BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Pada dasarnya setiap sistem struktur pada suatu bangunan merupakan penggabungan antara berbagai elemen struktur. Tujuan utama dari struktur adalah memberikan kekuatan pada suatu bangunan karena fungsi dari struktur itu sendiri adalah untuk memikul beban secara aman dan efektif yang selanjutnya beban tersebut disalurkan ke dalam tanah melalui pondasi. Perencanaan bangunan merupakan suatu usaha untuk menyusun dan mengorganisasikan suatu proyek konstruksi baik berupa perhitungan-perhitungan maupun tulisan-tulisan sehingga bangunan yang dihasilkan sesuai dengan yang diinginkan dan tetap memperhatikan standar ekonomis, aman, kuat, dan nyaman. Pada tahap perencanaan struktur Gedung SMP Negeri 1 Pangkalan kerinci Provinsi Riau ini, perlu dilakukan studi pustaka untuk mengetahui susunan fungsional gedung dengan sistem struktural yang akan digunakan, disamping itu juga diharapkan mampu menyelesaikan suatu tahap pengerjaan struktur yang efektif dan efisien. Pada bab ini akan dijelaskan tentang tata cara dan langkah-langkah perhitungan struktur mulai dari struktur atas yang meliputi rangka atap, plat, balok, kolom, tangga sampai dengan perhitungan struktur bawah yang terdiri pondasi, dan pile cap. Studi pustaka bertujuan agar dapat memperoleh hasil perencanaan yang optimal dan akurat. Oleh karena itu, dalam bab ini pula akan dibahas mengenai konsep pemilihan sistem struktur dan konsep perencanaan struktur bangunannya. 2.2 Dasar-dasar Perencanaan Dalam perencanaan bangunan, penulis berpedoman pada peraturanperaturan yang telah ditetapkan dan berlaku di Indonesia. Peraturan-peraturan yang dijadikan pedoman tersebut antara lain : 1. Tata cara Peraturan Pembebanan Indonesia untuk Gedung (1983). 5

2 6 2. Tata cara Perencanaan Struktur Beton Bertulang untuk Bangunan Gedung (SNI ). 3. Tata cara Perencanaan Struktur Baja untuk Bangunan Gedung (SNI ). 4. Dasar-dasar Perencanaan Struktur Beton Bertulang, (SNI T ) oleh W.C Vis dan Gideon Kusuma. 5. Dasar-dasar Perencanaan Struktur Beton Bertulang, ( SK SNI T ) oleh Istimawan Dipohusodo. 2.3 Landasan Teori Kegiatan perencanaan adalah suatu kegiatan yang sangat pokok dan penting sebelum melaksanakan sebuah proyek. Terjadinya kesalahan pelaksanaan ataupun metode kerja yang tidak berurutan akan memberikan kerugian pada proyek. Perencanaan yang tepat dan matang akan memudahkan dalam mencapai tujuan utama sebuah pekerjan konstruksi, yaitu tepat waktu, tepat mutu, serta tepat biaya. Dalam proses desain struktur perlu dicari kedekatan antara lain struktur dengan jenis struktur dengan masalah-masalah seperti arsitektural, efisiensi, serviceability, kemudahan pelaksanaan dan juga biaya yang diperlukan. Adapun faktor yang menentukan dalam pemilihan jenis struktur adalah sebagai berikut: 1. Aspek arsitektural Pengolahan perencanaan denah, gambar tampak, gambar potongan dan perspektif, interior, eksterior dan estetika. 2. Aspek fungsional Perencanaan struktur yang baik sangat memperhatikan fungsi daripada bangunan tersebut. Dalam kaitannya dengan penggunaan ruang, aspek fungsional sangat mempengaruhi besarnya dimensi bangunan yang direncanakan. 3. Kekuatan dan kestabilan struktur Kekuatan dan kestabilan struktur mempunyai kaitan yang erat dengan kemampuan struktur untuk menerima beban-beban yang bekerja, baik

3 7 beban vertikal maupun beban lateral dan kestabilan struktur baik arah vertikal maupun lateral. 4. Faktor ekonomi dan kemudahan pelaksanaan Pembangunan dan pemeliharaan konstruksi tersebut diharapkan dapat diselenggarakan dengan biaya seefisien mungkin, namun masih memungkinkan terjaminnya tingkat keamanan dan kenyamanan. 5. Aspek lingkungan Aspek lingkungan merupakan salah satu aspek lain yang ikut menentukan dalam perencanaan dan pelaksanaan suatu proyek. Dengan adanya suatu proyek diharapkan akan memperbaiki kondisi lingkungan dan kemasyarakatan. Sedangkan pemilihan jenis pondasi (sub structure) yang digunakan menurut Suyono (1984) didasarkan pada beberapa pertimbangan, yaitu : 1. Keadaan tanah pondasi Jenis tanah, daya dukung tanah, kedalaman tanah keras dan beberapa hal yang menyangkut keadaan tanah erat kaitannya dengan jenis pondasi yang dipilih. 2. Batasan-batasan akibat konstruksi diatasnya Keadaan struktur atas sangat mempengaruhi pemilihan jenis pondasi, hal ini meliputi kondisi beban (besar beban, arah beban dan penyebaran beban) dan sifat dinamis bangunan diatasnya (statis tertentu dan tak tentu, kekakuan dan sebagainya). 3. Batasan-batasan dilingkungan sekelilingnya Hal ini menyangkut lokasi proyek, pekerjaan pondasi tidak boleh mengganggu atau membahayak 4. Waktu dan biaya pelaksanaan pekerjaan Suatu proyek pembangunan akan sangat memperhatikan aspek waktu dan biaya pelaksanaan pekerjaan, karena hal ini sangat erat hubungannya dengan tujuan pencapaian kondisi ekonomis dalam pembangunan.

4 8 2.4 Perhitungan Struktur Perencanaan Rangka Atap Rangka atap atau konstruksi kuda-kuda adalah suatu bagian dari struktur gedung yang berfungsi sebagai tempat meletakkan penutup atap sehingga dalam perencanaan, pembebanan tergantung dari jenis penutup atap yang digunakan. a. Pembebanan Pembebanan yang bekerja pada rangka atap adalah : 1. Beban Mati Beban mati adalah beban dari semua bagian atap yang tidak bergerak, beban tersebut adalah : - Beban sendiri kuda-kuda - Beban penutup atap - Berat gording 2. Beban Hidup Beban hidup adalah beban yang terjadi akibat pengerjaan maupun akibat penggunaan gedung itu sendiri, termasuk didalamnya adalah : - Beban pekerja - Beban air hujan - Beban angin b. Gording Gording adalah balok atap sebagai pengikat yang menghubungkan antar kudakuda. Gording juga menjadi dudukan untuk kasau dan balok jurai dalam. Struktur gording direncanakan kekuatannya berdasarkan pembebanan beban mati dan beban hidup. Kombinasi pembebanan yang ditinjau adalah beban pada saat pemakaian yaitu beban mati ditambah beban air hujan, sedangkan beban sementara yaitu beban-beban mati ditambah beban pekerja pada saat pelaksanaan.

