BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Mesin - mesin fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida ( energi kinetik dan energi potensial ) menjadi energi mekanik poros. Dalam hal ini fluida yang simaksud berupa cair, gas dan uap. Secara umum mesin - mesin fluida dapat dibagi menjadi dua bagian besar, yaitu : 1. Mesin Tenaga yaitu mesin fluida yang berfungsi mengubah energi fluida ( energi potensial dan energi kinetik ) menjadi energi mekanis poros. Contoh : turbin, kincir air, dan kincir angin. 2. Mesin kerja yaitu mesin yang berfungsi mengubah energi mekanis poros menjadi energi fluida ( energi potensial dan energi kinetik ). Contoh : pompa, kompresor, kipas ( fan ) Pengertian Pompa Pompa adalah salah satu mesin fluida yang termasuk dalam golongan mesin kerja. Pompa berfungsi untuk memindahkan zat cair dari tempat yang rendah ke tempat yang lebih tinggi karena adanya perbedaan tekanan Klasifikasi Pompa Secara umum pompa ada dikasifikasikan dalam dua jenis kelompok besar yaitu : 1. Pompa Tekanan Statis 2. Pompa Tekanan Dinamis ( Rotodynamic Pump )

2 Pompa Tekanan Statis Pompa jenis ini bekerja dengan menggunakan prinsip memberi tekanan secara periodik pada fluida yang terkurung dalam rumah pompa. Pompa ini dibagi menjadi dua jenis. a. Pompa Putar ( rotary pump ) Pada pompa putar, fluida masuk melalui sisi isap, kemudian dikurung di antara ruangan rotor, sehingga tekanan statisnya naik dan fluida akan dikeluarkan melalui sisi tekan. Contoh tipe pompa ini adalah : screw pump, gear pump dan vane pump Gambar 2.1. Pompa Roda gigi dan Pompa ulir b. Pompa Torak ( Reciprocating Pump ) Pompa torak ini mempunyai bagian utama berupa torak yang bergerak bolak-balik dala silinder. Fluida masuk melalui katup isap (Suction valve) ke dalam silinder dan kemudian ditekan oleh torak sehingga tekanan statis fluida naik dan sanggup mengalirkan fluida keluar melalui katup tekan (discharge valve). Contoh tipe ini adalah : pompa diafragma dan pompa plunyer.

3 Gambar 2.2. Pompa Diafragma Pompa Tekanan Dinamis Pompa tekanann dinamis disebut juga rotodynamic pump, turbo pump atau impeller pump. Pompa yang termasuk dala kategori ini adalah : pompa jet dan pompa sentrifugal Ciri - ciri utama dari pompa ini adalah : - Mempunyai bagian utama yang berotasi berupa roda dengan sudu-sudu sekelilingnya yang sering disebut dengan impeler. - Melalui sudu - sudu, fluida mengalir terus-menerus, dimana fluida berasal diantara sudu-sudu tersebut. Prinsip kerja pompa sentrifugal adalah energi mekanis dari luar diberikan pada poros untuk memutar impeler. Akibatnya fluida yang berada dalam impeler, oleh dorongan sudu-sudu akan terlempar menuju saluran keluar. Pada proses ini fluida akan mendapat percepatan sehingga fluida tersebut mempunyai energi kinetik. Kecepatan keluar fluida ini selanjutnya akan berkurang dan energi kinetik akan berubah menjadi energi tekanan di sudu-sudu pengarah atau dalam rumah pompa. Adapun bagian-bagian utama pompa sentrifugal adaah poros, impeler dan rumah pompa (gambar 2.3).

4 Gambar 2.3. Bagian-bagian utama pompa sentrifugal Pompa tekanan dinamis dapat dibagi berdasarkan beberapa kriteria berikut, antara lain : a. Klasifikasi menurut jenis impeler 1. Pompa Sentrifugal Pompa ini menggunakan impeler jenis radial atau francis. Konstruksinya sedemikian rupa (gambar 2.4) sehingga aliran fluida yang keluar dari impeler akan melalui bidang tegak lurus pompa. Impeler jenis radial digunakan untuk tinggi tekan (head) yang sedang dan tinggi, sedangkan impeler jenis francis digunakan untuk head yang lebih rendah dengan kapasitas besar. Gambar 2.4. Pompa Sentrifugal

5 2. Pompa Aliran Campur Pompa ini menggunakan impeler jenis aliran capur (mixed flow), seperti pada gambar 2.5. Aliran keluar dari impeler sesuai dengan arah bentuk permukaan kerucut rumah pompa. Gambar 2.5. Pompa aliran campur 3. Pompa Aliran Aksial Pompa ini menggunakan impeler jenis aksial dan zat cair yang meninggalkan impeler akan bergerak sepanjang permukaan silinder rumah pompa kearah luar. Konstruksinya mirip dengan pompa aliran campur kecuali bentuk impeler dan bentuk difusernya.

