Analisis Metode Pendeteksian Langkah Kaki pada Pedestrian Ddead Reckoning
|
|
|
- Hamdani Kartawijaya
- 9 tahun lalu
- Tontonan:
Transkripsi
1 F.1 Makalah Tugas Akhir Analisis Metode Pendeteksian Langkah Kaki pada Pedestrian Ddead Reckoning Surya Wisnurahutama [1], Iwan Setiawan, S.T, M.T [2], Budi Setiyono, S.T, M.T [2] Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jl. Prof. Sudharto, Tembalang, Semarang, Indonesia Abstrak Pedestrian Dead Reckoning merupakan salah satu bagian dari sistem navigasi personal yang diterapkan untuk pejalan kaki. Posisi ditentukan oleh posisi sebelumnya, jarak yang ditempuh dan arah melangkah. Deteksi langkah merupakan salah satu faktor penting pada sistem navigsi PDR. Jarak yang ditempuh dapat ditentukan dengan mengetahui jumlah langkah ketika berjalan dikalikan dengan jarak untuk satu kali melangkah yang dianggap konstan. Banyak penelitian yang telah dilakukan untuk mendeteksi langkah manusia dan dalam tugas akhir ini akan mengulas tentang metode pendeteksian langkah kaki manusia. Pendeteksian langkah dilakukan dengan melihat nilai sensor akselerometer ketika berjalan. Sensor akselerometer yang digunakan adalah sensor 3 axis HITACHI H48C yang dipasang pada sepatu. Nilai percepatan ketiga axis yang terbaca oleh sensor ketika berjalan kemudian dikirim ke netbook. Nilai percepatan ketiga axis tersebut diolah sehingga didapatkan sinyal magnitude, sinyal energi, sinyal product, dan sinyal sum. Pendeteksian langkah kaki dilakukan dengan menganalisis sinyal yang didapatkan menggunakan pendekatan nilai threshold dan nilai variansi. Berdasarkan pengujian dan analisis yang dilakukan dapat diketahui bahwa fase stance merupakan fase yang paling mudah dideteksi karena pada fase stance sinyal akan stabil pada rentang nilai tertentu. Penggunaan nilai variansi pada pendeteksian langkah berguna untuk membuat sinyal pada fase stance akan berada pada nilai nol. Pendeteksian menggunakan nilai variansi memiliki tingkat keberhasilan lebih besar dibandingkan dengan sinyal aslinya. Kata Kunci : stance, swing, magnitude, threshold, variansi. I. PENDAHULUAN Pedestrian Dead Reckoning (PDR) merupakan salah satu sistem navigasi personal yang diterapkan untuk para pejalan kaki. PDR mulai dikembangkan sebagai solusi dari kelemahan pada sistem navigasi GPS yang terjadi bila pengguna berada di dalam ruangan, pada daerah perkotaan, dan hutan dengan pohon-pohon yang rindang. GPS akan mengalami gangguan dalam penerimaan sinyal pada daerah-daerah tersebut. Sistem navigasi PDR diharapkan sangat berguna bagi petugas pemadam kebakaran dalam proses penyelamatan dan evakuasi pada suatu gedung yang terbakar serta oleh para tentara yang sedang melaksanakan operasi di daerah hutan di mana sinyal GPS mengalami gangguan. Sistem navigasi PDR menggunakan prinsip Dead Reckoning. Pada sistem Dead Reckoning penentuan posisi sekarang ditentukan berdasarkan posisi sebelumnya dan perubahan posisi yang terjadi. Sistem navigasi PDR memiliki tiga faktor utama. Ketiga faktor tersebut adalah deteksi langkah, estimasi panjang langkah dan penentuan arah melangkah. 1 Mahasiswa Teknik Elektro Universitas Diponegoro 2 Dosen Teknik Elektro Universitas Diponegoro Penelitian-penelitian tentang sistem navigasi PDR sudah banyak dilakukan di luar negeri. Penelitian-penelitian sistem PDR sebelumya biasanya menggunakan sensor IMU (Inertial Measurement Unit) yang terdiri dari sensor akselerometer dan sensor gyro. Selain itu, ada juga yang memakai sensor magnetometer dan fluxmeter yang digunakan untuk menentukan arah melangkah. Penempatan posisi sensor pada penelitian-penelitian sebelumnya juga berbedabeda, ada yang diletakkan di kepala, diletakkan di pundak, pinggul, dan ada juga yang dipasangkan di kaki. Metode yang digunakan untuk pendeteksian langkah juga berbeda-beda antara satu penelitian dengan penelitian yang lain. Pada tugas akhir ini akan meneliti penggunaan metode yang digunakan untuk pendeteksian langkah pada pedestrian dead reckoning khususnya pada pendeteksian langkah dengan menggunakan sensor akselerometer yang diletakkan di kaki. II. DASAR TEORI 2.1 Pendeteksian Langkah Manusia Dilihat dari cara manusia berjalan menunjukkan bahwa pola pergerakan kaki manusia selama berjalan memiliki siklus yang berulang-ulang, sehingga dengan menganalisis
2 F.2 pola-pola ini pendeteksian langkah dapat dilakukan. Pola manusia saat melangkah pada dasarnya terdapat dua fase, fase stance dan fase swing. Fase stance adalah keadaan saat salah satu kaki diam menapak di tanah. Fase swing adalah keadaan ketika salah satu kaki terayun. Pada saat salah satu kaki berada pada fase stance kaki yang lain akan berada pada fase swing. Kwakkel secara lebih rinci membagi fase dalam satu siklus langkah manusia menjadi fase heel lift, fase toe off, fase heel strike, dan fase flat foot. Gambar 2.1 memperlihatkan pola manusia saat berjalan. Gambar 1Pola manusia berjalan menurut Stirling. Fase langkah manusia dideteksi dengan melihat nilai percepatan kaki pada setiap fase saat berjalan. Sensor yang digunakan untuk mengukur percepatan adalah akselerometer yang mengukur nilai percepatan pada sumbu x, y, dan z. Dari ketiga nilai sumbu akselerometer dapat dicari nilai magnitude (jumlah vektor) percepatannya, dan dirumuskan sebagai berikut: magnitude X Y Z (1) Gambar 2 vektor percepatan pada saat stance. Gambar 2 menunjukkan akselerometer pada fase stance. Pada fase stance percepatan yang terukur oleh akselerometer hanya percepatan gravitasi yang besarnya 9,8 m/s 2 (1g). Percepatan gravitasi yang dialami ini sama dengan magnitude dari nilai percepatan pada setiap sumbu akselerometer. Pada fase swing akselerometer akan terpengaruh oleh percepatan gravitasi dan juga percepatan kaki. Selain nilai magnitude, nilai percepatan ketiga sumbu dapat diolah menjadi sinyal energi, sinyal product, dan sinyal sum. Pada tugas akhir ini pendeteksian langkah kaki dilakukan dengan menganalisis keempat sinyal ini energy X 1 Y1 Z (2) 1 product X1Y1 Z1 (3) sum X Y (4) 1 1 Z1 