5 9 Perencanaan gording menggunakan metode berikut : 1. Metode elastis Suatu komponen struktur yang memikul lentur terhadap sumbu x harus memenuhi Keterangan : Mux Mn Mux = momen lentur terfaktor terhadap sumbu x Ø = faktor reduksi = 0,9 Mn = kuat nominal dari momen lentur penampang terhadap sumbu x Suatu komponen struktur yang memikul lentur terhadap sumbu y harus memenuhi Keterangan : Muy Mn Mux = momen lentur terfaktor terhadap sumbu y Ø = faktor reduksi = 0,9 Mn = kuat nominal dari momen lentur penampang terhadap sumbu y 2. Metode plastis Suatu komponen struktur yang dibebani momen lentur harus memenu Mu Mn. Momen nominal untuk penampang kompak yang memenuhi λ λp, kuat lentur nominal penampang adalah : Mn Mp Untuk penampang tak kompak yang memenuhi λ P < λ < λ P, kuat lentur nominal penampang ditentukan sebagai berikut : p Mn Mp Mp Mr... (2.1) r p Untuk penampang langsing yang memenuhi λr < λ, kuat lentur nominal penampang adalah : Mn Mr r 2 Setelah semua momen di ultimatekan, maka diperiksa kekuatan penampang berdasarkan kombinasi pembebanan berdasarkan pembebanan yang terjadi dengan menggunakan rumus :

6 10... (2.2) Mux = Momen Ultimate arah x Muy = Momen Ultimate arah y Mnx dan Mny = Momen nominal arah x dan arah y cmx = cmy diambil = 1 Komponen struktur berpenampang I Untuk bf/d < 0,3 adalah... (2.3) Untuk 0,3... (2.4) 3. Kontrol lendutan yang terjadi akibat beban mati dan kombinasi antar beban adalah :... (2.5)... (2.6) Sehingga :... (2.7) Maka kontrol lendutan aman apabila :... (2.8) Untuk beban pekerja, kontrol lendutan harus memperhitungkan beban pekerja (Px dan Py), sehingga harus dikontrol dengan persamaan :... (2.9) Sehingga :... (2.10) Kontrol lendutan aman apabila :... (2.11) c. Kuda-kuda Kuda-kuda diperhitungkan terhadap pembebanan : 1. Beban mati

7 11 - Beban kuda-kuda - Beban gording - Beban penutup atap - Beban plafon + penggantung Beban diatas kemudian dikombinasikan untuk menjadi beban mati. 2. Beban hidup - Beban air hujan - Beban angin dari sebelah kiri - Beban angin dari sebelah kanan - Beban pekerja Pada masing-masing beban diatas (1 dan 2) kemudian dapat dicari gaya-gaya batangnya. 3. Beban kombinasi Berdasarkan beban-beban tersebut diatas maka struktur baja harus mampu memikul semua kombinasi pembebanan di bawah ini : 1,4D... (2.12) 1,2D + 1,6 L + 0,5 (... (2.13) 1,2D + 1,6 ( +... (2.14) 1,2D... (2.15) 1,2D... (2.16) 0,9D... (2.17)

8 12 Keterangan : D L H W E adalah beban mati yang diakibtakan oleh berat konstruksi permanen, termasuk dinding, lantai, atap, plafon, partisi tetap, tangga, dan peralatan layan tetap. adalah beban hidup yang ditimbulkan oleh penggunaan gedungm termasuk kejut, tetapi tidak termasuk beban lingkungan seperti angin, hujan dan lain-lain. adalah beban hidup di atap yang ditimbulkan selama perawatan oleh pekerja, peralatan, dan material, atau selama penggunaan biasa oleh orang dan benda bergerak. adalah beban hujan, tidak termasuk yang diakibatkan genangan air. adalah beban angin adalah beban gempa Dengan, Kekecualian: Faktor beban untuk L di dalam kombinasi pembebanan pada persamaan 6.2-3, 6.2-4, dan harus sama dengan 1,0 garasi parkir, daerah yang digunakan untuk pertemuan umum, dan semua daerah dimana beban hidup lebih besar daripada 5 kpa. d. Sambungan Sambungan terdiri dari komponen sambungan (pelat pengisi, pelat buhul, pelat pendukung, dan pelat penyambung) dan alat pengencang (baut dan las). Dalam perencanaan sambungan ini penulis memilih sambungan menggunakan las. Adapun jenis-jenis las yang digunakan adalah sebagai berikut : 1. Las Tumpul Las tumpul adalah menghubungkan dua buah pelat yang mempunyai jarak tertentu (jarak tersebut dinamakan celah akar). Las tumpul tersebut bisa dilihat pada Gambar 2.1.

9 13 Gambar 2.1 Las Tumpul Kekuatan las tumpul (penetrasi penuh) ditetapkan sebagai berikut : a. Bila sambungan dibebani gaya tarik atau gaya tekan aksial terhadap luas efektif, maka : ϕ y. R nw = 0,9. t t. f y (bahan dasar)... (2.18) ϕ y. R nw = 0,9. tt. f yw (las)... (2,19) b. Bila sambungan dibebani dengan gaya geser terhadap luas efektif, maka : ϕ y. R nw = 0,9. t t. ( 0,6. f y ) (bahan dasar)... (2.20) ϕ y. R nw = 0,8. tt. ( 0,6. f yw ) (las)... (2.21) Keterangan : ϕ y = 0,9 fy, fu adalah faktor reduksi kekuatan saat leleh, adalah tegangan leleh dan tegangan tarik putus. 2. Las Sudut Las sudut adalah sambungan pada sudut-sudut las. Las sudut sendiri bisa dilihat pada Gambar 2.2 dibawah ini. Gambar 2.2 Las Sudut

10 14 a. Ukuran minimum las sudut : Ukuran-ukuran las sudut memiliki minimum dalam pengelasannya, yaitu bisa dilihat pada Tabel 2.1 dibawah ini. Tabel Ukuran Minimum Las Sudut Tebal bagian paling tebal, t (mm) Tebal minimum las sudut, t w (mm) t < t < t < t 6 b. Kuat las sudut Las sudut yang memikul gaya terfaktor per satuan panjang las, R u, harus memenuhi: R u φ R nw... (2.22) dengan, φ f. R nw = 0,75. tt. (0,6. f uw ) (las)... (2.23) φ f. R nw = 0,75. tt. (0,6. f u ) (bahan dasar)... (2.24) dengan φ f = 0,75 faktor reduksi kekuatan. Keterangan: f uw f u tt adalah tegangan tarik putus logam las, MPa adalah tegangan tarik putus bahan dasar, MPa adalah tebal rencana las, mm Perencanaan Pelat. Pelat adalah suatu lantai beton yang sistem pendukungnya (berupa balok) berada disisi kiri dan kanannya. Pelat beton bertulang dalam suatu struktur