6 Gambar 2.6. Pompa aliran aksial b. Klasifikasi menurut bentuk rumah pompa 1. Pompa Volut Pompa ini khusus untuk pompa sentrifugal. Aliran Fluida yang meninggalkan impeler secara langsung memasuki rumah pompa yang berbentuk volut (rumah siput) sebab diameternya bertambah besar. Bentuk dan konstruksinya terlihat pada gambar Pompa Difuser Konstruksi ini dilengkapi dengan sudu pengarah (diffuser) di sekeliling saluran impeler (gambar 2.7). Pemakain diffuser ini akan memperbaiki efisiensi pompa. Difuser ini sering digunakan pada pmopa bertingkat banyak dengan head yang tinggi. Gambar 2.7. Pompa diffuser

7 3. Pompa Vortex Pompa ini mempunyai aliran campur dan sebuah rumah volut seperti pada gambar 2.8. Pompa ini tidak menggunakan difuser, namun memakai saluran yang lebar. Dengan demikian pompa ini tidak mudah tersumbat dan cocok untuk pemakaian pada pengolahan cairan limbah. Gambar 2.8. Pompa Vortex c. Klasifikasi menurut jumlah tingkat 1. Pompa satu tingkat Pompa ini hanya mempunyai sebuah impeler (gambar 2.4 s/d 2.8). Pada umumnya head yang dihasilkan pompa ini relative rendah, namun konstruksinya sederhana. 2. Pompa bertingkat banyak Pompa ini menggunakan lebih dari satu impeler yang dipasanag berderet pada satu poros (gambar 2.9). Zat cair yang keluar dari impeler tingkat pertama akan diteruskan ke impeler tingkat kedua dan seterusnya hingga tingkat terakhir. Head total pompa merupakan penjumlahan head yang dihasilkan oleh masing - masing impeler. Dengan demikian head total pompa ini relatif tinggi dibanding dengan pompa satu tingkat, namun konstruksinya lebih rumit dan besar. Gambar 2.9. Pompa bertingkat banyak

8 d. Klasifikasi menurut letak poros 1. Pompa poros mendatar Pompa ini mempunyai poros dengan posisi horizontal (gambar 2.4 s/d 2.9), pompa jenis ini memerlukan tempat yang relatif lebih luas. 2. Pompa jenis poros tegak Poros pompa ini berada pada posisi vertikal, seperti terlihat pada gambar Poros ini dipegang di beberapa tempat sepanjang pipa kolom utama bantalan. Pompa ini memerlukan tempat yang relatif kecil dibandingkan dengan pompa poros mendatar. Penggerak pompa umumnya diletakkan di atas pompa. Gambar Pompa aliran campur poros tegak e. Klasifikasi menurut belahan rumah 1. Pompa belahan mendatar Pompa ini mempuyai belahan rumah yang dapat yang dibelah dua menjadi bagian atas dan bagian bawah oleh bidang mendatar yang melalui sumbu poros. Jenis pompa ini sering digunakan untuk pompa berukuran menengah dan besar dengan poros mendatar.

9 Gambar Pompa jenis belahan mendatar 2. Pompa belahan radial Rumah pompa ini terbelah oleh sebuah bidang tegak lurus poros. Konstruksi seperti ini sering digunakan pada pompa kecil dengan poros mendatar. Jenis ini juga sesuai dengan pompa-pompa dengan poros tegak dimana bagianbagian yang berputar dapat dibongkar ke atas sepanjang poros. 3. Pompa jenis berderet Jenis ini terdapat pada pompa bertingkat banyak, dimana rumah pompa terbagi oleh bidang-bidang tegak lurus poros sesuai dengan jumlah tingkat yang ada. f. Klasifikasi menurut sisi masuk impeler 1. Pompa isapan tunggal Pada pompa ini fluida masuk dari sisi impeler. Konstruksinya sangat sederhana, sehingga sangat sering digunakan untuk kapasitas yang relatif kecil. Adapun bentuk konstruksinya terlihat pada gambar 2.4 s/d Pompa isapan ganda Pompa ini memasukkan fluida melalui dua sisi isap impeler (gambar 2.12). Pada dasarnya pompa ini sama dengan dua buah impeler pompa isapan tunggal yang dipasang bertolak belakang dan dipasang beroperasi secara paralel. Dengan demikian gaya aksial yang terjadi pada kedua impeler akan saling mengimbangi dan laju aliran total adalah dua kali laju aliran tiap impeler. Oleh sebab itu pompa ini banyak dipakai untuk kebutuhan dengan kapasitas besar.

10 Gambar Pompa isapan ganda 2.4. Unit Penggerak Pompa Umumnya unit penggerak pompa terdiri dari tiga jenis yaitu: a. Motor bakar b. Motor listrik, dan c. Turbin Penggerak tipe motor bakar dan turbin sangat tidak ekonomis untuk perencanaan pompa karena konstruksinya berat, besar dan memerlukan sistem penunjang misalnya sistem pelumasan, pendinginan dan pembuangan gas hasil pembakaran. Sistem penggerak motor listrik lebih sesuai dimana konstruksinya kecil dan sederhana, sehingga dapat digabungkan menjadi satu unit kesatuan dalam rumah pompa. Faktor lain yang membuat motor ini sering digunakan adalah karena murah dalam perawatan dan mampu bekerja untuk jangka waktu yang relatif lama dibanding penggerak motor bakar dan turbin Dasar-dasar Pemilihan Pompa Dasar pertimbangan pemilihan pompa, didasarkan pada sistem ekonomisnya, yakni keuntungan dan kerugian jika pompa tersebut digunakan dan dapat memenuhi kebutuhan pemindahan fluida sesuai dengan kondisi yang direncanakan.