a. Analisis Nilai Ambang (Threshold) Fase stance merupakan fase yang sangat mudah dideteksi. Misal ketika nilai sinyal magnitude sama dengan 1 g maka dikatakan pada saat itu kaki dalan fase stance. Akan tetapi nilai magnitude pada fase stance tidak selalu tepat 1 g. Berdasarkan karakteristik akselerometer ini cara termudah mendeteksi fase stance adalah dengan menggunakan analisis nilai ambang. Sehingga fase stance dideteksi bila ada lima sampel data magnitude yang memiliki nilai mendekati 1 g. b. Analisis Variansi Threshold Analisis menggunakan variansi memiliki digunakan untuk membantu pendeteksian pada fase stance. Nilai variansi, S 2 n dari n sampel dihitung dengan rumus : i n sn xi x (5) n 1 i 1 Dengan x adalah nilai rata-rata dari n sampel data. i n 1 x x i (6) n i 1 Analisis variansi membuat pendeteksian lebih mudah karena pada fase stance nilai variansi akan mendekati nol. Analisis variansi juga memperkecil pengaruh sinyal bias yang dapat menyebabkan error pendeteksian. 2.2 Akselerometer 3 Hitachi H48C H48C adalah modul sensor akselerometer terintegrasi yang dapat merasakan gaya gravitasi dalam tiga buah sumbu (X, Y, dan Z). Modul H48C menggunakan teknologi MEMS (Micro Electro-Mechanical System) yang memungkinkannya untuk digunakan secara langsung tanpa perlu dikalibrasi. Pada modul ini terdapat regulator tegangan untuk mensuplai tegangan 3.3 volt untuk chip H48C, 12-bit ADC jenis MCP3204 untuk membaca tegangan keluaran dari chip H48C dan pengkodisi sinyal analog. Gambar 3 menampilkan konfigurasi pin H48C.
3 F.3 Gambar 3 Konfigurasi pin modul H48C. Nilai keluaran dari modul Hitachi H48C adalah dalam bentuk g, (1g = 9,81 m/s 2 ). Nilai g dihitung dengan menggunakan persamaan berikut: g (( axis Vref )/ 4095) (3,3/ 0,3663) (7) Axis dan Vref didapatkan dari pembacaan ADC MCP3204, 4095 merupakan nilai maksimum dari 12 bit ADC, 3,3 adalah tegangan suplai H48C, dan 0,3663 adalah tegangan keluaran senilai 1g saat diberikan tegangan operasi sebesar 3,3V. Persamaan 7 dapat disederhakan menjadi: g ( axis Vref ) 0,0022 (8) Gambar 5 Penempatan modul sensor pada kaki kanan. 3.2 Perancangan Perangkat Lunak Perancangan Perangkat Lunak pada Mikrokontroler Gambar 6 menunjukkan diagram alir program pada mikrokontroler. Gambar 7 menunjukkan state chart pengiriman data. III. PERANCANGAN ALAT 3.1 Perancangan Perangkat Keras Secara sederhana perancangan sistem pendeteksi langkah ini dapat dilihat pada Gambar 4. Gambar 6 Diagram alir perancangan perangkat lunak pada mikrokontroler. Gambar 4 Diagram blok perangat keras Perancangan sistem ini dapat dijelaskan sebagai berikut: 1. Sensor akselerometer 3 sumbu H48C digunakan untuk membaca percepatan kaki saat berjalan. 2. Sistem minimum mikrokontroler ATmega8535 digunakan untuk mengakses data pembacaan sensor H48C dan mengirimkan data secara serial ke netbook. 3. Netbook digunakan untuk mengolah data menggunakan program Microsoft Visual C# 2008 Express Edition. Gambar 5 menunjukkan pemasangan modul sensor. Sensor diletakkan pada kaki kanan dengan cara diselipkan pada tali sepatu. Gambar 7 Diagram state pengiriman data. Mikrokontroler ATmega8535 digunakan untuk mengakses data sensor dan mengirim data percepatan ke netbook. Pengiriman data dilakukan setiap 10 ms. Oleh karena itu digunakan fasilitas interupsi timer1 overflow. Register yang digunakan untuk mengatur timer adalah register TCNT. Rumus untuk menentukan TCNT adalah sebagai berikut:
4 F.4 TCNT ( 1 0xFFFF ) ( waktu ( XTAL prescaler)) (9) Waktu yang dimaksud adalah waktu pengiriman, XTAL adalah besar clock yang digunakan dan prescaler adalah nilai pembagi untuk mengatur besarnya clock. Hasil perhitungan didapat TCNT = 0xCA00 agar dapat melakukan pengiriman data setiap 10 ms Perancangan Program Pendeteksian dan Penghitung Langkah Tampilan program pada netbook dibuat menggunakan Microsoft Visual C# 2008 Express Edition. Program ini digunakan untuk melakukan pendeteksian dan menghitung langkah kaki. Data percepatan dari 3 sumbu yang diterima kemudian diolah sehingga didapatkan nilai magnitude, energi, product dan nilai sum. Kemudian dengan data nilai ini digunakan untuk mendeteksi langkah menggunkan analisis nilai ambang (threshold). Gambar 10 Diagram alir program penghitungan langkah kaki. IV. PENGUJIAN DAN ANALISIS Pengujian dan analisis dilakukan pada sinyal magnitude, sinyal energi, sinyal sum dan sinyal product yang didapat dari pengolahan data sumbu X, Y dan Z serta sumbu Y dan Z saja ketika berjalan lurus pada bidang datar. Pengujian dan analisis juga dilakukan pada sinyal variansi dari masing-masing sinyal yang didapatkan. Gambar 8 Diagram pendeteksian fase melangkah menggunakan nilai ambang. 4.1 Pengujian dan Analisis Data secara Offline Analisis data secara offline bertujuan unuk mencari nilai ambang yang tepat untuk digunakan pada pendeteksian langkah secara online. Berdasarkan pada hasil pengamatan nilai ambang yang diperoleh untuk masing-masing sinyal adalah sebagai berikut: a. Analisis Sinyal Magnitude Fase stance dideteksi jika nilai sinyal magnitude di antara 0,95 g dan 1,15 g. Fase swing dideteksi jika nilai sinyal di luar nilai ambang. Gambar 9 Diagram blok perhitungan nilai variansi untuk pendeteksian langkah. Gambar 8 merupakan diagram blok pendeteksian menggunakan analisis nilai ambang sedangkan Gambar 9 merupakan diagram blok untuk pendeteksian menggunakan analisis variansi. Perhitungan langkah kaki dilakukan setiap ada perubahan fase swing ke fase stance. Diagram alir program penghitung langkah ditunjukkan pada Gambar 10. b. Analisis Sinyal Energi Fase stance dideteksi jika nilai sinyal energi di antara 1 g 2 dan 1,2 g 2. Fase swing dideteksi jika nilai sinyal di luar nilai ambang. c. Analisis Sinyal Product Berdasarkan pengamatan fase stance dideteksi jika nilai sinyal product YZ di antara 0,45 g 3 dan 0,55 g 3 sedangkan pada sinyal product XYZ di antara 0 g 3 dan 0,1 g 3. Pengujian online sinyal product XYZ tidak diujikan karena error pada pengujian offline didapatkan sebesar 63,3%.