11 15 bangunan dipakai pada lantai dan atap. Pada pelat yang ditumpu oleh balok pada keempat sisinya, terbagi dua berdasarkan geometrinya, yaitu : a. Pelat satu arah (one way slab) Langkah perhitungan pelat satu arah yaitu : 1. Hitung h minimum pelat 2. Hitung beban mati berat sendiri pelat dan kemudian hitung beban rencana total Wu = 1,2 W DL + 1,6 W LL... (2.25) 3. Hitung Momen rencana ( Mu) 4. Perkirakan tinggi efektif ( d eff ) d eff = h tebal selimut beton ½ Ø tulangan pokok 5. Hitung K perlu K =... (2.26) 6. Tentukan rasio penulangan Jika (ρ > ρmax), maka pelat dibuat lebih tebal 7. Hitung As yang diperlukan As=ρ.b.d... (2.27) b. Pelat dua arah (two way slab) Langkah-langkah perhitungan pelat dua arah 1. Mendimensi balok Tebal minimum tanpa balok interior yang menghubungkan tumpuatumpuannya, harus memenuhi ketentuan dari Tabel 3.1.

12 16 Tabel 2.2 Tebal minimum dari pelat tanpa balok interior Tanpa penebalan b Dengan penebalan b Tegangan a leleh f y MPa Panel luar Tanpa Dengan Panel dalam Panel luar Tanpa Dengan Panel dalam balok balok balok balok pinggir pinggir c pinggir pinggir c 300 / 33 n / 36 n / 36 n / 36 N / 40 n / 40 n 400 / 30 n / 33 n / 33 n / 33 n / 36 n / 36 n 500 / 28 n / 31 n / 31 n / 31 n / 34 n / 34 n a. Untuk tulangan dengan tegangan leleh di antara 300 MPa dan 400 MPa atau di antara 400 MPa dan 500 MPa, gunakan interpolasi linier. b. Pelat dengan balok di antara kolom kolomnya di sepanjang tepi luar. Nilai α untuk balok tepi tidak boleh kurang dari 0,8. 2. Persyaratan tebal pelat dari balok Tebal pelat minimum dengan balok yang menghubungkan tumpuan pada semua sisinya harus memenuhi ketentuan : h =... (2.28)

13 17 h =... (2.29) 3. Mencari αm dari masing-masing panel Mencari αm dari masing-masing panel untuk mengecek apakah pemakaian h coba-coba telah memenuhi persyaratan h min Untuk αm < 2,0 tebal minimum adalah 120 mm. Untuk αm 2,0 tebal minimum adalah 90 mm. α1 =,... (2.30) αm =... (2.31) 4. Pembebanan pelat Wu = 1,2 ( beban mati ) + 1,6 (beban hidup)... (2.32) 5. Mencari momen yang bekerja pada arah x dan y Mx = 0,001 Wu L2 x koefisien momen... (2.33) My = 0,001 Wu L2 x koefisien momen... (2.34) Mtix = ½ mlx... (2.35) Mtiy = ½ mly... (2.36) Keterangan : Mx = momen sejauh X meter My = momen sejauh Y meter 6. Mencari tulangan dari momen yang didapat, tentukan nilai K = Untuk mendapatkan nilai ρ ( rasio tulangan ) yang didapat dari table. Syarat : ρmin ρ ρmax Ρmax = 0, (2.37) Apabila ρ<ρmin maka dipakai tulangan ρmin = As = ρmin.b.d... (2.38)

14 18 Keterangan : k = faktor panjang efektif Mu = momen terfaktor pada penampang Ø = faktor reduksi kekuatan (0,8) B = lebar daerah tekan komponen struktur D = jarak dari serat tekan terluar ke pusat tulangan tarik Ρmin = rasio penulangan tarik non prategang minimum As = luas tulangan tarik non-prategang Fy = mutu baja Fc = mutu beton Perencanaan Tangga. Tangga adalah suatu konstruksi yang menghubungkan antara tempat yang satu dan tempat lainnya yang mempunyai ketinggian berbeda, dan dapat dibuat dari kayu, pasangan batu bata, baja dan beton. Tangga terdiri dari anak tangga dan pelat tangga. Anak tangga terbagi menjadi 2 bagian (Gambar 2.3), yaitu : 1. Antrede, yaitu bagian dari anak tangga pada bidang horizontal yang merupakan bidang tempat pijakan kaki. 2. Optrede, yaitu bagian dari anak tangga pada bidang vertikal yang merupakan selisih tinggi antara 2 buah anak tangga yang berurutan. Keterangan : a = antrede o = optrade Gambar : 2.3 antrede dan optrade

15 19 Syarat umum tangga : a. Mudah dilewati b. Kuat dan kaku c. Ukuran tangga harus sesuai dengan sifat dan fungsinya d. Material yang digunakan harus b Gaik e. Letak tangga harus strategis f. Sudut kemiringan tidak lebih dari 45. Syarat khusus tangga : a. Untuk perkantoran dan lain-lain - Antrede = 25 cm ( minimum) - Optrede = 17 cm (minimum) - Lebar tangga = cm b. Syarat langkah 2 optrede + 1 antrede = cm... (2.39) c. Syarat bordes = ln + (2a) Ln = langkah ; a = antrede d. Sudut kemiringan Maksimum = 45 Minimum = 25 e. Tinggi bebas diatas anak tangga 2,00 m Adapun hal-hal yang perlu diperhatikan dalam mendesain tangga : a. Menentukan ukuran antrede dan optrede setelah diketahui tinggi ruangan yang akan dibuatkan tangga. b. Menentukan jumlah antrede dan optrade. c. Menentukan panjang tangga. d. Menghitung pembebanan tangga. 1. Beban mati - Berat sendiri tangga - Berat sendiri bordes - Berat spesi dan ubin

16 20 - Beban sandaran 2. Beban Hidup e. Perhitungan tangga dengan metode cross Kekakuan K =... (2.40) - Faktor distribusi μ =... (2.41) - Momen Primer MAB =... (2.42) - Bidang gaya dalam D, N dan M N = V. Sin α + H. Cos α... (2.43) D = V. Cos α + H. Sin α... (2.44) f. Perataan Momen M2 = ( M BA + M BC ),- μba... (2.45) M3 = ( M BA + M BC ),- μbc... (2.46) M1 = 0,5 M2... (2.47) M4 = 0,5 M2... (2.48) g. Merencanakan tulangan - Menentukan momen yang bekerja - Mencari tulangan yang diperlukan - Mengontrol tulangan - Menentukan jarak spasi

17 21 K = didapat nilai ρ... (2.49) As = ρ.b.d dapat dilihat pada persamaan (2.27) Tulangan pembagi : As = 0,25.b.h... (2.50) Tulangan geser : v =... (2.51) Keterangan : V = gaya geser rencana pada penampang yang ditinjau Perencanaan Portal Akibat Beban Mati dan Beban Hidup Portal merupakan suatu sistem yang terdiri dari bagian-bagian struktur yang saling berhubungan dan berfungsi untuk menahan beban sabagai satu kesatuan yang lengkap. Portal dihitung dengan menggunakan program SAP 2000 portal yang dihitung adalah portal akibat beban mati dan beban hidup. 1. Portal akibat beban mati Portal ini ditinjau pada arah melintang dan memanjang. Pembebanan pada portal, antara lain: a) Berat sendiri plat b) Berat plafond + penggantung c) Berat penutup lantai d) Berat adukan e) Berat dari pasangan dinding bata Langkah-langkah menghitung portal dengan menggunakan Program SAP 2000.V14 : 1) Buat model struktur memanjang a. Mengklik file New pada program lalu pilih model portal.