11 Yang perlu diperhatikan dalam pemilihan jenis pompa adalah fungsi terhadap instalasi pemipaan, kapasitas, head, viskositas, temperature kerja dan jenis motor penggerak. Kondisi yang diinginkan dalam perencanaan ini adalah: a. Kapasitas dan head pompa harus mampu dipenuhi. b. Fluida yang mengalir secara kontinu. c. Pompa yang dipasang pada kedudukan tetap. d. Konstruksi sederhana. e. Mempunyai efisiensi yang tinggi. f. Harga awal relatif murah juga perawatannya. Melihat dan mempertimbangkan kondisi yang diinginkan dalam perencanaan ini, maka dengan mempertimbangkan sifat pompa dan cara kerjanya, dipilih pompa sentrifugal dalam perencanaan ini, karena sesuai dengan sifat pompa sentrifugal, yakni : a. Aliran fluida lebih merata. b. Putaran poros dapat lebih tinggi. c. Rugi-rugi transmisinya lebih kecil karena dapat dikopel langsung dengan otor penggerak. d. Konstruksinya lebih aman dan kecil. e. Perawatannya murah Head Pompa Head pompa adalah energi yang diberikan ke dalam fluida dalam bentuk tinggi tekan. Dimana tinggi tekan merupakan ketinggian fluida harus naik untuk memperoleh jumlah energi yang sama dengan yang dikandung satu satuan bobot fluida pada kondisi yang sama. Untuk lebih jelasnya perhitungan dari head pompa dapat dilihat pada gambar 2.13 berikut ini. Gambar Prinsip hukum Bernoulli

12 Pada gambar ini terdapat dua buah titik dengan perbedaan kondisi letak, luas penampang, tekanan serta kecepatan aliran fluida. Fluida kerja mengalir dari kondisi pertama (titik 1) ke kondisi yang kedua (titik 2), aliran ini disebabkan oleh adanya suatu energi luar. Energi luar ini terjadi merupakan perbedaan tekanan yang terjadi pada kedua kondisi operasi (titik 1 dan 2), atau = ( - ).Q Sedangkan pada setiap kondisi tersebut terdapat juga suatu bentuk energi, yaitu energi kinetik (E k ) dan energi potensial (E p ) atau dapat dituliskan sebagai berikut : - Untuk titik 1 : Energi yang terkandung E 1 = E k1 + E p1 = m 1. + m 1.g.h 1 - Untuk titik 2 : Energi yang terkandung E 2 = E k2 + E p2 = m 2. + m 2.g.h 2 Dan hubungan dari kondisi kerja ini adalah E o = E 2 - E 1, atau dapat dituliskan: (P 2 -P 1 ).Q = [ m 2. + m 2.g.h 2 ] - [ m 1. + m 1.g.h 1 ] (P 2 -P 1 ).Q = {( m 2. ) - (m 1. ) + (m 2.g.h 2 ) - (m 1.g.h 1 ) } (1) Dimana : Q = A. V = Konstan M = ρ. A. V, dimana ρ 1 = ρ 2 Sehingga persamaan (1) di atas dapat dituliskan sebagai berikut : (P 2 -P 1 )A.V = [(ρ.a.v 3 ) 2 - (ρ.a.v 3 ) 1 ] + ρ.a.v.g(h 2 - h 1 ) (P 2 -P 1 ) = ρ( - ) + ρ.g(h 2 - h 1 )..(2) Jika ρ (kg/m 3 ). g (m/s 2 ) = γ (N/m 3 ), maka persamaan (2) dapat disederhanakan menjadi : = + ( h 2 -h 1 ) yaitu : Atau persamaan untuk mencari head pompa digunakan hukum Bernoulli + + Z 1 + H p = + + Z 2 + H L Maka :

13 H P = + + Z 2 - Z 1 + H L Dimana : adalah perbedaan head tekanan. adalah perbedaan head kecepatan Z 2 - Z 1 adalah perbedaan head potensial H L adalah kerugian head ( head losses ) Dari rumus di atas dapat dilihat bahwa head total pompa diperoleh dengan menjumlahkan head tekanan, head kecepatan, head potensial, dan head losses yang timbul dalam instalasi pompa. Sementara head losses sendiri merupakan jumlah kerugian head mayor (h f ) dan kerugian head minor (h m ). H L = h f + h m 2.7. Putaran spesifik Jenis impeler yang digunakan pada suatu pompa tergantung pada putaran spesifiknya. Putaran spesifik adalah putaran yang diperlukan pompa untuk menghasilkan 1 m degan kapasitas 1 m 3 /s, dan dihitung berdasarkan (Khetagurov. hal 205) n s = 3,65 Dimana : n s = putaran spesifik [rpm] n = putaran pompa [rpm] Q = kapasitas pompa [m 3 /s] H p = head pompa [mh 2 O] 2.8. Daya pompa Daya pompa ialah daya yang dibutuhkan poros pompa untuk memutar impeler didalam memindahkan sejumlah fluida denga kondisi yang diinginkan. Besarnya daya poros yang dibutuhkan dapat dihitung berdasarkan ( Fritz dietzel. Hal 243 ) N P =

