data. Adapun kinerja yang akan dibahas adalah rata-rata jumlah paket dalam

BAB III SIMULASI SISTEM ANTRIAN M/M/1. paket data. Adapun kinerja yang akan dibahas adalah rata-rata jumlah paket dalam BAB III SIMULASI SISTEM ANTRIAN M/M/1 3.1 Model Antrian M/M/1 Model antrian yang dibahas dalam tugas akhir ini adalah model antrian M/M/1. Sistem antrian ini diasumsikan digunakan pada simpul jaringan

Lebih terperinci

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 2 Pendahuluan Perhatikan beberapa situasi berikut ini: Kendaraan berhenti berderet-deret

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Antrian Teori antrian pertama kali disusun oleh Agner Krarup Erlang yang hidup pada periode 1878-1929. Dia merupakan seorang insinyur Demark yang bekerja di industri telepon.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 6: Statistika FMIPA Universitas Islam Indonesia Inferensi Statistik Pendahuluan Inferensi Statistik Inferensi statistik adalah metode untuk menarik kesimpulan mengenai suatu populasi. Inferensi statistik

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

BAB III PEMBAHASAN. dengan retensi pelanggan yang membatalkan antrian, nilai harapan banyaknya

BAB III PEMBAHASAN. dengan retensi pelanggan yang membatalkan antrian, nilai harapan banyaknya BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan sistem persamaan lengkap untuk sistem antrian M/M/1/N dengan retensi pelanggan yang membatalkan antrian. Sistem persamaan lengkap tersebut

Lebih terperinci

Penelitian Operasional II Rantai Markov RANTAI MARKOV

Penelitian Operasional II Rantai Markov RANTAI MARKOV Penelitian Operasional II Rantai Markov 49 4. RANTAI MARKOV 4. PENDAHULUAN Dalam masalah pengambilan suatu keputusan, seringkali kita diperhadapkan dengan suatu ketidakpastian. Permasalahan ini dapat dimodelkan

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

PENJADWALAN DENGAN TEKNIK SISIPAN (INSERTION TECHNIQUE) IR. DINI WAHYUNI, MT. Fakultas Teknik Jurusan Teknik Industri Universitas Sumatera Utara

PENJADWALAN DENGAN TEKNIK SISIPAN (INSERTION TECHNIQUE) IR. DINI WAHYUNI, MT. Fakultas Teknik Jurusan Teknik Industri Universitas Sumatera Utara PENJADWALAN DENGAN TEKNIK SISIPAN (INSERTION TECHNIQUE) IR. DINI WAHYUNI, MT. Fakultas Teknik Jurusan Teknik Industri Universitas Sumatera Utara. Konsep Penadwalan Penadwalan dapat didefinisikan sebagai

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS

POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS POISSON PROSES NON-HOMOGEN Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS ABSTRAK. Proses Poisson merupakan proses stokastik sederhana dan dapat digunakan

Lebih terperinci

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan BAB II LANDASAN TEORI Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan model antrian dengan working vacation pada pola kedatangan berkelompok (batch arrival) satu server, mencakup

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

PENYELESAIAN ASYMMETRIC TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA HUNGARIAN DAN ALGORITMA CHEAPEST INSERTION HEURISTIC.

PENYELESAIAN ASYMMETRIC TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA HUNGARIAN DAN ALGORITMA CHEAPEST INSERTION HEURISTIC. PENYELESAIAN ASYMMETRIC TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA HUNGARIAN DAN ALGORITMA CHEAPEST INSERTION HEURISTIC Caturiyati Staf Pengaar Jurusan Pendidikan Matematika FMIPA UNY E-mail: wcaturiyati@yahoo.com

Lebih terperinci

BAB II DISTRIBUSI FREKUENSI

BAB II DISTRIBUSI FREKUENSI BAB II DISTRIBUSI FREKUENSI 1. Pengertian Distribusi Frekuensi 1. Merupakan penyusunan data ke dalam kelas-kelas tertentu di mana setiap indiividu/item hanya termasuk ke dalam salah satu kelas tertentu.

Lebih terperinci

Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3

Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3 ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan August 30, 0 Yogyakarta Limit Monoton Pada bagian ini kita akan mencoba menebak bentuk umum dari suatu barisan. Limit Monoton Pada bagian ini

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Distribusi Probabilitas Diskret Teoritis

Distribusi Probabilitas Diskret Teoritis Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2 Analisis Korelasi Analisis korelasi adalah alat statistik yang dapat digunakan untuk mengetahui deraat hubungan linear antara satu variabel dengan variabel lain (Algifari, 997)

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAB 2 LANDASAN TEORI. untuk menjual atau membeli aset pada waktu tertentu dengan harga yang telah

BAB 2 LANDASAN TEORI. untuk menjual atau membeli aset pada waktu tertentu dengan harga yang telah BAB LANDASAN TEORI. Option Option merupakan sebuah kontrak yang memberikan hak kepada pemegangnya untuk menual atau membeli aset pada waktu tertentu dengan harga yang telah disepakati. Yang akan dibahas

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Antrian Teori antrian adalah teori yang menyangkut studi sistematis dari antrian atau baris-baris penungguan. Formasi baris-baris penungguan ini tentu saja merupakan suatu

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan seringkali dilakukan pengulangan yang biasanya dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog

Lebih terperinci

BAB II TINJAUAN PUSTAKA. diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh

BAB II TINJAUAN PUSTAKA. diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pemecahan masalah untuk mencapai tujuan dan hasil penelitian yang diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh karena itu, dalam Bab

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN

MATRIKS SATUAN ACARA PERKULIAHAN MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA Pada penelitian ini, suatu portfolio memilii seumlah elas risio. Tiap elas terdiri dari n, =,, peserta dengan umlah besar, dan

Lebih terperinci

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( ) BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H

Lebih terperinci

Hukum Iterasi Logaritma

Hukum Iterasi Logaritma Hukum Iterasi Logaritma Sorta Purnawanti 1, Helma 2, Dodi Vionanda 3 1 Mathematics Department State University of Pag, Indonesia 2,3 Lecturers of Mathematics Department State University of Pag, Indonesia

Lebih terperinci

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini diuraikan dua subbab yaitu tinjauan pustaka dan landasan teori. Subbab tinjauan pustaka memuat hasil-hasil penelitian yang telah dilakukan. Subbab landasan teori memuat

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON Haposan Sirait 1 dan Rustam Efendi 2 1,2 Dosen Program Studi Matematika FMIPA Universitas Riau. Abstrak: Makalah ini menyajikan tentang

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI POISSON

PROSES PERCABANGAN PADA DISTRIBUSI POISSON PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

BAB IV SIMULASI MODEL

BAB IV SIMULASI MODEL BAB IV SIMULASI MODEL Dalam Bab III telah dielaskan sifat-sifat sistem dinamik dari model, khususnya untuk m 1 = m 2. Sekarang akan dibuat simulasi model untuk menggambarkan sifat-sifat sistem dinamik,

Lebih terperinci