5 F.5 d. Analisis Sinyal Sum Fase stance dideteksi jika nilai sinyal sum XYZ di antara 1,4 g dan 1,65 g. Nilai ambang untuk sinyal sum YZ di antara 1,35 g dan 1,55 g. e. Analisis Sinyal Variansi Fase stance dideteksi jika nilai variansi kurang dari 0,005. Pendeteksian mengunakan sinyal variansi memiliki keberhasilan pendeteksian 100% pada semua sinyal variansi kecuali pada sinyal variansi product XYZ. 4.2 Pengujian dan Analisis Data secara Online Nilai ambang yang diperoleh pada analisis secara offline kemudian dimasukkan pada program C# untuk digunakan pada pendeteksian secara online. Hasil pengujian secara online ditampilkan pada sub bab berikut Pengujian Online pada Sinyal Magnitude, Energi, Product dan Sum Tabel 1 Hasil pengujian secara online menggunakan sinyal magnitude XYZ. Tabel 2 Hasil pengujian secara online menggunakan sinyal magnitude YZ ,67 Tabel 3 Hasil pengujian secara online menggunakan sinyal energi XYZ ,1 Tabel 4 Hasil pengujian secara online menggunakan sinyal energi YZ. sebenarmya terdeteksi (%) Tabel 5 Hasil pengujian secara online menggunakan sinyal product YZ. sebemarnya terdeteksi (%)
6 F.6 Tabel 6 Hasil pengujian secara online menggunakan sinyal sum XYZ , , , ,5 Tabel 7 Hasil pengujian secara online menggunakan sinyal sum YZ ,25 Dari hasil pengujian pada sinyal magnitude, sinyal energi, sinyal product dan sinyal sum terlihat bahwa pendeteksian menggunakan sinyal sum XYZ memiliki tingkat keberhasilan yang paling rendah Pengujian Online Analisis Variansi Tabel 8 Hasil pengujian online pada sinyal variansi magnitude XYZ dan YZ. Jumlah langkah Jumlah langkah kaki yang terdeteksi kaki XYZ YZ Tabel 9 Hasil pengujian online pada sinyal variansi energi XYZ dan YZ. Jumlah langkah Jumlah langkah kaki yang terdeteksi kaki XYZ YZ Tabel 10 Hasil pengujian online pada sinyal variansi product YZ. Jumlah langkah Jumlah langkah kaki kaki yang terdeteksi Tabel 11 Hasil pengujian online pada sinyal variansi sum XYZ dan YZ. Jumlah langkah Jumlah langkah kaki yang terdeteksi kaki XYZ XY
7 F Berdasarkan tabel di atas analisis menggunakan sinyal variansi memiliki potensi terjadinya error pendeteksian yang kecil dibandingkan dengan sinyal aslinya. Kesalahan penghitungan hanya terjadi pada pendeteksian menggunakan sinyal variansi magnitude XYZ. V. PENUTUP 5.1 Kesimpulan Berdasarkan pengujian dan analisa yang telah dilakukan, maka dapat disimpulkan beberapa hal sebagai berikut: 1. Fase stance merupakan fase yang paling mudah dideteksi karena pada fase stance nilai percepatan cenderung tetap atau hanya dipengaruhi percepatan gravitasi. 2. Pendeteksian dengan menggunakan sinyal hasil pengolahan data percepatan sumbu Y dan Z lebih baik dibandingkan menggunakan sinyal hasil pengolahan data percepatan sumbu X, Y dan Z. 3. Sumbu Y dan Z memiliki pengaruh yang sangat besar pada pendeteksian langkah kaki. 4. Pendeteksian dengan menggunakan sinyal variansi lebih baik dibandingkan menggunakan sinyal aslinya. 5. Pendeteksian terbaik diperoleh pada pendeteksian menggunakan sinyal magnitude XYZ, energi YZ, product YZ dan sinyal varians dari pengolahan sumbu Y dan Z dengan tingkat keberhasilan sebesar 100%. DAFTAR PUSTAKA [1] Beauregard, Stephane, Omnidirectional Pedestrian Navigationn for First Responders, Universitas Bremen, Jerman. [2] Glanzer, Gerald dan Ulrich Walder, Selfcontained Indoor Pedestrian Navigation by Means of Human Motion Analysis and Magnetic Field Mapping, IEEE Journal, [3] Kim, Jeong Won, Han Jin Jang, Don-Hwan Hwang, dan Chansik Park, A Step, Stride and Heading Determination for the Pedestrian Navigation System, Journal of Global Positioning Systems, 3, 1-2, , 2004 [4] Ojeda, Lauro dan Johann Borenstein, n- GPS Navigation for Security Personnel and First Responders, Journal of Navigation, 60, , [5] Rajagopal, Sujatha, Personal Dead Reckoning System with Shoe Mounted Inertial Sensors, Tesis S-2, Universitas KTH Electrical Engineering, Swedia, [6] Setiawan, Iwan, Fungsi Akses Modul Accelerometer Parallax H48C dengan C (Compiler CodeVision), Februari [7] Stirling, Ross Grote, Development Pedestrian Navigation System Using Shoe Mounted, Tesis S-2, Universitas Alberta, Kanada, [8] ---, C# Programming, Maret [9] ---, C# MessageBox.Show Examples In Windows Forms, Maret [10] ---, How to Export DatagridView to Excel File, Informations.com, Maret Saran Untuk pengembangan sistem selanjutnya, maka terdapat beberapa saran yang dapat dilakukan yaitu sebagai berikut: 1. Melakukan pengolahan data lanjutan seperti mendeteksi fase lain agar pendeteksian lebih akurat 2. Menggunakan atau menambahkan sensor gyro untuk pendeteksian langkah kaki.