14 Dimana : N p = daya pompa [watt] Q = kapasitas pompa [m 3 /s] H p = head pompa [m] ρ = rapat jenis fluida [kg/m 3 ] η p = effisiensi pompa 2.9. Aliran fluida Aliran dalam pemipaan akan terjadi dari titik yang mempunyai head hidrolik yang lebih tinggi (energi internal per satu-satuan berat air) ke head yang lebih rendah, dimana terjadi kehilangan energi hidrolik di sepanjang pipa. Kehilangan energi hidrolik sepanjang pipa secara umum disebabkan oleh : A. Kerugian head mayor Kerugian head ini terjadi akibat adanya gesekan antara dinding pipa dengan fluida yang mengalir di dalamnya. Persamaan umum yang dapat digunakan untuk mencari headlosses akibat gesekan dalam pipa dapat dilakukan dengan menggunakan : a. Persamaan Darcy - Weisbach b. Persamaan Hazen - Williams Kedua persamaan diatas memiliki kelebihan dan kekurangan masingmasing yaitu : a. Persamaan Darcy - Weisbach 1. Memberikan hasil yang lebih baik untuk pipa yang relatif pendek. 2. Untuk sistem terdiri dari bermacam-macam pipa akan lebih rumit perhitungannya. 3. Populer atau sering dipakai untuk perhitungan dengan beda energi besar. 4. Persamaan ini secara teori paling bagus dan dapat digunakan ke semua jenis fluida. b. Persamaan Hazen-Williams : 1. Umumnya dipakai untuk menghitung kerugian head dalam pipa yang relatf sangat panjang seperti jalur pipa penyalur air minum. 2. Untuk sistem yang terdiri dari bermacam-macam pipa, perhitungannya akan lebih mudah disbanding Darcy - Weisbach.

15 3. Persamaan Hazen - Williams paling banyak digunakan untuk menghitung headlosses, tetapi biasa digunakan untuk semua fluida selai dari air dan digunakan hanya untuk aliran turbulen. B. Kerugian Minor Kerugian ini diakibatkan adanya perubahan dalam geometri aliran seperti katup, belokan, perubahan diameter pipa, sambungan saluran masuk dan keluar pipa. Dan kerugian minor dapat dihitung berdasarkan h m = K Dimana : V = Kecepatan rata-rata aliran fluida dala suatu pipa [m/s] g = gravitasi bumi [m/s 2 ] K = Koefisien minor loses Computational Fluid Dynamic (CFD) Fluent Computational Fluid Dynamic (CFD) dapat dibagi menjadi dua kata, yaitu: a. Computational : Segala sesuatu yang berhubungan dengan matematika dan metode numerik atau komputasi. b. Fluid Dynamic : Dinamika dari segala sesuatu yang mengalir. Ditinjau dari istilah di atas, CFD bisa berarti suatu teknologi komputasi yang memungkinkan untuk mempelajari dinamika dari benda-benda atau zat-zat yang mengalir. Secara definisi, CFD adalah ilmu yang mempelajari cara memprediksi n fluida, perpindahan panas, reaksi kimia, dan fenomena lainnya denga menyelesaikan persamaan-persamaan matematika (model matematika). Dan Fluent adalah salah satu jenis program CFD yang menggunakan metode elemen hingga dan Fluent juga menyediakan fleksibilitas mesh yang lengkap, sehingga dapat menyelesaikan kasus aliran fluida dengan mesh (grid) yang tidak terstruktur sekalipun dengan cara yang relatif mudah. Penggunaan CFD umumya berhubungan dengan keempat hal berikut:

16 1. Studi konsep dari desain baru 2. Pengembangan produk secara detail 3. Analisis kegagalan atau troubleshooting 4. Desain ulang Proses simulasi CFD Pada uumnya terdapat tiga thapan yang harus dilakukan ketika kita melakukan simulasi CFD, yaitu: a. Preprocessing Preprocessing merupakan langkah pertama dala membangun dan menganalisis sebuah model dalam paket CAD (Computer Aided Design), membuat mesh yang sesuai kemudian menerapkan kondisi batas dan sifat-sifat fluidanya. b. Solving Solvers (program inti pencari solusi) CFD menghitung kondisi-kondisi yang diterapkan pada saat preprocessing.

17 Gambar 2.14 Diagram Alir Algoritma Numerik volume hingga dengan metode SIMPLE Proses pemecahan matematika pada solver memiliki 3 tahapan yaitu: 1) aproksimasi aliran yang tidak diketahui dilakukan dengan menggunakan fungsi sederhana;

18 2) diskretisasi dengan mensubstitusi hasil aproksimasi ke dalam persamaan aliran disertai dengan manipulasi matematis; 3) penyelesaian persamaan aljabar. Pada proses solver, terdapat 3 persamaan atur aliran fluida yang menyatakan hukum kekekalan fisika, yaitu : 1) massa fluida kekal; 2) laju perubahan momentum sama dengan resultansi gaya pada partikel fluida (Hukum II Newton); 3) laju perubahan energi sama dengan resultansi laju panas yang ditambahkan dan laju kerja yang diberikan pada partikel fluida (Hukum I Termodinamika). a. Kekekalan Massa 3 Dimensi steady state Keseimbangan massa untuk fluida dinyatakan sebagai berikut: Laju kenaikan massa dalam elemen fluida = Laju net aliran fluida massa ke dalam elemen batas ρv (ρ v + δy) δzδx y w ρw (ρ + δz) δy x z δ ρuδyδz ρwδyδx δx δy δz ρu (ρ u + δx) δyδz x ρ v δ x δ z Gambar 2.16 Elemen Fluida pada persamaan kekekalan massa