18 22 Gambar 2.4 Model Struktur Konstruksi b. Pilih model grid, grid only pada model diatas dan masukkan data-data sesuai perencanaan. Gambar 2.5 Define Grid Data

19 23 Gambar 2.6 Tampilan Model Portal 2) Input data material yang digunkan (concrete) dan masukan mutu beton (fc ) dan mutu baja (fy) yang digunakan dengan mengklik Define - material add new material pilih concrete masukkan data sesuai dengan perencanaan. Gambar 2.7 Input Material

20 24 Gambar 2.8 Data-Data Material Gambar 2.9 Data-Data Material

21 25 3) Input data dimensi struktur a) Kolom : ( b x h) m b) Balok : ( b x h) m Masukkan data-dara dengan mengklik Define - Section Properties - Frame Section Add New Property Section Name (balok) setelah tampil pada layar masukkan data-data sesuai dengan perencanaan. Gambar 2.10 Frame Properties Gambar 2.11 Gambar Rectangular Section

22 26 Gambar 2.12 Reinforcement Data 4) Input data akibat beban mati (Dead) Untuk menginput data akibat beban mati klik batang portal pada model pilih Assign pada toolbar - Frame Load Distributed, setelah tampil pada layar masukkan data-data sesuai dengan perencanaan. Gambar 2.13 Joint Restraints

23 27 Gambar 2.14 Beban Akibat Beban Mati 5) Input data akibat beban hidup (Live) Untuk menginput data akibat beban mati klik batang portal pada model pilih Assign pada toolbar - Frame Load Distributed, setelah tampil pada layar masukkan data-data sesuai dengan perencanaan. Gambar 2.15 Beban Akibat Beban Hidup

24 28 6) Run analisis Setelah beban akibat beban mati dan hidup di input portal tersebut siap untuk di analisis menggunakan Run Analisis. Gambar 2.16 Run Analysis 2. Portal akibat beban hidup Portal ini ditinjau pada arah melintang dan memanjang. Perhitungan portal menggunakan cara yang sama dengan perhitungan portal akibat beban mati. Pembebanan pada portal akibat beban hidup, antara lain : a) Beban hidup untuk plat lantai b) Beban hidup pada atap Perencanaan Balok Balok merupakan batang horizontal dari rangka struktur yang memikiul beban tegak lurus sepanjang batang tersebut biasanya terdiri dari dinding, pelat atau atap bangunan dan menyalurkannya pada tumpuan atau struktur dibawahnya Adapun urutan urutan dalam menganalisis balok : 1. Gaya lintang design balok maksimum, U = 1,2 D + 1,6 L... (2.52)

25 29 Keterangan : U = gaya geser terfaktor pada penampang D = beban mati terfaktor per unit luas L = beban hidup terfaktor per unit luas 2. Momen design balok maksimum Mu = 1,2 MDL + 1,6 MLL... (2.53) Keterangan : Mu = momen terfaktor pada penampang MDL= momen akibat beban mati MLL= momen akibat beban hidup Nilai ρ... (2.54) 3. Penulangan lentur lapangan dan tumpuan a. Penulangan lentur lapangan - Tentukan d eff = h - p Ø sengkang ½ Ø tulangan... (2.55) - K = didapat nilai ρ dari table As = ρ.b.d - Pilih tulangan dengan dasar As terpasang As direncanakan b. Penulangan lentur pada tumpuan - K = didapat nilai ρ dari table istimawan As = ρ.b.d - Pilih tulangan dengan dasar As terpasang As direncanakan Keterangan : As = luas tulangan tarik non prategang

26 30 Ρ b eff d = rasio penulangan tarik non-prategang = lebar efektif balok = jarak dari serat tekan terluar ke pusat tulangan Tarik 4. Tulangan geser rencana... (2.55) V Ø Vc ( tidak perlu tulangan )... (2.56) Vu Ø Vn... (2.57) Vn = Vc + Vs... (2.58) Vu Ø Vc + Ø Vs... (2.59)... (2.60) Keterangan : Vc = kuat geser nominal yang disumbangkan beton Vu = kuat geser terfaktor pada penampang Vn = kuat geser nominal Vs = kuat geser nominal yang disumbangkan tulangan geser Av = luas tulangan geser pada daerah sejarak s d = jarak dari serat tekan terluar ke pusat tulangan tarik Fy = mutu baja Perencanaan Kolom Kolom adalah batang tekan vertical dari rangka struktur yang memikul beban dari balok dan meneruskannya ke konstruksi pondasi. Adapun penyelesaian perencanaan kolom dapat dilakukan dengan langkah-langkah perhitungan berikut : a. Beban kolom WU = 1,2 WD + 1,6 WL... (2.61)

27 31 Keterangan :... (2.62) b. Kolom bersengkang Pn = 0,80 (0,85 fc (Ag-Ast) + Ast.fy)... (2.63) ØPn = Ø 0,80 (0,85 fc (Ag-Ast) + Ast.fy)... (2.64) Ø = 0,65... (2.65) c. Kolom berspiral (bulat) Pn = 0,85 (0,85 fc (Ag-Ast) + Ast.fy)... (2.66) ØPn = Ø 0,85 (0,85 fc (Ag-Ast) + Ast.fy)... (2.67) Ø = 0,70... (2.68) Ag =... (2.69) Ast = Ag x jumlah tulangan... (2.70) Deformasi 1,2. D. d... (2.71) (1,2. D 1,6 L) Keterangan : β = Rasio bentang bersih arah memanjang d = Jarak dari serat tekan terluar ke pusat tulangan tarik 3. Modulus elastisitas E C 4700 fc' MPa... (2.72) Ik = 1/12 b h³... (2.73) Ib = 1/12 b h³... (2.74) E. I E. I K b EC. I g kolom... (2.75) 2,5 1. d EC. I g balok... (2.76) 5 1. d

28 32 4. Beban sentris Metode pendekatan M U e... (2.77) P U Ketarangan : E = Eksentrisitas Mu = Momen terfaktor yang bekerja pada penampang Pu = Beban aksial terfaktor yang bekerja pada Ψ = Penampang E.Ik Lk E.Ib Lb 5. Rangka tanpa pengaku lateral Klu r Rangka dengan pengaku lateral Klu r... (2.78)... (2,79) M M 1 b 2 b... (2.80) Keterangan : K = Faktor panjang efektif komponen struktur tekan nilai k didapat dari nomogram pada Istimawan halaman 333. lu = Panjang komponen struktur tekan yang tidak ditopang. r = Jari-jari putaran potongan lintang komponen struktur tekan. 7. Pembesaran momen Mc b xm 2b s xm 2s... (2.81) 1 s 1,0... (2.82) Pu 1 Pc