8 F.8 BIODATA PENULIS Surya Wisnurahutama L2F Lahir di Semarang. Saat ini sedang menempuh pendidikan strata I di Jurusan Teknik Elektro, Fakultas Teknik Universitas Diponegoro Konsentrasi Kontrol. Mengetahui dan mengesahkan, Dosen Pembimbing I Dosen Pembimbing II Iwan Setiawan, ST, MT NIP Tanggal: Budi Setiyono, ST, MT NIP Tanggal:
Analisis Metode Pendeteksian Langkah Kaki pada Pedestrian Dead Reckoning
Available online at RANSMISI Website http://ejournal.undip.ac.id/index.php/transmisi RANSMISI, 12 (3), 2010, 120-125 Analisis Metode Pendeteksian Langkah Kaki pada Pedestrian Dead Reckoning Surya Wisnurahutama
Makalah Seminar Tugas Akhir PEMETAAN POSISI DAN ORIENTASI ARAH SISTEM NAVIGASI PERSONAL BERBASIS PRINSIP DEAD RECKONING
Makalah Seminar Tugas Akhir PEMETAAN POSISI DAN ORIENTASI ARAH SISTEM NAVIGASI PERSONAL BERBASIS PRINSIP DEAD RECKONING Suis Dhesta Meinggariyad 1, Iwan Setiawan, Budi Setiyono Jurusan Teknik Elektro,
Hasil Uji Kalibrasi Sensor Accelerometer ADXL335
Hasil Uji Kalibrasi Sensor Accelerometer ADXL335 Iwan SETIAWAN #1, Budi SETIYONO #2, Tri Bagus SUSILO #3 # Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jln. Prof. Sudharto, Tembalang,
RANCANG BANGUN SIMULATOR PENGENDALIAN POSISI CANNON PADA MODEL TANK MILITER DENGAN PENGENDALI PD (PROPOSIONAL DERIVATIVE)
Makalah Seminar Tugas Akhir RANCANG BANGUN SIMULATOR PENGENDALIAN POSISI CANNON PADA MODEL TANK MILITER DENGAN PENGENDALI PD (PROPOSIONAL DERIVATIVE) Heru Triwibowo [1], Iwan Setiawan [2], Budi Setiyono
PERANCANGAN SISTEM PEMANTAUAN POSISI PEJALAN KAKI MENGGUNAKAN FUSI DATA MEMS SENSOR DAN GPS
PERANCANGAN SISTEM PEMANTAUAN POSISI PEJALAN KAKI MENGGUNAKAN FUSI DATA MEMS SENSOR DAN GPS Muhammad Fairuz Luthfa*), Achmad Hidayatno, and Iwan Setiawan Jurusan Teknik Elektro, Universitas Diponegoro
Makalah Seminar Tugas Akhir APLIKASI SENSO R ACCELERO METER UNTUK MENULIS DI UDARA
Makalah Seminar Tugas Akhir APLIKASI SENSO R ACCELERO METER UNTUK MENULIS DI UDARA Sudirman Hamonangan Sihombing [1], Iwan Setiawan, S.T., M.T. [2], Achmad Hidayatno, S.T.,M.T. [2] Jurusan Teknik Elektro,
BAB I PENDAHULUAN. pengendalian. Perkembangan teknologi MEMS (Micro Electro Mechanical System)
BAB I PENDAHULUAN 1 Latar Belakang Sensor adalah jenis tranduser yang digunakan untuk mengubah besaran mekanis, magnetis, panas, sinar, dan kimia menjadi tegangan dan arus listrik. Sensor sering digunakan
III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat
III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM 3.1 Diagram Blok Sistem Secara Umum Perancangan sistem yang dilakukan dengan membuat diagram blok yang menjelaskan alur dari sistem yang dibuat pada perancangan dan pembuatan
BAB III ANALISA DAN PERANCANGAN
BAB III ANALISA DAN PERANCANGAN III.1. Analisa Permasalahan Sistem Transmisi Data Sensor Untuk Peringatan Dini Pada Kebakaran Hutan Dalam perancangan sistem transmisi data sensor untuk peringatan dini
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT Bab ini akan menjelaskan mengenai perancangan serta realisasi perangkat keras maupun perangkat lunak pada perancangan skripsi ini. Perancangan secara keseluruhan terbagi menjadi
BAB IV PENGUJIAN DAN ANALISIS
BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan wireless
BAB IV PENGUJIAN DAN ANALISIS
BAB IV PENGUJIAN DAN ANALISIS Pada skripsi ini dilakukan beberapa pengujian dan percobaan untuk mendapatkan hasil rancang bangun Quadcopter yang stabil dan mampu bergerak mandiri (autonomous). Pengujian
BAB IV HASIL DAN PEMBAHSAN. blok rangkaian penyusun sistem, antara laian pengujian Power supply,
1 BAB IV HASIL DAN PEMBAHSAN 1.1 Hasil dan Pembahasan Secara umum, hasil pengujian ini untuk mengetahui apakah alat yang dibuat dapat bekerja sesuai dengan perancangan yang telah ditentukan. Pengujian
OTOMATISASI PENGATUR KELEMBAPAN DAN SUHU PADA OVEN MENGGUNAKAN ATMEGA 8535 LAPORAN TUGAS AKHIR
OTOMATISASI PENGATUR KELEMBAPAN DAN SUHU PADA OVEN MENGGUNAKAN ATMEGA 8535 LAPORAN TUGAS AKHIR OLEH : FRANSISCUS GUNAWAN 08.50.0016 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS KATOLIK SOEGIJAPRANATA
Signal Conditioning Test for Low-Cost Navigation Sensor
Signal Conditioning Test for Low-Cost Navigation Sensor Iwan Tirta 1,Romi Wiryadinata 2 Jurusan Teknik Elektro, Universitas Sultan Ageng Tirtayasa Cilegon, Indonesia 1 [email protected], 3 [email protected]
SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8
SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 I Nyoman Benny Rismawan 1, Cok Gede Indra Partha 2, Yoga Divayana 3 Jurusan Teknik Elektro, Fakultas Teknik Universitas
BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan
BAB 3 PERANCANGAN SISTEM Konsep dasar mengendalikan lampu dan komponen komponen yang digunakan pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan perancangan sistem
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari alat akuisisi data termokopel 8 kanal. 3.1. Gambaran Sistem Alat yang direalisasikan
SISTEM INFORMASI AREA PARKIR BERBASIS MIKROKONTROLER ATMEGA 16
SISTEM INFORMASI AREA PARKIR BERBASIS MIKROKONTROLER ATMEGA 16 Alfa Anindita. [1], Sudjadi [2], Darjat [2] Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang,
BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.
BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar
BAB IV PENGUJIAN ALAT DAN ANALISA
BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan
BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK
BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 3.1 Gambaran Umum Perangkat keras dari proyek ini secara umum dibagi menjadi dua bagian, yaitu perangkat elektronik dan mekanik alat pendeteksi gempa.perancangan
BAB III PERANCANGAN. Mikrokontroler ATMEGA Telepon Selular User. Gambar 3.1 Diagram Blok Sistem
BAB III PERANCANGAN 3.1 Prnsip Kerja Sistem Sistem yang akan dibangun, secara garis besar terdiri dari sub-sub sistem yang dikelompokan ke dalam blok-blok seperti terlihat pada blok diagram pada gambar
BAB III PERANCANGAN Gambaran Alat
BAB III PERANCANGAN Pada bab ini penulis menjelaskan mengenai perancangan dan realisasi sistem indikator peringatan berbelok dan perlambatan pada helm sepeda dengan menggunakan android smartphone sebagai
BAB IV PENGUJIAN DAN ANALISA
83 BAB IV PENGUJIAN DAN ANALISA 4.1. Tujuan Pengujian Pengujian yang akan dilakukan untuk mengetahui apakah sistem sudah berjalan sesuai dengan perencanaan yang telah dibuat. Pengujian dilakukan pada beberapa
Abstrak. Susdarminasari Taini-L2F Halaman 1
Makalah Seminar Kerja Praktek PERANCANGAN APLIKASI PLC OMRON SYSMAC CPM1A PADA TRAFFIC LIGHT DI LABORATORIUM TEKNIK KONTROL OTOMATIK TEKNIK ELEKTRO UNIVERSITAS DIPONEGORO Susdarminasari Taini (L2F009034)
BAB III ANALISA DAN PERANCANGAN ALAT
BAB III ANALISA DAN PERANCANGAN ALAT III.1. Analisa Permasalahan Perancangan Pendeteksi Gabah Kering Dan Gabah Basah Perkembangan zaman yang semakin maju, membuat meningkatnya produk elektronika yang beredar
III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar
28 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar dan Laboratorium Pemodelan Jurusan Fisika Universitas Lampung. Penelitian
PERANCANGAN PENGUKUR MAGNITUDO DAN ARAH GEMPA MENGGUNAKAN SENSOR ACCELEROMETER ADXL330 MELALUI TELEMETRI
Jurnal Sistem Komputer Unikom Komputika Volume 1, No.2-2012 PERANCANGAN PENGUKUR MAGNITUDO DAN ARAH GEMPA MENGGUNAKAN SENSOR ACCELEROMETER ADXL330 MELALUI TELEMETRI Hidayat 1, Usep Mohamad Ishaq 2, Andi
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM 3.1 Gambaran Umum Pada bab ini membahas tentang perancangan sistem yang mencakup perangkat keras (hardware) dan perangkat lunak (software). Perangkat keras ini meliputi sensor
BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar
BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED 3.1. Rancang Bangun Perangkat Keras Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar 3.1. Sistem ini terdiri dari komputer, antarmuka
BAB IV PENGUJIAN DAN ANALISA
BAB IV PENGUJIAN DAN ANALISA Pada bab ini dijelaskan tentang pengujian alat ukur temperatur digital dan analisa hasil pengujian alat ukur temperatur digital. 4.1 Rangkaian dan Pengujian Alat Ukur Temperatur
DESAIN DAN IMPLEMETASI GRID-BASED MAP SEBAGAI SISTEM PENGENALAN POSISI PADA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) DIVISI BERODA
DESAIN DAN IMPLEMETASI GRID-BASED MAP SEBAGAI SISTEM PENGENALAN POSISI PADA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) DIVISI BERODA Publikasi Jurnal Skripsi Disusun Oleh : NUR ISKANDAR JUANG NIM : 0910630083-63
BAB II DASAR TEORI Arduino Nano
BAB II DASAR TEORI Pada bab ini akan dijelaskan teori-teori penunjang yang diperlukan dalam merancang dan merealisasikan skripsi ini. Bab ini dimulai dari pengenalan singkat dari komponen elektronik utama
APLIKASI SENSOR KOMPAS UNTUK PENCATAT RUTE PERJALANAN ABSTRAK
APLIKASI SENSOR KOMPAS UNTUK PENCATAT RUTE PERJALANAN Frederick Sembiring / 0422168 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung,
BAB III DESKRIPSI DAN PERANCANGAN SISTEM
BAB III DESKRIPSI DAN PERANCANGAN SISTEM 3.1. DESKRIPSI KERJA SISTEM Gambar 3.1. Blok diagram sistem Satelit-satelit GPS akan mengirimkan sinyal-sinyal secara kontinyu setiap detiknya. GPS receiver akan
Keseimbangan Robot Humanoid Menggunakan Sensor Gyro GS-12 dan Accelerometer DE-ACCM3D
i Keseimbangan Robot Humanoid Menggunakan Sensor Gyro GS-12 dan Accelerometer DE-ACCM3D Disusun Oleh : Nama : Rezaly Andreas Nrp : 0822010 Jurusan Teknik Elektro, Fakultas Teknik Universitas Kristen Maranatha
Pendeteksi Benturan Keras pada Pengiriman Barang Mudah Rusak Akibat Benturan
Pendeteksi Benturan Keras pada Pengiriman Barang Mudah Rusak Akibat Benturan Oleh: Karel Marthinus Manufandu NIM : 612004038 Skripsi Untuk melengkapi syarat-syarat memperoleh Ijasah Sarjana Teknik Elektro
terhadap gravitasi, sehingga vektor gravitasi dapat diestimasi dan didapatkan dari pengukuran. Hasil akselerasi lalu diintregasikan untuk mendapatkan
1 BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian Pada kurun waktu yang singkat, Unmanned Aerial Vehicle (UAV) telah menarik banyak perhatian warga sipil, karena keunggulan mesin ini yang dapat berfungsi
RANCANG BANGUN SISTEM MONITORING PORTABEL POLUSI UDARA BERBASIS KOORDINAT GPS (GLOBAL POSITIONING SYSTEM)
RANCANG BANGUN SISTEM MONITORING PORTABEL POLUSI UDARA BERBASIS KOORDINAT GPS (GLOBAL POSITIONING SYSTEM) Tito Tuesnadi *), Sumardi, S.T., M.T., Budi Setiyono, S.T., M.T. Jurusan Teknik Elektro, Universitas
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT Bab ini akan menjelaskan tentang perancangan, gambaran sistem serta realisasi perangkat keras maupun perangkat lunak yang digunakan pada tongkat tunanetra. 3.1. Gambaran Alat Alat
PERANCANGAN TIMBANGAN DIGITAL DENGAN PC SEBAGAI MEDIA DATABASE INFORMASI INVENTORI BUAH
PERANCANGAN TIMBANGAN DIGITAL DENGAN PC SEBAGAI MEDIA DATABASE INFORMASI INVENTORI BUAH ARRAHMAN SEPUTRA A. 2207 030 068 OLEH : ANGGA DWI AMIRIL 2207 030 073 DOSEN PEMBIMBING Rachmad Setiawan, ST, MT NIP.