19 Atau dapat ditulis dalam bentuk matematika sebagai berikut: Persamaan diatas merupakan persamaan kontinuitas untuk fluida. Ruas kiri menggambarkan laju net massa keluar dari elemen melewati batas dan dinyatakan sebagai faktor konveksi. b. Persamaan Momentum 3 Dimensi Steady State Persamaan momentum dikembangkan dari persamaan Navier-Stokes dalam bentuk yang sesuai dengan metode finite volume sebagai berikut: τ (τ + δy) δx y yx δ yx z pδyδz τ zx (τ zx + δz) δxδy z σ xx (σ xx + δx) δyδz x σ δyδz xx τ δxδy zx δy fx p ( p + δ x)δyδz x δx τ δxδz yx δz Gambar 2.17 Elemen fluida pada persamaan momentum Momentum x : Momentum y :

20 Momentum z : c. Persamaan energi diturunkan dari Hukum I Termodinamika yang menyatakan bahwa : laju perubahan energi partikel fluida = laju penambahan panas ke dalam partikel fluida ditambahkan dengan laju kerja yang diberikan pada partikel. Secara matematika dapat ditulis sebagai berikut : Untuk Gas ideal : c. Postprocessing Postprocessing adalah langkah akhir dalam analisis CFD. Hal yang dilakukan pada langkah ini adalah mengorganisasi dan menginterpretasi data hasil simulasi CFD yang bisa berupa gambar, kurva, dan animasi Metode Diskritisasi CFD CFD sebenarnya mengganti persamaan-persamaan diferensial parsial dari kontinuitas, momentum, dan energi dengan persamaan-persamaan aljabar. CFD merupakan pendekatn dari persoalan yang asalnya kontinum (memiliki jumlah sel tak terhingga) menjadi model yang diskrit (jumlah sel terhingga). Perhitungan / komputasi aljabar untuk memecahkan persamaan-persamaan diferensial ini ada beberapa metode (metode diskritisasi), diantaranya adalah: a. Metode beda hingga b. Metode elemen hingga c. Metode volume hingga d. Metode elemen batas e. Metode skema resolusi tinggi

21 Penggunaan CFD Fluent pada Pompa Sentrifugal Pada pompa sentrifugal, yang dapat dianalisa oleh CFD Fluent ini adalah airan fluidanya, dimana dengan CFD Fluent ini kita dapat mensimulasikan vektor - vektor kecepatan yang terjadi pada impeler dan rumah keong pompa tersebut. CFD Fluent juga dapat mensimulasikan distribusi tekanan yang terjadi dalam pompa tersebut. Hasil simulasi aliran fluida ini adaah gambaran aliran fluida nantinya yang terjadi di lapangan. Pada gambar 2.14 dan gambar 2.15 merupakan contoh hasil dari simulasi pompa sentrifugal dengan massa alir 0,5 kg/s dan tekanan pompa 0,5 atm. Gambar 2.15 Hasil simulasi untuk vektor-vektor kecepatan yang terjadi

22 Gambar 2.16 Hasil simulasi untuk distribusi tekanan yang terjadi

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Mesin - mesin fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida ( energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA ompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros)

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) BAB II TINJAUAN PUSTAKA 2.1. Pengertian Pompa Pompa adalah salah satu mesin fluida yang termasuk dalam golongan mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) menjadi energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian pompa Pompa adalah peralatan mekanis untuk meningkatkan energi tekanan pada cairan yang di pompa. Pompa mengubah energi mekanis dari mesin penggerak pompa menjadi energi

Lebih terperinci

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat 1 BAB I PENDAHULUAN 1.1 Pandangan Umum Pompa Pompa adalah suatu jenis mesin yang digunakan untuk memindahkan fluida dari suatu tempat yang rendah ketempat yang lebih tinggi atau dari tempat yang bertekanan

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

BAB 5 DASAR POMPA. pompa

BAB 5 DASAR POMPA. pompa BAB 5 DASAR POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contohnya adalah air, oli atau minyak pelumas,

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

ANALISIS CASING TURBIN KAPLAN MENGGUNAKAN SOFTWARE COMPUTATIONAL FLUID DYNAMICS/CFD FLUENT

ANALISIS CASING TURBIN KAPLAN MENGGUNAKAN SOFTWARE COMPUTATIONAL FLUID DYNAMICS/CFD FLUENT ANALISIS CASING TURBIN KAPLAN MENGGUNAKAN SOFTWARE COMPUTATIONAL FLUID DYNAMICS/CFD FLUENT 6.2.16 Ridwan Arief Subekti, Anjar Susatyo, Jon Kanidi Puslit Tenaga Listrik dan Mekatronik LIPI Komplek LIPI,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pompa 2.1.1 Pengertian Pompa Pompa adalah salah satu mesin fluida yang termasuk dalam golongan mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teknologi dispenser semakin meningkat seiring perkembangan jaman. Awalnya hanya menggunakan pemanas agar didapat air dengan temperatur hanya hangat dan panas menggunakan heater, kemudian