29 33 Kolom dengan pengaku M 1B Cm 0,6 0,4x 0,4... (2.83) M 2B Kolom tanpa pengaku Cm = 1,0... (2.84) Keterangan : Mc = Momen rencana yang diperbesar δ = Faktor pembesaran momen Pu = Beban rencana aksial terfaktor Pc = Beban tekuk Euler As ' As = As... (2.85) bd As pakai '... (2.86) bd d = h d'... (2.87) 600d Cb... (2.88) 600 fy a b 1 xcb... (2.89) fs ' Cb d x0, (2.90) Cb fs ' fy Pn = (0,85 x fc' x a b x b + As' x fs' As x fy)... (2.91) Pn = Pu beton belom hancur pada daerah tarik Perencanaan Sloof Sloof adalah balok yang menghubungkan pondasi sebagai tempat menyalurkan beban dinding dan beban beban yang berada di atasnya. Adapun urutan-urutan dalam menganalisis sloof :

30 34 1. Tentukan dimensi sloof 2. Tentukan pembebanan pada sloof - Berat sendiri sloof, - Berat dinding dan plesteran, Kemudian semua beban dijumlahkan untuk mendapatkan beban total, lalu dikalikan faktor untuk beban terfaktor. U = 1,2 D + 1,6 L... (2.92) Keterangan : U = beban terfaktor per unit panjang bentang balok D = beban mati L = beban hidup 3. Penulangan lentur lapangan dan tumpuan Penulangan lentur lapangan - Tentukan d eff = h - p Ø sengkang ½ Ø tulangan - K = didapat nilai ρ dari table As = ρ.b.d As = luas tulangan tarik non-prategang - Pilih tulangan dengan dasar As terpasang As direncanakan Apabila MR < Mu,balok akan berperilaku sebagai balok T murni. Penulangan lentur pada tumpuan - K = didapat nilai ρ dari table As = ρ.b.d - Pilih tulangan dengan dasar As terpasang As direncanakan Keterangan : As = luas tulangan tarik non prategang Ρ = rasio penulangan tarik non-prategang b eff d = lebar efektif balok = jarak dari serat tekan terluar ke pusat tulangan Tarik

31 35 4. Tulangan geser rencana Rumus yang digunakan dapat dilihat pada persamaan (2.55 s/d 2.60), yaitu : - - V Ø Vc ( tidak perlu tulangan ) - Vu Ø Vn - Vn = Vc + Vs - Vu Ø Vc + Ø Vs - Keterangan : Vc = kuat geser nominal yang disumbangkan beton Vu = kuat geser terfaktor pada penampang Vn = kuat geser nominal Vs = kuat geser nominal yang disumbangkan tulangan geser Av = luas tulangan geser pada daerah sejarak s d = jarak dari serat tekan terluar ke pusat tulangan tarik fy = mutu baja Perencanaan Pondasi Pondasi pada umumnya berlaku sebagai komponen struktur pendukung bangunan yang terbawah dan berfungsi sebagai elemen terakhir yang meneruskan beban ke tanah. a. Jenis-jenis Pondasi 1. Pondasi Dangkal ( Shallow Footing ) Adalah pondasi yang lapisan tanah keras berada dekat dengan permukaan tanah, maka dasar pondasi dapat langsung diletakkan diatas lapisan tanah keras tersebut. 2. Pondasi Dalam (Deep Footing) Bila letak lapisan tanah keras jauh dari permukaan tanah, maka diperlukan pondasi yang dapat menyalurkan beban bangunan kelapisan tanah keras tersebut,

32 36 pondasi seperti ini disebut dengan pondasi dalam, contohnya pondasi tiang dan pondasi sumuran. - Pondasi tiang pancang Pondasi tiang pancang dipergunakan pada tanah-tanah lembek, tanah berawa, dengan kondisi daya dukung tanah kecil, kondisi air tanah tinggi dan tanah keras berada pada posisi sangat dalam. Hal hal yang perlu dipertimbangkan dalam menentukan jenis pondasi : 1) Keadaan tanah pondasi 2) Jenis konstruksi bangunan 3) Kondisi bangunan disekitar pondasi 4) Waktu dan biaya pengerjaan Secara umum dalam perencanaan pondasi harus memenuhi persyaratan sebagai berikut : a) Tegangan kontak pada tanah tak melebihi daya dukung tanah yang diizinkan. b) Settlement (penurunan) dari struktur masih termasuk dalam batas yang diijinkan, jika ada kemungkinan yang melebihi dari perhitungan awal, maka ukuran pondasi dapat dibuat berbeda dan dihitung secara sendiri-sendiri. Pemilihan bentuk pondasi yang didasarkan pada daya dukung tanah, perlu diperhatikan beberapa hal sebagai berikut : 1. Bila tanah keras terletak pada permukaan tanah atau 2-3 meter di bawah permukaan tanah, maka pondasi yang dipilih sebaiknya jenis pondasi dangkal ( pondasi jalur atau pondasi tapak) dan pondasi strouspile. 2. Bila tanah keras terletak pada kedalaman hingga 10 meter atau lebih di bawah permukaan tanah maka jenis pondasi yang biasanya dipakai adalah pondasi tiang minipile dan pondasi sumuran atau borpile. 3. Bila tanah keras terletak pada kedalaman hingga 20 meter atau lebih di bawah permukaan tanak maka jenis pondasi yang dipakai adalah pondasi tiang pancang atau pondasi borpile.

33 37 Berdasarkan data hasil tes tanah pada lokasi pembangunan Gedung Kantor dan Kelas Smp Negeri 1 Pelalawan yang dijadikan sebagai materi dalam laporan akhir ini, maka jenis pondasi yang dipilih adalah pondasi dalam yaitu pondasi minipile. Adapun urutan urutan dalam menganalisis pondasi : 1. Menentukan beban-beban yang bekerja pada pondasi 2. Menentukan dimensi tiang yang digunakan 3. Menentukan jarak tiang yang digunakan 2,5 D < s < 3 D 4. Menentukan efisiensi kelompok tiang Persamaan dari uniform building code :... (2.93) Keterangan : m = jumlah baris n = jumlah tiang dalam satu baris θ = d = diametrer tiang s = jarak antara tiang ( as ke as ) 5. Menentukan daya dukung ijin 1 tiang pancang... (2.94) Keterangan : Qtiang = daya dukung ijin tiang (kg) Atiang = luas penampang tiang p = nilai konus dari hasil sondir (kg/cm 2 ) o = keliling penampang tiang pancang (cm) c = harga clef rata-rata (kg/cm 2 )