BAB IV PENGUJIAN DAN ANALISA SISTEM
BAB IV PENGUJIAN DAN ANALISA SISTEM Bab ini akan membahas tentang pengujian dan analisa system yang telah dirancang. Tujuan dari pengujian ini adalah untuk mengetahui respon kerja dan system secara keseluruhan.
METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli
36 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di
IV. HASIL PENELITIAN DAN PEMBAHASAN. menggunakan sensor optik berbasis mikrokontroler ATMega 8535 dengan
IV. HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Penelitian Telah direalisasikan alat ukur massa jenis minyak kelapa sawit menggunakan sensor optik berbasis mikrokontroler ATMega 8535 dengan tampilan ke komputer.
BAB III PERENCANAAN DAN PEMBUATAN PERANGKAT LUNAK
BAB III PERENCANAAN DAN PEMBUATAN PERANGKAT LUNAK Bab ini membahas tentang perancangan perangkat lunak yang meliputi interface PC dengan mikrokontroller, design, database menggunakan Microsoft access untuk
Oleh : Miftahul Kanzil Muhid Irfan Mustofa Dosen Pembimbing : Ir. Josaphat Pramudijanto, M.Eng NIP :
Oleh : Miftahul Kanzil Muhid 2207 030 014 Irfan Mustofa 2207 030 701 Dosen Pembimbing : Ir. Josaphat Pramudijanto, M.Eng NIP : 19621005.199003.1.003 D3 Teknik Elektro Institut Teknologi Sepuluh Nopember
III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret 2015 sampai dengan Agustus 2015.
44 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Maret 2015 sampai dengan Agustus 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di Laboratorium
BAB III PERANCANGAN SISTEM. untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input untuk
BAB III PERANCANGAN SISTEM 3.1 Dasar Perancangan Sistem Perangkat keras yang akan dibangun adalah suatu aplikasi mikrokontroler untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input
MODEL SISTEM INTERUPSI DAYA OTOMATIS DENGAN MIKROKONTROLER M68HC11
MODEL SISTEM INTERUPSI DAYA OTOMATIS DENGAN MIKROKONTROLER M68HC11 PROPOSAL TUGAS AKHIR OLEH Nama : Endar Suprih W. NIM : L2F 098 610 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Sudah menjadi trend saat ini bahwa pengendali suatu alat sudah banyak yang diaplikasikan secara otomatis, hal ini merupakan salah satu penerapan dari perkembangan teknologi dalam
Perancangan Indikator Belok dan Perlambatan pada Helm Sepeda Berbasis Android Smartphone
Perancangan Indikator Belok dan Perlambatan pada Helm Sepeda Berbasis Android Simon Wedhatama 1, Deddy Susilo 2, F. Dalu Setiaji 3 Program Studi Teknik Elektro, Fakultas Teknik Elektronika dan Komputer,
BAB IV PENGUJIAN ALAT DAN ANALISA
BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM 3.1 Perancangan Perangkat Keras Pada bab ini menjelaskan perangkat keras yang digunakan dalam membuat tugas akhir ini. Perangkat keras yang digunakan terdiri dari modul Arduino
BAB IV PENGUJIAN DAN ANALISA
BAB IV PENGUJIAN DAN ANALISA 4.1 Tujuan Pengujian Pengujian yang akan dilakukan untuk mengetahui apakah sistem sudah berjalan sesuai dengan perencanaan yang telah dibuat. Pengujian dilakukan pada beberapa
Aplikasi Sensor Accelerometer Pada Deteksi Posisi
Makalah Seminar Tugas Akhir Aplikasi Sensor Accelerometer Pada Deteksi Posisi Vidi Rahman Alma i [1], Wahyudi, S.T, M.T [2], Iwan Setiawan, S.T, M.T [2] Jurusan Teknik Elektro, Fakultas Teknik, Universitas
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. DIAGRAM ALUR PENELITIAN Metode penelitian merupakan sebuah langkah yang tersusun secara sistematis dan menjadi pedoman untuk menyelesaikan masalah. Metode penelitian merupakan
DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...
DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... Halaman DAFTAR LAMPIRAN... xviii DAFTAR ISTILAH DAN SINGKATAN... BAB I PENDAHULUAN 1.1 Latar