Lebih terperinci

LOGO POMPA CENTRIF TR UGAL

LOGO POMPA CENTRIF TR UGAL LOGO POMPA CENTRIFUGAL Dr. Sukamta, S.T., M.T. Pengertian Pompa Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Klasifikasi

Lebih terperinci

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, penggunaan pompa sangat luas hampir disegala bidang, seperti industri, pertanian, rumah tangga dan sebagainya. Pompa merupakan alat yang

Lebih terperinci

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan BAB II DASAR TEORI 2.1. DASAR TEORI POMPA 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN INSTALASI POMPA SENTRIFUGAL DAN ANALISA NUMERIK MENGGUNAKAN PROGRAM KOMPUTER CFD FLUENT 6.1.22 PADA POMPA SENTRIFUGAL DENGAN SUCTION GATE VALVE CLOSED 25 % SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

LU N 1.1 PE P N E G N E G R E TI T AN

LU N 1.1 PE P N E G N E G R E TI T AN BAB I PENDAHULUAN 1.1 PENGERTIAN POMPA Pompa adalah peralatan mekanis yang diperlukan untuk mengubah kerja poros menjadi energi fluida (yaitu energi potensial atau energi mekanik). Pada umumnya pompa digunakan

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN INSTALASI POMPA SENTRIFUGAL DAN ANALISA NUMERIK MENGGUNAKAN PROGRAM KOMPUTER CFD FLUENT 6.1.22 PADA POMPA SENTRIFUGAL DENGAN SUCTION GATE VALVE OPEN 100 % SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah suatu peralatan mekanik yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat lain, dimana

Lebih terperinci

TUGAS KHUSUS POMPA SENTRIFUGAL

TUGAS KHUSUS POMPA SENTRIFUGAL AUFA FAUZAN H. 03111003091 TUGAS KHUSUS POMPA SENTRIFUGAL Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menambah energi pada cairan dan berlangsung secara kontinyu.

BAB II TINJAUAN PUSTAKA. menambah energi pada cairan dan berlangsung secara kontinyu. BAB II TINJAUAN PUSTAKA 2.1. Dasar Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahk an cairan dari suatu tempat ke tempat lainnya melalui suatu media dengan cara menambah energi

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

JENIS-JENIS POMPA DAN KOMPRESOR

JENIS-JENIS POMPA DAN KOMPRESOR JENIS-JENIS POMPA DAN KOMPRESOR KOMPRESOR Sebelum membahas mengenai jenis-jenis kompresor yang ada, lebih baiknya kita pahami dahulu apa itu kompressor dan bagaimana cara kerjanya. Kompressor merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat lain yang diinginkan. Pompa beroperasi dengan membuat

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. Centrifugal pumps (pompa sentrifugal) Sifat dari hidrolik ini adalah memindahkan energi pada daun/kipas pompa dengan dasar pembelokan/pengubah aliran (fluid

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG Tugas Akhir ini Disusun dan Diajukan Guna Memperoleh Gelar Sarjana Strata Satu Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

BAB I PENDAHALUAN 1.1 Latar Belakang.

BAB I PENDAHALUAN 1.1 Latar Belakang. BAB I PENDAHALUAN 1.1 Latar Belakang. Material atau bahan dalam industri teknik kimia dapat berupa bentuk padat, cair dan gas. Material dalam bentuk cair sendiri misalnya saja pada industri minuman, tentunya

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat memperoleh Gelar Sarjana Teknik OLEH : ERICK EXAPERIUS SIHITE NIM :

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat memperoleh Gelar Sarjana Teknik OLEH : ERICK EXAPERIUS SIHITE NIM : PERENCANAAN POMPA SENTRIFUGAL UNTUK MEMOMPAKAN CAIRAN LATEKS DARI TANGKI MOBIL KE TANGKI PENAMPUNGAN DENGAN KAPASITAS 56 TON/HARI PADA PT. INDUSTRI KARET NUSANTARA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HATOP

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL TURBO Vol. 4 No. 2. 2015 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II TINJUN USTK ompa adalah suatu alat yan diunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain denan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut diunakan

Lebih terperinci

TUGAS SARJANA MESIN-MESIN FLUIDA

TUGAS SARJANA MESIN-MESIN FLUIDA TUGAS SARJANA MESIN-MESIN FLUIDA POMPA SENTRIFUGAL UNTUK MEMOMPAKAN CAIRAN LATEKS DARI TANGKI MOBIL KE TANGKI PENAMPUNGAN DENGAN KAPASITAS 56 TON/HARI PADA SUATU PABRIK KARET Oleh : BOBY AZWARDINATA NIM

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

POMPA. yusronsugiarto.lecture.ub.ac.id

POMPA. yusronsugiarto.lecture.ub.ac.id POMPA yusronsugiarto.lecture.ub.ac.id PENGERTIAN KARAKTERISTIK SISTIM PEMOMPAAN JENIS-JENIS POMPA PENGKAJIAN POMPA Apa yang dimaksud dengan pompa dan sistem pemompaan? http://www.scribd.com/doc/58730505/pompadan-kompressor

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan team membuat alat simulator radiator agar dapat digunakan dan dimanfaatkan sebagai praktikum

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan disejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN TELANAI INDAH KOTA JAMBI SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HITLER MARULI SIDABUTAR NIM.