34 Manajemen Proyek Manajemen proyek adalah kegiatan merencanakan, mengorganisir, memimpin, dan mengendalikan sumber daya perusahaan untuk mencapai sasaran jangka pendek yang telah ditentukan. Lebih jauh, manajemen proyek menggunakan pendekatan sistem dan hirerki (arus kegiatan) vertikal maupun horizontal. Dalam manajemen proyek untuk menyusun suatu perencanaan yang lengkap minimal meliputi : 1. Menentukan tujuan (goal) Tujuan (goal) organisasi atau perusahaan dapat diartikan sebagai pedoman yang memberikan arah gerak segala kegiatan yang hendak dilakukan. 2. Menentukan sasaran Sasaran adalah titik titik tertentu yang perlu dicapai bila organisasi tersebut ingin tercapai tujuannya. Dalam konteks ini, kegiatan proyek dapat digolongkan sebagai kegiatan dengan sasaran yang telah ditentukan dalam rangka mencapai tujuan perusahaan. 3. Mengkaji posisi awal terhadap tujuan Mengkaji posisi dan situasi awal terhadap tujuan atau sasaran dimaksudkan untuk mengetahui sejauh mana kesiapan dan posisi organisasi pada tahap awal terhadap sasaran yang telah ada. 4. Memilih alternatif Dalam usaha meraih tujuan atau sasaran tersedia berbagai pilihan tindakan atau cara mencapainya. Pengkajian dilakukan dengan mencoba menjawab pertanyaan berikut : a) Apakah alternatif yang dipilih memiliki cukup keluwesan untuk menghadapi perubahan keadaan yang mungkin timbul? b) Apakah yang dipilih merupakan alternatif terbaik untuk memenuhi tuntutan proyek akan jadwal, biaya, dan mutu? c) Apakah alternatif yang dipilih telah mempertimbangkan tersedianya sumber daya pada saat diperlukan? d) Apakah telah dipikirkan penggunaan teknologi baru

35 39 Bila jawaban dari pertanyaan di atas memuaskan maka akan dilanjutkan dengan tahapan berikutnya. 5. Menyusun rangkaian langkah mencapai tujuan Proses ini terdiri dari penetapan langkah terbaik yang mungkin dapat dilaksanakan setelah memperhatikan sebagai batasan. Kemudian menyusunnya menjadi urutan dan rangkaian menuju sasaran dan tujuan Rencana Kerja dan Syarat-Syarat Rencana kerja dan syarat-syarat adalah segala ketentuan dan informasi yang diperlukan terutama hal-hal yang tidak dapat dijelaskan dengan gambar-gambar yang harus dipenuhi oleh para kontraktor pada saat akan mengikuti pelelangan maupun pada saat melaksanakan pekerjaan yang akan dilakukan nantinya Analisa Harga Satuan Analisa harga satuan pekerjaan adalah perhitungan biaya-biaya per satuan volume yang berhubungan dengan pekerjaan-pekerjaan yang ada dalam suatu proyek. Dari harga-harga yang terdapat dalam analisa harga satuan ini akan didapat harga keseluruhan dari hasil perkalian dengan volume pekerjaan. Dan dalam menejemen proyek analisa harga satuan akan digunakan sebagai dasar pembuatan rencana anggaran biaya Volume Pekerjaan Volume pekerjaan adalah jumlah keseluruhan dari banyaknya suatu pekerjaan yang ada serta dihitung dalam setiap jenis pekerjaan. Volume pekerjaan berguna untuk menunjukkan banyaknya kuantitas dari suatu pekerjaan agar didapat harga keseluruhan dari pekerjaan-pekerjaan yanga ada dalam suatu proyek Rencana Anggaran Biaya Rencana anggaran biaya adalah perhitungan banyaknya biaya yang diperlukan untuk bahan dan upah, serta biaya-biaya lain yang berhubungan

36 40 dengan pelaksanaan bangunan atau proyek tersebut. Tujuan dari rencana anggaran biaya (RAB) adalah untuk memberikan gambaran yang pasti mengenai bentuk konstruksi, besar biaya dan pelaksanaan atau penyelesaian Jadwal Pelaksanaan Rencana pelaksanaan pada proyek konstruksi dapat dibuat dalam berbagai bentuk, yatu antara lain : 1. Kurva S Kurva S merupakan kurva yang menggambarkann kumulatif proses pada setiap waktu dalam pelaksanaan pekerjaan. Kurva tersebut dibuat berdasarkan rencana atau pelaksanaan proses pekerjaan dari setiap pekerjaan. Bentuk grafik kurva S perlu dibuat sebaik mungkin karena akan mempengaruhi arus keuangan proyek dan penjadwalan pendatangan material serta hal-hal penting lainnya. 2. Barchat Barchat adalah diagram alur pelaksanaan pekerjaan yang dibuat untuk menentukan waktu penyelesaian pekerjaan yang dibutuhkan. Hal hal yang perlu ditampilkan dalam barchat adalah antara lain : a) Jenis pekerjaan b) Durasi waktu pelaksanaan pekerjaan c) Alur pekerjaan 3. Network Planning Network planning adalah sebuah jadwal kegiatan pekerjaan berbentuk diagram network sehingga dapat diketahui pada area mana pekerjaan yang termasuk ke dalam lintasan kritis dan harus diutamakan pelaksanaannya. Manfaat dari Network Planning adalah sebagai berikut : a) Mengatur jalannya proyek b) Mengetahui jalur kritis lintasan c) Untuk mengetahui pekerjaan mana yang tidak masuk lintasan kritis sehingga pengerjaannya bisa lebih santai sehingga tidak mengganggu pekerjaan utama yang harus tepat waktu.

37 41 d) Mengetahui pekerjaan mana yang harus diutamakan dan dapat selesai tepat waktu. e) Supaya dapat menentukan metode kerja termurah dengan kualitas terbaik. f) Untuk persyaratan dokumen tender lelang proyek.

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Uraian Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Perencanaan adalah bagian yang terpenting dari pembangunan suatu gedung atau bangunan yang lainnya. Perencanaan dapat diartikan sebagai suatu usaha untuk menyusun,

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Dalam perencanaan suatu konstruksi gedung diperlukan aturan serta teori dan ilmu tentang kekuatan bahan serta berpedoman pada peraturan-peraturan yang berlaku di

Lebih terperinci

BAB II LANDASAN TEORI. Ruang lingkup dari perencanaan bangunan gedung Rumah Sakit Khusus Mata Palembang ini meliputi beberapa tahapan, antara lain :

BAB II LANDASAN TEORI. Ruang lingkup dari perencanaan bangunan gedung Rumah Sakit Khusus Mata Palembang ini meliputi beberapa tahapan, antara lain : BAB II LANDASAN TEORI 2.1 Uraian Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Sebuah struktur harus mampu menahan semua beban yang diberikan pada struktur tersebut secara efisien dan aman. Beban struktural merupakan hasil dari gaya-gaya

Lebih terperinci

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PRESENTASI TUGAS AKHIR oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 LATAR BELAKANG SMA Negeri 17 Surabaya merupakan salah