III. METODE PENELITIAN. Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014.
III. METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Teknik Elektro Fakultas Teknik Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014. 3.2 Alat
TERMOMETER BADAN DIGITAL OUTPUT SUARA BERBASIS MIKROKONTROLLER AVR ATMEGA8535
TERMOMETER BADAN DIGITAL OUTPUT SUARA BERBASIS MIKROKONTROLLER AVR ATMEGA8535 Denny Wijanarko 1, Harik Eko Prasetyo 2 1); 2) Jurusan Teknologi Informasi, Politeknik Negeri Jember, Jember. 1email: [email protected]
KENDALI ON-OFF PERALATAN ELEKTRONIK MENGGUNAKAN PC DENGAN KOMUNIKASI SERIAL RS-485
KENDALI ON-OFF PERALATAN ELEKTRONIK MENGGUNAKAN PC DENGAN KOMUNIKASI SERIAL RS-485 TUGAS AKHIR OLEH : HENDRA WIRAATMAJA 01.50.0120 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS KATOLIK
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Seperti yang telah dijelaskan sebelumnya, pengukuran resistivitas dikhususkan pada bahan yang bebentuk silinder. Rancangan alat ukur ini dibuat untuk mengukur tegangan dan arus
PERANCANGAN SISTEM KENDALI GERAKAN ROBOT BERODA TIGA UNTUK PEMBERSIH LANTAI
PERANCANGAN SISTEM KENDALI GERAKAN ROBOT BERODA TIGA UNTUK PEMBERSIH LANTAI Muhammad Firman S. NRP 2210 030 005 Muchamad Rizqy NRP 2210 030 047 Dosen Pembimbing Ir. Rusdhianto Effendie AK, M.T NIP. 19570424
Perancangan Alat Peraga Papan Catur pada Layar Monitor. Samuel Setiawan /
Perancangan Alat Peraga Papan Catur pada Layar Monitor Samuel Setiawan / 0522083 Email : [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri, MPH. No. 65, Bandung,
Pedestrian Dead Reckoning pada Ponsel Cerdas sebagai Sistem Penentuan Posisi dalam Ruangan
20 JTETI, Vol. 2, o. 3, Agustus 2013 Pedestrian Dead Reckoning pada Ponsel Cerdas sebagai Sistem Penentuan Posisi dalam Ruangan Azkario Rizky Pratama 1, Widyawan 2 Abstract owadays, personal positioning
IMPLEMENTASI KONTROL PID UNTUK PENGENDALI MICROPUMP GUNA MENJAGA KONTINUITAS ALIRAN FLUIDA LAPORAN TUGAS AKHIR
IMPLEMENTASI KONTROL PID UNTUK PENGENDALI MICROPUMP GUNA MENJAGA KONTINUITAS ALIRAN FLUIDA LAPORAN TUGAS AKHIR Oleh: ANDIKA PERMADI 02.50.0079 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS
PERANCANGAN ALAT PEMANTAU TEKANAN DAN KONSENTRASI OKSIGEN UDARA PERNAFASAN BERBASIS MIKROKONTROLER ATmega32
PERANCANGAN ALAT PEMANTAU TEKANAN DAN KONSENTRASI OKSIGEN UDARA PERNAFASAN BERBASIS MIKROKONTROLER ATmega32 Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun
Oleh : Abi Nawang Gustica Pembimbing : 1. Dr. Muhammad Rivai, ST., MT. 2. Ir. Tasripan, MT.
Implementasi Sensor Gas pada Kontrol Lengan Robot untuk Mencari Sumber Gas (The Implementation of Gas Sensors on the Robotic Arm Control to Locate Gas Source ) Oleh : Abi Nawang Gustica Pembimbing : 1.
ABSTRAK. Kata kunci: komunikasi data serial, ATMega 32. Universitas Kristen Maranatha
ABSTRAK Dalam Tugas Akhir, ini dibuat sebuah miniatur lahan parkir yang menggunakan mikrokontroler ATMega 32. Miniatur lahan parkir terdiri dari enam baris parkir yang masingmasing parkir dipasang sensor
RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560
RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560 Oleh : Andreas Hamonangan S NPM : 10411790 Pembimbing 1 : Dr. Erma Triawati Ch, ST., MT. Pembimbing 2 : Desy Kristyawati,
INDIKATOR BAHAN BAKAR MINYAK DIGITAL PADA SEPEDA MOTOR MENGGUNAKAN SENSOR TEKANAN FLUIDA BERBASIS MIKROKONTROLER PUBLIKASI JURNAL SKRIPSI
INDIKATOR BAHAN BAKAR MINYAK DIGITAL PADA SEPEDA MOTOR MENGGUNAKAN SENSOR TEKANAN FLUIDA BERBASIS MIKROKONTROLER PUBLIKASI JURNAL SKRIPSI Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik
PENGUKURAN CEPAT KERATAAN JALAN RAYA DENGAN MENGGUNAKAN MEMS ACCELEROMETER SENSOR SKRIPSI NOVIANTI LASMARIA
PENGUKURAN CEPAT KERATAAN JALAN RAYA DENGAN MENGGUNAKAN MEMS ACCELEROMETER SENSOR SKRIPSI Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains NOVIANTI LASMARIA 060801046 DEPARTEMEN
BAB III ANALISA DAN PERANCANGAN ALAT
BAB III ANALISA DAN PERANCANGAN ALAT III.1. Analisa Permasalahan Perancangan Alat Ukur Kadar Alkohol Pada Minuman Tradisional Dalam melakukan pengujian kadar alkohol pada minuman BPOM tidak bisa mengetahui
BAB II KONSEP DASAR SISTEM PENGONTROL PARTITUR OTOMATIS
BAB II KONSEP DASAR SISTEM PENGONTROL PARTITUR OTOMATIS Pada BAB II ini akan dibahas gambaran cara kerja sistem dari alat yang dibuat serta komponen-komponen yang digunakan untuk pembentuk sistem. Pada
2 METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Januari 2015 hingga Oktober 2015
10 2 METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Januari 2015 hingga Oktober 2015 di Laboratorium Teknik Elektronika, Jurusan Teknik Elektro, Universitas Lampung.
BAB 3 PERANCANGAN SISTEM
BAB 3 PERANCANGAN SISTEM Perancangan sistem ditujukan untuk melakukan pengukuran jumlah langkah dengan, jarak langkah dan konsumsi energi pada aktivitas berjalan dengan menggunakan akselerometer MMA7260Q
1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar.
1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar. Berdasar gambar diatas, diketahui: 1) percepatan benda nol 2) benda bergerak lurus beraturan 3) benda dalam keadaan diam 4) benda akan bergerak
Jurnal Coding Sistem Komputer Untan Volume 05, No.2 (2017), hal ISSN : X
RANCANG BANGUN ALAT UKUR GERAK LURUS BERUBAH BERATURAN (GLBB) PADA BIDANG MIRING BERBASIS ARDUINO [1] Vionanda Sheila Deesera, [2] Ilhamsyah, [3] Dedi Triyanto [1][3] Jurusan Sistem Komputer, Fakultas
BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK
22 BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK 3.1. Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras (hardware) dan perangkat lunak (software). Pembahasan perangkat keras
BAB II DASAR TEORI. 2.1 Kecepatan
BAB II DASAR TEORI Berdasarkan latar belakang masalah yang telah dipaparkan pada Bab I, tujuan skripsi ini adalah merancang sistem forensik digital pada kendaraan bermotor khususnya disini sepeda motor.
BAB I PENDAHULUAN. I.1 Latar Belakang
BAB I PENDAHULUAN I.1 Latar Belakang Krisis energi bukanlah permasalahan yang baru, namun sudah menjadi hal yang diprediksikan pasti akan terjadi. Sumber energi minyak yang selama ini menjadi andalan akan
Rancang Bangun Prototipe Alat Pemetaan Topografi Tanah Menggunakan Sensor IMU 10 DOF
Rancang Bangun Prototipe Alat Pemetaan Topografi Tanah Menggunakan Sensor IMU 10 DOF Al Barra Harahap1,a), Myo Myint Shein1,b), Nina Siti Aminah1,c), Abdul Rajak2,d), Mitra Djamal1,2,e) 1 Laboratorium
Rancang Bangun Prototipe Kapal Tanpa Awak Menggunakan Mikrokontroler
Rancang Bangun Prototipe Kapal Tanpa Awak Menggunakan Mikrokontroler Dosen Pembimbing: Suwito, ST., MT. Yoga Uta Nugraha 2210 039 025 Ainul Khakim 2210 039 026 Jurusan D3 Teknik Elektro Fakultas Teknologi
BAB II KONSEP DASAR PERANCANGAN
BAB II KONSEP DASAR PERANCANGAN Pada bab ini akan dijelaskan konsep dasar sistem keamanan rumah nirkabel berbasis mikrokontroler menggunakan modul Xbee Pro. Konsep dasar sistem ini terdiri dari gambaran
Perancangan Sensor Gyroscope dan Accelerometer Untuk Menentukan Sudut dan Jarak
Makalah Seminar Tugas Akhir Perancangan Sensor Gyroscope dan Accelerometer Untuk Menentukan dan Ruslan Gani [1], Wahyudi, S.T, M.T [2], Iwan Setiawan, S.T, M.T [2] Jurusan Teknik Elektro, Fakultas Teknik,
ALAT PENGONTROL KEBISINGAN DI PERPUSTAKAAN BERBASIS MIKROKONTROLER AT MEGA 16
ALAT PENGONTROL KEBISINGAN DI PERPUSTAKAAN BERBASIS MIKROKONTROLER AT MEGA 16 SKRIPSI Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Jenjang Strata Satu (S1) Pada Program Studi Elektro
BAB IV HASIL DAN PEMBAHASAN 4.1 Gambar Rangkaian EMG Dilengkapi Bluetooth
BAB IV HASIL DAN PEMBAHASAN 4.1 Gambar Rangkaian EMG Dilengkapi Bluetooth Gambar 4. 1 Rangkaian keseluruhan EMG dilengkapi bluetooth Perancangan EMG dilengkapi bluetooth dengan tampilan personal computer
BAB III PERANCANGAN DAN PEMBUATAN ALAT
27 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Umum Didalam perancangan alat dirancang sebuah alat simulator penghitung orang masuk dan keluar gedung menggunakan Mikrokontroler Atmega 16. Inti dari cara
PEMBUATAN ALAT UKUR KETEBALAN BAHAN SISTEM TAK SENTUH BERBASIS PERSONAL COMPUTER MENGGUNAKAN SENSOR GP2D12-IR
200 Prosiding Pertemuan Ilmiah XXIV HFI Jateng & DIY, Semarang 10 April 2010 hal. 200-209 PEMBUATAN ALAT UKUR KETEBALAN BAHAN SISTEM TAK SENTUH BERBASIS PERSONAL COMPUTER MENGGUNAKAN SENSOR GP2D12-IR Mohtar
BAB IV PENGUJIAN DAN ANALISIS SISTEM
BAB IV PENGUJIAN DAN ANALISIS SISTEM 4.1 Analisis dan Pengujian Analisis merupakan hal penting yang harus dilakukan untuk mengetahui bagaimana hasil dari sistem yang telah dibuat dapat berjalan sesuai
Jawaban Ujian Tengah Semester EL3096 Sistem Mikroprosesor & Lab
Jawaban Ujian Tengah Semester EL3096 Sistem Mikroprosesor & Lab Selasa 18 Oktober 2011; 09:00 WIB ; Dosen: Waskita Adijarto, Pranoto Hidaya Rusmin 1 Sistem Mikroprosesor Diketahui sebuah sistem mikroprosesor
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan
III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Januari 2015.
28 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Januari 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di Laboratorium
NASKAH PUBLIKKASI ALAT PENGUKUR GETARAN BERBASIS MIKROKONTROLLER ATMEGA 16 MENGGUNAKAN SENSOR MICROPHONE
NASKAH PUBLIKKASI ALAT PENGUKUR GETARAN BERBASIS MIKROKONTROLLER ATMEGA 16 MENGGUNAKAN SENSOR MICROPHONE KARYA ILMIAH Diajukan sebagai Salah Satu Syarat Menyelesaikan Program Studi S-1 Jurusan Teknik Elektro
LOCAL POSITIONING SYSTEM MENGGUNAKAN SENSOR ULTRASONIK
LOCAL POSITIONING SYSTEM MENGGUNAKAN SENSOR ULTRASONIK Oleh: Abraham Yoela Yuwono NIM : 612006015 Skripsi Untuk melengkapi syarat-syarat memperoleh Ijasah Sarjana Teknik Elektro FAKULTAS TEKNIK PROGRAM
Prototype Payload Untuk Roket Uji Muatan
Prototype Payload Untuk Roket Uji Muatan Jalimin / 0522122 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jln. Prof. Drg. Surya Sumantri 65, Bandung 40164, Indonesia Email : [email protected]
Makalah Seminar Tugas Akhir
Makalah Seminar Tugas Akhir Rancang Bangun Mobile Robot Penjejak Benda Bergerak Berbasis Pengendali PD (Proposional-Derivative) Menggunakan Mikrokontroler AVR Atmega8535 Endang Dwi Hartanti [], Iwan Setiawan,
BAB IV PENGUJIAN RPBOT PENGHISAP DEBU
BAB IV PENGUJIAN RPBOT PENGHISAP DEBU 4.1 Umum Setiap perancangan perangkat elektronika baik otomotis maupun manual dibutuhkan tahap-tahap khusus guna untuk menghasilkan perangkat yang baik dan sesuai
BAB 3 PERANCANGAN SISTEM
BAB 3 PERANCANGAN SISTEM Perancangan sistem pada timbangan digital sebagai penentuan pengangkatan beban oleh lengan robot berbasiskan sensor tekanan (Strain Gauge) dibagi menjadi dua bagian yaitu perancangan