Lebih terperinci

15 BAB III TINJAUAN PUSTAKA 3.1 Pengertian Pompa Pompa adalah mesin fluida yang berfungsi untuk memindahkan fluida cair dari suatu tempat ke tempat lain dengan cara memberikan energi mekanik pada pompa

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

POMPA SENTRIFUGAL. Oleh Kelompok 2

POMPA SENTRIFUGAL. Oleh Kelompok 2 POMPA SENTRIFUGAL Oleh Kelompok 2 M. Salman A. (0810830064) Mariatul Kiptiyah (0810830066) Olyvia Febriyandini (0810830072) R. Rina Dwi S. (0810830075) Suwardi (0810830080) Yayah Soraya (0810830082) Yudha

Lebih terperinci

ANALISA PERFORMANSI POMPA SENTRIFUGAL PADA WATER TREATMENT DENGAN KAPASITAS 60 M 3 /JAM DI PKS PT UKINDO LANGKAT LAPORAN TUGAS AKHIR

ANALISA PERFORMANSI POMPA SENTRIFUGAL PADA WATER TREATMENT DENGAN KAPASITAS 60 M 3 /JAM DI PKS PT UKINDO LANGKAT LAPORAN TUGAS AKHIR ANALISA PERFORMANSI POMPA SENTRIFUGAL PADA WATER TREATMENT DENGAN KAPASITAS 60 M 3 /JAM DI PKS PT UKINDO LANGKAT LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi sebagian Persyaratan dalam Menyelesaikan Program

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1. Pengertian Blower Pengertian Blower adalah mesin atau alat yang digunakan untuk menaikkan atau memperbesar tekanan udara atau gas yang akan dialirkan dalam suatu ruangan tertentu

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN INSTALASI POMPA SENTRIFUGAL DAN ANALISA NUMERIK MENGGUNAKAN PROGRAM KOMPUTER CFD FLUENT 6.1.22 PADA POMPA SENTRIFUGAL DENGAN SUCTION GATE VALVE CLOSED 75 % SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengetahuan Dasar Pompa Pompa adalah suatu peralatan mekanis yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Prinsip Kerja Pompa Sentrifugal Pompa digerakkan oleh motor. Daya dari motor diberikan kepada poros pompa untuk memutar impeler yang terpasang pada poros tersebut. Zat cair

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sifat Sifat Zat Air zat cair mempunyai atau menunjukan sifat-sifat atau karakteristik-karakteristik yang dapat ditunjukkan sebagai berikut. 2.1 Tabel Sifat-sifat air sebagai fungsi

Lebih terperinci

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah.

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Nama :... Kelas :... FLUIDA Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Kompetensi dasar : 8.. Menganalisis

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING)

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING) PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING) Kimia Industri (TIN 4206) PERALATAN INDUSTRI KIMIA YANG DIBAHAS : I Material Handling II Size Reduction III Storage IV Reaktor V Crystallization VI Heat treatment

Lebih terperinci

UJI PERFORMANSI POMPA BILA DISERIKAN DENGAN KARAKTERISTIK POMPA YANG SAMA

UJI PERFORMANSI POMPA BILA DISERIKAN DENGAN KARAKTERISTIK POMPA YANG SAMA UJI PERFORMANSI POMPA BILA DISERIKAN DENGAN KARAKTERISTIK POMPA YANG SAMA SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HOT MARHUALA SARAGIH NIM. 080401147 DEPARTEMEN TEKNIK

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

POMPA TORAK. Oleh : Sidiq Adhi Darmawan. 1. Positif Displacement Pump ( Pompa Perpindahan Positif ) Gambar 1. Pompa Torak ( Reciprocating Pump )

POMPA TORAK. Oleh : Sidiq Adhi Darmawan. 1. Positif Displacement Pump ( Pompa Perpindahan Positif ) Gambar 1. Pompa Torak ( Reciprocating Pump ) POMPA TORAK Oleh : Sidiq Adhi Darmawan A. PENDAHULUAN Pompa adalah peralatan mekanik yang digunakan untuk memindahkan fluida incompressible ( tak mampu mampat ) dengan prinsip membangkitkan beda tekanan

Lebih terperinci

BAB IV. P O M P A. P untuk menaikkan kecepatan aliran ( ), dan/atau untuk menaikkan tekanan ( ),

BAB IV. P O M P A. P untuk menaikkan kecepatan aliran ( ), dan/atau untuk menaikkan tekanan ( ), 1 BAB IV. P O M P A LEARNING OUTCOME Bab IV ini adalah mahasiswa diharapkan dapat: mengetahui cara kerja pompa, mengetahui kelebihan dan kekurangan pompa dan kompresor, memilih jenis pompa dan kompresor.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

MESIN FLUIDA ANALISIS PERFORMANSI POMPA MULTISTAGE PENGISI AIR UMPAN KETEL YANG DIGERAKKAN OLEH TURBIN UAP DIBANDING DENGAN ELEKTROMOTOR SKRIPSI