Lebih terperinci

BAB I. Perencanaan Atap

BAB I. Perencanaan Atap BAB I Perencanaan Atap 1. Rencana Gording Data perencanaan atap : Penutup atap Kemiringan Rangka Tipe profil gording : Genteng metal : 40 o : Rangka Batang : Kanal C Mutu baja untuk Profil Siku L : BJ

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Perencanaan suatu gedung (bangunan) merupakan suatu usaha untuk menyusun dan mengorganisasikan suatu proyek konstruksi baik berupa perhitungan-perhitungan ataupun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Uraian Umum Perencanaan adalah bagian yang terpenting dari pembangunan suatu gedung atau bangunan yang lainnya. Perencanaan dapat diartikan sebagai suatu usaha untuk menyusun,

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Perencanaan merupakan tahapan yang terpenting dari embangunan suatu gedung atau bangunan yang lainnya. Perencanaan dapat didefinisikan sebagai sebuah langkah untuk

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm² Ag = Luas bruto penampang (mm²) An = Luas bersih penampang (mm²) Atp = Luas penampang tiang pancang (mm²) Al = Luas total

Lebih terperinci

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa Peraturan dan Standar Perencanaan 1. Peraturan Perencanaan Tahan Gempa untuk Gedung SNI - PPTGIUG 2000 2. Tata Cara Perhitungan Struktur Beton Untuk Gedung SKSNI 02-2847-2002 3. Tata Cara Perencanaan Struktur

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

Jl. Banyumas Wonosobo

Jl. Banyumas Wonosobo Perhitungan Struktur Plat dan Pondasi Gorong-Gorong Jl. Banyumas Wonosobo Oleh : Nasyiin Faqih, ST. MT. Engineering CIVIL Design Juli 2016 Juli 2016 Perhitungan Struktur Plat dan Pondasi Gorong-gorong

Lebih terperinci

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir DAFTAR ISTILAH A0 = Luas bruto yang dibatasi oleh lintasan aliran geser (mm 2 ) A0h = Luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar (mm 2 ) Ac = Luas inti komponen struktur

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Perencanaan merupakan tahapan yang terpenting dari pembangunan suatu gedung atau bangunan yang lainnya. Perencanaan dapat didefinisikan sebagai sebuah langkah untuk

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil disusun oleh : MUHAMMAD NIM : D

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Umum Konstruksi suatu bangunan adalah suatu kesatuan dan rangkaian dari beberapa elemen yang direncanakan agar mampu menerima beban dari luar maupun berat sendiri tanpa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Uraian Umum Perencanaan bangunan merupakan suatu usaha untuk menyusun dan mengorganisasikan suatu proyek konstruksi baik berupa perhitungan-perhitungan maupun tulisan-tulisan

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar :

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar : BAB V PONDASI 5.1 Pendahuluan Pondasi yang akan dibahas adalah pondasi dangkal yang merupakan kelanjutan mata kuliah Pondasi dengan pembahasan khusus adalah penulangan dari plat pondasi. Pondasi dangkal

Lebih terperinci

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR 3.. Denah Bangunan Dalam tugas akhir ini penulis merancang suatu struktur bangunan dengan denah seperti berikut : Gambar 3.. Denah bangunan 33 34 Dilihat dari bentuk

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Perencanaan merupakan tahapan yang terpenting dari pembangunan suatu gedung atau bangunan yang lainnya. Perencanaan dapat didefinisikan sebagai sebuah langkah untuk

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan

Lebih terperinci

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom... DAFTAR ISI Lembar Pengesahan Abstrak Daftar Isi... i Daftar Tabel... iv Daftar Gambar... vi Daftar Notasi... vii Daftar Lampiran... x Kata Pengantar... xi BAB I PENDAHULUAN 1.1 Latar Belakang... I-1 1.2

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Metodologi penelitian Metode yang digunakan dalam menentukan nilai dan hasil perkiraan akhir struktur kolom,balok dan pelat lantai dari proyek office citra raya di kabupaten

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Mulai Pengumpulan Data Perencanaan Awal Pelat Balok Kolom Flat Slab Ramp Perhitungan beban gempa statik ekivalen Analisa Struktur Cek T dengan

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

4.3.5 Perencanaan Sambungan Titik Buhul Rangka Baja Dasar Perencanaan Struktur Beton Bertulang 15

4.3.5 Perencanaan Sambungan Titik Buhul Rangka Baja Dasar Perencanaan Struktur Beton Bertulang 15 3.3 Dasar Perencanaan Struktur Beton Bertulang 15 3.3.1 Peraturan-Peraturan 15 3.3.2 Pembebanan ]6 3.3.3 Analisis Struktur 18 3.3.4 Perencanaan Pelat 18 3.3.5 Perencanaan Struktur Portal Beton Bertulang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Uraian Umum Pada saat merencanakan suatu bangunan, hal yang sangat penting dan harus diperhatikan yaitu konstruksi dan struktur dari bangunan tersebut. Konstruksi suatu bangunan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program Studi Teknik Sipil

Lebih terperinci

Gambar Gambar Perencanaan Tangga Tampak Samping. Ukuran antrede = 2 optrede + 1antrede = 65 A = 65-2(17,5)

Gambar Gambar Perencanaan Tangga Tampak Samping. Ukuran antrede = 2 optrede + 1antrede = 65 A = 65-2(17,5) 66 3.3 Perhitungan Tangga 3.3.1 Perencanaan Ukuran Lantai Dasar ± 0,00 Lantai 1 ± 4,20 30 4200 17,5 3300 2150 Gambar 3.3.1 Gambar Perencanaan Tangga Tampak Samping Maka tinggi bordes = = 2,10 Ukuran optrede

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM)

PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) Oleh : TRIA CIPTADI 3111 030 013 M. CHARIESH FAWAID 3111 030 032 Dosen

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

INTEGRASI PROGRAM TEKLA STRUCTURES & SAP2000 DALAM PERENCANAAN STRUKTUR GEDUNG BETON BERTULANG DENGAN ATAP BAJA

INTEGRASI PROGRAM TEKLA STRUCTURES & SAP2000 DALAM PERENCANAAN STRUKTUR GEDUNG BETON BERTULANG DENGAN ATAP BAJA INTEGRASI PROGRAM TEKLA STRUCTURES & SAP2000 DALAM PERENCANAAN STRUKTUR GEDUNG BETON BERTULANG DENGAN ATAP BAJA TUGAS AKHIR Oleh : Kardiana Tangkas NIM: 1104105025 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta Fakultas Teknik, Universitas Muhammadiyah Yogyakarta, Agustus 16 STUDI KOMPARASI PERANCANGAN STRUKTUR GEDUNG BERDASARKAN SNI 3 847 DAN SNI 847 : 13 DENGAN SNI 3 176 1 (Studi Kasus : Apartemen 11 Lantai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Uraian Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK Tugas Akhir ini diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata-1

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung BAB III METODOLOGI PERANCANGAN 3.1 Data Perencanaan Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung bertingkat 5 lantai dengan bentuk piramida terbalik terpancung menggunakan struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Uraian Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

BAB VII PENUTUP 7.1 Kesimpulan

BAB VII PENUTUP 7.1 Kesimpulan BAB VII PENUTUP 7.1 Kesimpulan Dari keseluruhan pembahasan yang telah diuraikan merupakan hasil dari perhitungan perencanaan struktur gedung Fakultas Teknik Informatika ITS Surabaya dengan metode SRPMM.

Lebih terperinci

BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR

BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR 4.1. Estimasi Dimensi Estimasi dimensi komponen struktur merupakan tahap awal untuk melakukan analisis struktur dan merancang suatu bangunan gedung. Estimasi yang

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

BAB II LANDASAN TEORI. Table 1 Sifat Mekanis Baja Structural. Jenis baja Tegangan putus minimum, Fu ( MPa )

BAB II LANDASAN TEORI. Table 1 Sifat Mekanis Baja Structural. Jenis baja Tegangan putus minimum, Fu ( MPa ) 5 BAB II LANDASAN TEORI 2.1 Uraian Umum Baja mempunyai sifat mekanis yang digunakan dalam perencanaan, harus memenuhi persyaratan minimum yang diberikan pada table 2.1 dibawah ini. Table 1 Sifat Mekanis

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG TUGAS AKHIR 1 HALAMAN JUDUL PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1 DAFTAR ISI HALAMAN JUDUL.. i LEMBAR PENGESAHAN ii KATA PENGANAR.. iii ABSTRAKSI... DAFTAR ISI DAFTAR GAMBAR.. DAFTAR NOTASI. v vi xii xiii BAB I PENDAHULUAN 1.1. Latar Belakang...... 1 1.2. Maksud dan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG ASRAMA MAHASISWA UNIVERSITAS DIPONEGORO SEMARANG

PERENCANAAN STRUKTUR GEDUNG ASRAMA MAHASISWA UNIVERSITAS DIPONEGORO SEMARANG PERENCANAAN STRUKTUR GEDUNG ASRAMA MAHASISWA UNIVERSITAS DIPONEGORO SEMARANG TUGAS AKHIR Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan

Lebih terperinci

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN TUGAS AKHIR PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Strata Satu (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural BAB III LANDASAN TEORI 3.1 Kolom Pendek Menurut McComac dan Nelson dalam bukunya yang berjudul Structural Steel Design LRFD Method yang berdasarkan dari AISC Manual, persamaan kekuatan kolom pendek didasarkan

Lebih terperinci

1. Rencanakan Tulangan Lentur (D19) dan Geser (Ø =8 mm) balok dengan pembebanan sbb : A B C 6 m 6 m

1. Rencanakan Tulangan Lentur (D19) dan Geser (Ø =8 mm) balok dengan pembebanan sbb : A B C 6 m 6 m Ujian REMIDI Semester Ganjil 013/014 Mata Kuliah : Struktur Beton Bertulang Hari/Tgl/ Tahun : Jumat, 7 Pebruari 014 Waktu : 10 menit Sifat Ujian : Tutup Buku KODE : A 1. Rencanakan Tulangan Lentur (D19)

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN)

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN) BB IV PERENCNN WL (PRELIMINRY DESIGN). Prarencana Pelat Beton Perencanaan awal ini dimaksudkan untuk menentukan koefisien ketebalan pelat, α yang diambil pada s bentang -B, mengingat pada daerah sudut

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG FAKULTAS KEDOKTERAN GIGI UNIVERSITAS GADJAH MADA YOGYAKARTA

PERANCANGAN STRUKTUR GEDUNG FAKULTAS KEDOKTERAN GIGI UNIVERSITAS GADJAH MADA YOGYAKARTA PERANCANGAN STRUKTUR GEDUNG FAKULTAS KEDOKTERAN GIGI UNIVERSITAS GADJAH MADA YOGYAKARTA TUGAS AKHIR SARJANA STRATA SATU Oleh : DANY HERDIANA NPM : 02 02 11149 UNIVERSITAS ATMA JAYA YOGYAKARTA Fakultas

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3 PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3 Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : FELIX BRAM SAMORA

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA II - 1 BAB II STUDI PUSTAKA.1. Tinjauan umum Konstruksi suatu struktur bangunan terdiri dari komponen utama yaitu bangunan atas dan bangunan bawah. Bangunan atas terdiri dari Balok, Kolom, Plat Lantai

Lebih terperinci

BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR

BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR 31 BAB V ANALISIS KAPASITAS DUKUNG FONDASI TIANG BOR 5.1 DATA STRUKTUR Apartemen Vivo terletak di seturan, Yogyakarta. Gedung ini direncanakan terdiri dari 9 lantai. Lokasi proyek lebih jelas dapat dilihat

Lebih terperinci

2.2 Ruang Lingkup Perencanaan Ruang lingkup dari suatu perencanaan bangunan gedung meliputi dua struktur pendukung bangunan yaitu :

2.2 Ruang Lingkup Perencanaan Ruang lingkup dari suatu perencanaan bangunan gedung meliputi dua struktur pendukung bangunan yaitu : BAB II LANDASAN TEORI 2.1 Uraian Umum Pada perencanaan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lain yang berpedoman

Lebih terperinci

PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG

PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG TUGAS AKHIR Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : PRISKA

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

BAB VI KONSTRUKSI KOLOM

BAB VI KONSTRUKSI KOLOM BAB VI KONSTRUKSI KOLOM 6.1. KOLOM SEBAGAI BAHAN KONSTRUKSI Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG LIPPO CENTER BANDUNG

PERANCANGAN STRUKTUR GEDUNG LIPPO CENTER BANDUNG PERANCANGAN STRUKTUR GEDUNG LIPPO CENTER BANDUNG TUGAS AKHIR SARJANA STRATA SATU Oleh : KIKI NPM : 98 02 09172 UNIVERSITAS ATMA JAYA YOGYAKARTA Fakultas Teknik Program Studi Teknik Sipil Tahun 2009 PENGESAHAN

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Struktur Atas Bangunan MULAI Skematik struktur 1. Penentuan spesifikasi material Input : 1. Beban Mati 2. Beban Hidup 3. Beban Angin 4. Beban

Lebih terperinci

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton DAI'TAH NOTASI DAFTAR NOTASI a = tinggi balok tegangan beton persegi ekivalen Ab = luas penampang satu bentang tulangan, mm 2 Ag Ah AI = luas penampang bruto dari beton = luas dari tulangan geser yang

Lebih terperinci

LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1)

LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1) LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1) PERENCANAAN STRUKTUR GEDUNG B POLITEKNIK KESEHATAN SEMARANG Oleh: Sonny Sucipto (04.12.0008) Robertus Karistama (04.12.0049) Telah diperiksa dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Aturan Perhitungan Secara umum tujuan dalam perencanaan struktur suatu konstruksi bangunan adalah untuk menghasilkan suatu struktur yang stabil, cukup kuat, awet dan memenuhi

Lebih terperinci