MESIN FLUIDA ANALISIS PERFORMANSI POMPA MULTISTAGE PENGISI AIR UMPAN KETEL YANG DIGERAKKAN OLEH TURBIN UAP DIBANDING DENGAN ELEKTROMOTOR SKRIPSI 1 MESIN FLUIDA ANALISIS PERFORMANSI POMPA MULTISTAGE PENGISI AIR UMPAN KETEL YANG DIGERAKKAN OLEH TURBIN UAP DIBANDING DENGAN ELEKTROMOTOR SKRIPSI Skripsi ini diajukan untuk melengkapi salah satu syarat

Lebih terperinci

BAB II DASAR TEORI 2.1 Pompa

BAB II DASAR TEORI 2.1 Pompa 3 BAB II DASAR TEORI.1 Pompa Pompa adalah suatu mesin konversi energi yang berfungsi memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Agar supaya bisa bekerja, pompa membutuhkan gaya putar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

PERENCANAAN POMPA SENTRIFUGAL DENGAN HEAD 200 M, KAPASITAS 0,25 M 3 /MENIT DAN PUTARAN 3500 RPM

PERENCANAAN POMPA SENTRIFUGAL DENGAN HEAD 200 M, KAPASITAS 0,25 M 3 /MENIT DAN PUTARAN 3500 RPM Tugas Akhir PERENCANAAN POMPA SENTRIFUGAL DENGAN HEAD 200 M, KAPASITAS 0,25 M 3 /MENIT DAN PUTARAN 3500 RPM Makalah ini Disusun Guna Memperoleh Gelar Sarjana Strata Satu (S-1) Pada Jurusan Teknik Mesin

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN TINGGI AIR JATUH 2.3 M DENGAN MENGGUNAKAN PERANGKAT LUNAK CFD

SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN TINGGI AIR JATUH 2.3 M DENGAN MENGGUNAKAN PERANGKAT LUNAK CFD SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN TINGGI AIR JATUH 2.3 M DENGAN MENGGUNAKAN PERANGKAT LUNAK CFD Herto Mariseide Marbun 1, Mulfi Hazwi 2 1,2 Departemen Teknik Mesin, Universitas Sumatera Utara,

Lebih terperinci

SIMULASI PENGARUH NPSH TERHADAP TERBENTUKNYA KAVITASI PADA POMPA SENTRIFUGAL DENGAN MENGGUNAKAN PROGRAM KOMPUTER COMPUTATIONAL FLUID DYANAMIC FLUENT

SIMULASI PENGARUH NPSH TERHADAP TERBENTUKNYA KAVITASI PADA POMPA SENTRIFUGAL DENGAN MENGGUNAKAN PROGRAM KOMPUTER COMPUTATIONAL FLUID DYANAMIC FLUENT SIMULASI PENGARUH NPSH TERHADAP TERBENTUKNYA KAVITASI PADA POMPA SENTRIFUGAL DENGAN MENGGUNAKAN PROGRAM KOMPUTER COMPUTATIONAL FLUID DYANAMIC FLUENT Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE

PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE Volume 1 No.1 Juli 2016 Website : www.journal.unsika.ac.id Email : barometer_ftusk@staff.unsika.ac.id PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE Fatkur

Lebih terperinci

BAB IV PEMODELAN POMPA DAN ANALISIS

BAB IV PEMODELAN POMPA DAN ANALISIS BAB IV PEMODELAN POMPA DAN ANALISIS Berdasarkan pemodelan aliran, telah diketahui bahwa penutupan LCV sebesar 3% mengakibatkan perubahan kondisi aliran. Kondisi yang paling penting untuk dicermati adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA IV. KAJIAN CFD PADA PROSES ALIRAN FLUIDA 4.1. Penelitian Sebelumna Computational Fluid Dnamics (CFD) merupakan program computer perangkat lunak untuk memprediksi

Lebih terperinci

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan Kata Pengantar Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin : BOILER FEED PUMP A. PENGERTIAN BOILER FEED PUMP Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Tentang Pompa Hydrant Hydrant merupakan suatu sistem keamanan untuk perlindungan kebakaran yang mekanisme kerjanya menggunakan sistem pompa air dengan tekanan cukup tinggi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Kecepatan dan Kapasitas Aliran Fluida Setiap fluida yang mengalir dalam sebuah pipa harus memasuki pipa pada suatu lokasi. Daerah aliran di dekat lokasi fluida memasuki pipa tersebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

PERENCANAAN POMPA SENTRIFUGAL DENGAN KAPASITAS 42 LITER/ DETIK, HEAD 40M DAN PUTARAN 1450 PRM DENGAN PENGGERAK DIESEL

PERENCANAAN POMPA SENTRIFUGAL DENGAN KAPASITAS 42 LITER/ DETIK, HEAD 40M DAN PUTARAN 1450 PRM DENGAN PENGGERAK DIESEL TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL DENGAN KAPASITAS 42 LITER/ DETIK, HEAD 40M DAN PUTARAN 1450 PRM DENGAN PENGGERAK DIESEL Tugas akhir ini Disusun Guna Memperoleh Gelar Sarjana Strata satu Jurusan

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci