Penerapan Metode Optimasi Exponential Smoothing Untuk Peramalan Debit

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penerapan Metode Optimasi Exponential Smoothing Untuk Peramalan Debit"

Transkripsi

1 Peerapa Meode Opimasi Expoeial moohig Uuk Peramala Debi Oleh: Budi aosa, uharyao 2, Djoko Legoo 3. DT, Program Pascasarjaa Udip, Jl. Hayam Wuruk No. 5-7 emarag, (Depareme Tekik ipil Uiversias Guadarma, Depok, Jakara. 2 Depareme Tekik ipil Uiversias Dipoegoro, Jl. Hayam Wuruk No. 5-7 emarag. 3 Depareme Tekik ipil Uiversias Gadjah Mada, Jl.Grafika Yogyakara. Absrak: Expoeial smoohig adalah ekik yag saga mudah uuk di erapka da saga efekif sebagai ala peramala. Meode yag diguaka dalam peramala serial daa debi adalah dega cara megopimasi ilai error, dega memiimumka ilai eror maka aka didapa hasil ramala maksimum, dega demikia hasil ramala aka medekai serial daa hasil pegamaa dilapaga. Opimasi dilakuka dega megguaka ligo da hasil yag didapa cukup baik Kuci: peramala, debi, opimasi expoeial smoohig Absracio: Expoeial smoohig is very easy echique o i applyig ad very effecive as a meas of forecasig. Mehod which applied i serial forecasig of daa chargig is by he way of errors value opimizaio, by miimizig value eror hece will go resul of forecas of maximum, hereby resul forecas of he closig is serial of resul daa observaio of field. Opimizaio doe by usig ligo ad good eough go resul key: Forecasig, charged, opimizaio expoeial smoohig Pedahulua Perkembaga saisik sebagai meode ilmiah elah mempegaruhi hampir seiap aspek kehidupa mausia moder. Pada abad ii, mausia sadar aau idak sadar, suka berfikir secara kuaiaif. Kepuusakepuusa yag diambil aas dasar hasil aalisis da ierpreasi daa kuaiaif. Dalam hal demikia iu, meode saisik mulak dibuuhka sebagai peralaa aalisis da ierpreasi daa kuaiaif. Peraa meode saisik semaki besar dalam proses pegambila kepuusa. Forecasig (peramala) adalah suau usur yag saga peig dalam pegambila kepuusa. uau dalil yag dapa dierima meyaaka bahwa semaki baik ramala ersedia uuk pimpia, semaki baik pula presasi kerja mereka sehubuga dega kepuusa yag mereka ambil. Ramala serial daa yag dilakuka umumya aka berdasarka pada daa masa lampau yag diaalisis dega megguaka cara-cara ereu. Daa masa lampau dikumpulka, dipelajari, da diaalisis dihubugka dega perjalaaa waku. Karea adaya fakor waku iu, maka dari hasil aalisis ersebu kia mecoba megaaka sesuau yag aka erjadi dimasa medaag. Jelas dalam hal ersebu kia berhadapa dega keidakpasia sehigga aka ada fakor akurasi aau keseksamaa yag harus diperhiugka. Akurasi suau ramala berbeda uuk seiap persoala da berbagai fakor, akurasi peramala idak aka selalu didapaka hasil ramala dega keepaa 00%, amu demikia idak berari bahwa ramala mejadi idak peig. Ramala elah bayak diguaka da membau dega baik dalam berbagai kasus dalam maajeme, sebagai pedukug dalam perecaaa, pegawasa, da peagambila kepuusa.

2 Peramala (forecasig) dibedaka mejadi iga model yag dikeal, yaiu model ekoomerika, model dere berkala, da model ramala kualiaif. Model ramala expoeial smoohig merupaka salah sau model ramala daa berkala (ime series). Beberapa keuggula meode peghalusa ekspoesial (expoeial smoohig) dibadigka dega meode radisioal (Leabo Dick A., 968:322) adalah :. daa-daa selalu dioperasika dega efisie; 2. haya membuuhka sediki daa dari sau waku ke waku berikuya; 3. dapa dimodifikasi uuk megolah daa yag berisi red ereu aau pola musima; 4. dapa diguaka dega biaya murah baik secara maual maupu dega kompuer. Dalam bidag sumber daya air meode expoeial smoohig juga elah bayak diguaka eruama dalam peramala daa. Tularam, G. A., dkk.. (2008) megguaka expoeial smoohig dalam meode uuk memisahka alira dasar yag merupaka dampak lagsug dari kesalaha hiuga, yaiu dega memiimumka kesalaha da meyeleksi koefisie alira dasar (α). Meode Expoeial moohig moohig adalah megambil raa raa dari ilai pada beberapa periode uuk meaksir ilai pada suau periode (Pagesu ubagyo, 986:7), Expoeial moohig adalah suau meode peramala raa- raa bergerak yag melakuka pemboboa meuru secara expoeial erhadap ilaiilai observasi yag lebih ua (Makridakis, 993:79) Meode expoeial smoohig merupaka pegembaga dari meode movig average. Dalam meode ii peramala dilakuka dega megulag perhiuga secara erus meerus dega megguaka daa erbaru.. Meode igle Expoeial moohig Meode sigle expoeial smoohig merupaka perkembaga dari meode movig average sederhaa, yag mula mula dega rumus sebagai beriku Dega meliha hubuga diaas bila dikeahui maka ilai dapa dicari berdasarka....() Bila digai dega ilai peramala pada yaiu maka perrrsamaa mejadi...(2) Aau...(3) α ehigga persamaa mejadi α ( α ) 2. Meode Double Expoeial moohig Meode ii merupaka model liier yag dikemukaka oleh Brow. Didalam meode Double Expoeial oohig dilakuka proses smoohig dua kali, Persamaa (4) da (5). s' ( α ) ' α...(4) ( α ) ' ' s' ' α '...(5) Persamaa berbeda dega sigle expoeial smoohig, dapa dipakai uuk mecari peramala dilakuka dega persamaa m a b m...(6) M jagka waku perecaaa kedepa 2

3 a b 2' ' ' α α ( ' ' ' ) Meode doubel expoeial smooig biasaya diguaka uuk meramalka daa yag mempuyai red. Meghiug kesalaha Ramala Kesalaha error dapa dihiug dega megguaka mea absolue error da mea square error. Mea absolue error adalah raa- raa iali absolue dari kesalaha meramal (idak dihirauka ada posiif aau egaifya) Σ F MAE...(7) Mea square error adalah kuadra raa raa kesalaha peramala 2 Σ F ME...(8) Dega : daa sebearya erjadi F : daa ramala dihiug dari model yag diguaka pada waku aau ahu : bayak daa hasil ramala prisip dalam meghiug kesalaha peramala (forecas error), model yag baik adalah model yag mempuyai kesalaha error palig kecil dari erhadap daa pegamaa yag sebearya dilapaga. Opimasi Dega Ligo Ligo adalah suau program yag diguaka uuk melakuka opimasi erhadap suau permasalaha sehigga meghasilka hasil yag opimal dari sumber yag ersedia. Proses peyelesaia program kadag membuuhka perhiuga dalam jumlah yag bayak dega sumber yag komplek, sehigga dibuuhka program kompuer yag baik da hadal. Proses kerja peyelesaia suau model opimasi erhadap suau masalah erdiri dari ahap-ahap sebagai beriku:). Memahami permasalaha, 2). Memformulasika permasalaha kedalam model, 3). Meyiapka daa ipu uuk model, 4). Mejalaka model, da 5). Megimplemeasika keluara model kedalam sebuah kesimpula. Dalam model Ligo srukur sisem dibagi kedalam iga bagia blok yaiu : blok ET, blok DATA, da blok PERAMAAN MODEL. Ipu daa dalam blok ET aka dideskripsika mejadi srukur daa yag aka diguaka uuk meyelesaika masalah. Kemudia dalam bagia blok DATA merupaka empa uuk memasukka kumpula daa yag aka diguaka. elajuya dalam bagia blok PERAMAAN MODEL daa aka dideskripsika sebagai hubuga aara masig-masig daa da meghasilka kepuusa. Opimasi kesalaha (error) dapa dilakuka dalam peramala serial daa debi. Degam memiimalka kesalaha maka peramala aka mejadi opimal. Opimasi dilakuka dega miimum keslaha (error) sebagai fugsi ujua Fugsi ujua dalam peramala serial daa debi, 0<α < adalah baasa ilai α, da kesalaha adalah selisih dari daa observasi dega hasil peramala. Meode Daa Aalisis daa aka dilakuka berdasarka keersediaa daa yag diperoleh dari pegumpula daa. Daa yag ersedia di Kaor Balai PDA erayu-ciaduy adalah daa selama 0 ahu, yaiu dari ahu 997 higga 2006, maka meode yag diguaka uuk meghiug MAF-ya adalah Meode erial Daa (Daa eries). seperi pada Tabel Tabel Debi bajir ahua DA erayu Ciaduy No Tahu Debi (m3/de)

4 Jumlah Debi Bajir Aalisa Daa Raa-Raa Gambar. Grafik debi pegamaa Preiksi serial daa debi dilakuka dega cara memiimalka selisih (error) prediksi erhadap daa observasi. Miimalisasi dilauka dega meode maual dega cara memasukka ilai α 0., , da dega ilai α peyesuaia dari proses opimasi error. Dega memiimka error, aka didapa hasil prediksi yag palig opimum. Hasil-hasil aalisis dapa diliha seperi Tabel 2, 3, 4, 5, da Grafik 2 debi (m3/de) Tahu Gambar grafik 2 hasil peramala debi observ. α0. α0.5 α0.95 α opimasi Tabel 2. Debi ramala dega α0, da hiuga error Tahu Observ. α0. MAE ME Jumlah error Tabel 3. Debi ramala dega α0,5 da hiuga error Tahu Observ. α0.5 MAE ME Jumlah error Tabel 4. Debi ramala dega α0,95 da hiuga error Tahu Observ. α0.95 MAE ME Jumlah error Tabel 5. Debi ramala dega αpeyesuaia opimasi, da hiuga error Tahu Observ. α opimasi MAE ME

5 Jumlah error Kesimpula eelah membadigka hasil aalisis peramala daa serial debi ahua raa-raa dega fakor α 0., 0.5, 0.95 da dega perhiuga dega proses opimasi, dapa diambil kesimpula bahwa hasil opimasi mempuyai kesalaha (error) yag palig kecil Dafar Pusaka Tularam, G. A., a.al. (2008), Expoeial moohig Mehod of Base Flow eparaio ad Is Impac o Coiuous Loss Esimaes, America Joural of Eviromeal cieces 4 (2): 36-44, IN ciece Publicaios ubagyo, Pagesu Forecasig Kosep da Aplikasi. Yogyakara: BPFE UGM Yogyakara. W. Arga Aalisis Ruu Waku Teori da Aplikasi. Yogyakara: BPFE UGM Yogyakara. Makridakis, pyros Aalisis Ruu Waku. Jakara: Karuika. Mulyoo, ugai (Fugsi da ifa- ifaya). Yogyakara: Graha Ilmu. ehya, E Dasar-Dasar Hidrologi. Yogyakara: Gajah Mada Uiversiy Press. oewaro HIDROLOGI (Aplikasi Meode aisik uuk Aalisis Daa Jilid. Badug: Nova. W. Arga Aalisis Ruu Waku Teori da Aplikasi. Yogyakara: BPFE UGM Yogyakara. Makridakis, pyros Aalisis Ruu Waku. Jakara: Karuika. 5

6 6

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai BAB 2 LANDASAN TEORI 2.1 Pegeria Peramala (orecasig) Peramala (orecasig) adalah suau kegiaa yag memperkiraka apa yag aka erjadi pada masa medaag. Peramala pejuala adalah peramala yag megkaika berbagai

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN EORI 2.1 Pegeria Peramala Peramala adalah kegiaa uuk memperkiraka apa yag aka erjadi di masa yag aka daag. Sedagka ramala adalah suau siuasi aau kodisi yag diperkiraka aka erjadi pada masa

Lebih terperinci

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu BAB 2 TINJAUAN TEORI 2.1 Pegeria Peramala Ramala pada dasarya merupaka dugaa aau perkiraa megeai erjadiya suau kejadia aau perisiwa di waku yag aka daag. Peramala merupaka sebuah ala bau yag peig dalam

Lebih terperinci

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak BB V NLIS HSIL 5.1 Ukura kurasi Hasil Peramala Uuk medapaka jeis peramala yag digika erdapa bayak parameer-parameer yag dapa diguaka. Seperi yag elah diuraika pada ladasa eori, parameer-parameer ersebu

Lebih terperinci

PENERAPAN METODE EXPONENTIAL SMOOTHING DALAM MEMPREDIKSI JUMLAH SISWA BARU (STUDI KASUS: SMK PEMDA LUBUK PAKAM)

PENERAPAN METODE EXPONENTIAL SMOOTHING DALAM MEMPREDIKSI JUMLAH SISWA BARU (STUDI KASUS: SMK PEMDA LUBUK PAKAM) Jural Pelia Iformaika, Volume 16, Nomor 3, Juli 2017 IN 2301-9425 (Media Ceak) PENERAPAN METODE EXPONENTIAL MOOTHING DALAM MEMPREDIKI JUMLAH IWA BARU (TUDI KAU: MK PEMDA LUBUK PAKAM) Kuriagara Mahasiswa

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3 Meode Pegumpula Daa 3 Jeis Daa Pada peeliia ii aka megguaka jeis daa yag bersifa kuaiaif Daa kuaiaif adalah daa yag berbeuk agka / omial Dalam peeliia ii aka megguaka daa pejuala

Lebih terperinci

STUDI ANALISIS PERAMALAN DENGAN METODE DERET BERKALA

STUDI ANALISIS PERAMALAN DENGAN METODE DERET BERKALA Widya Tekika Vol.18 No.2; Okober 2010 ISSN 1411 0660: 1-6 Absrak STUDI ANALISIS PERAMALAN DENGAN METODE DERET BERKALA Arie Resu Wardhai 1), Salvador Mauel Pereira 2) Perusahaa sepau da sadal House of Mr.

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode peramalan merupakan bagian dari ilmu Statistika. Salah satu metode

BAB 2 LANDASAN TEORI. Metode peramalan merupakan bagian dari ilmu Statistika. Salah satu metode BAB 2 LANDASAN TEORI 2.1 Pegeria Peramala Meode peramala merupaka bagia dari ilmu Saisika. Salah sau meode peramala adalah dere waku. Meode ii disebu sebagai meode peramala dere waku karea memiliki kareserisik

Lebih terperinci

Peramalan Jumlah Penduduk Kota Samarinda Dengan Menggunakan Metode Pemulusan Eksponensial Ganda dan Tripel Dari Brown

Peramalan Jumlah Penduduk Kota Samarinda Dengan Menggunakan Metode Pemulusan Eksponensial Ganda dan Tripel Dari Brown Jural EKSPONENSIAL Volume 7, Nomor, Mei 06 ISSN 085-789 Peramala Jumlah Peduduk Koa Samarida Dega Megguaka Meode Pemulusa Ekspoesial Gada da Tripel Dari Brow Forecasig he Populaio of he Ciy of Samarida

Lebih terperinci

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi. . Pedahulua PENGUJIAN HIPOTESIS Hipoesis Saisik : peryaaa aau dugaa megeai sau aau lebih populasi. Pegujia hipoesis berhubuga dega peerimaa aau peolaka suau hipoesis. Kebeara (bear aau salahya) suau hipoesis

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1. Defiisi Peramala Peramala adalah proses uuk memperkiraka berapa bayak kebuuha dimasa medaag yag melipui kebuuha dalam ukura kuaias, kualias, waku da lokasi yag dibuuhka dalam

Lebih terperinci

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB Sudi kelayaka bisis pada dasarya berujua uuk meeuka kelayaka bisis berdasarka krieria ivesasi Krieria ersebu diaaraya adalah ; 1. Nilai bersih kii (Ne

Lebih terperinci

BAB II LANDASAN TEORI. Dalam penulisan tugas akhir ini diperlukan teori-teori yang mendukung yang

BAB II LANDASAN TEORI. Dalam penulisan tugas akhir ini diperlukan teori-teori yang mendukung yang BAB II LANDASAN TEORI Dalam peulisa ugas akhir ii diperluka eori-eori yag medukug yag didapa dari maa kuliah yag perah dierima, da referesi-referesi sebagai baha pedukug. Uuk mecapai ujua dari peulisa

Lebih terperinci

PENERAPAN UKURAN KETEPATAN NILAI RAMALAN DATA DERET WAKTU DALAM SELEKSI MODEL PERAMALAN VOLUME PENJUALAN PT SATRIAMANDIRI CITRAMULIA

PENERAPAN UKURAN KETEPATAN NILAI RAMALAN DATA DERET WAKTU DALAM SELEKSI MODEL PERAMALAN VOLUME PENJUALAN PT SATRIAMANDIRI CITRAMULIA PENERAPAN UKURAN KETEPATAN NILAI RAMALAN DATA DERET WAKTU DALAM SELEKSI MODEL PERAMALAN VOLUME PENJUALAN PT SATRIAMANDIRI CITRAMULIA Iwa Sugkawa; Ries Tri Megasari Mahemaics & Saisics Deparme, School of

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun 43 BAB METODE PEMUUAN EKPONENA TRPE DAR WNTER Meode pemulusan eksponensial elah digunakan selama beberapa ahun sebagai suau meode yang sanga berguna pada begiu banyak siuasi peramalan Pada ahun 957 C C

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengerian Peramalan Peramalan (forecasing) adalah suau kegiaan yang memperkirakan apa yang akan erjadi pada masa yang akan daang. Meode peramalan merupakan cara unuk memperkirakan

Lebih terperinci

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka

Lebih terperinci

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN PERENCNN JUMLH PRODUK MENGGUNKN METODE FUZZY MMDNI BERDSRKN PREDIKSI PERMINTN Nama Mahasiswa : Norma Edah Haryai NRP : 1207 100 031 Jurusa : Maemaika FMIP-ITS Dose Pembimbig : Drs. I G N Rai Usadha, M.Si

Lebih terperinci

BAB V METODE PENELITIAN

BAB V METODE PENELITIAN 31 BAB V METODE PENELITIAN 5.1 Lokasi da Waku Peeliia Peeliia ii dilaksaaka di Kecamaa Sukaagara, Kabupae Ciajur. Pemiliha lokasi peeliia dilakuka secara segaja (purposive samplig) dega memperimbagka aspek

Lebih terperinci

MENENTUKAN PERSEDIAAN BERAS DENGAN MENGGUNAKAN MODEL ECONOMIC ORDER QUANTITY (EOQ) BERDASARKAN RAMALAN PERMINTAAN PADA TAHUN 2012

MENENTUKAN PERSEDIAAN BERAS DENGAN MENGGUNAKAN MODEL ECONOMIC ORDER QUANTITY (EOQ) BERDASARKAN RAMALAN PERMINTAAN PADA TAHUN 2012 MENENTUKAN PERSEDIAAN BERAS DENGAN MENGGUNAKAN MODEL ECONOMIC ORDER QUANTITY (EOQ) BERDASARKAN RAMALAN PERMINTAAN PADA TAHUN 2012 Julia Nahar 1 1 Uiversias Padjadjara, Jala Raya Badug-Sumedag km 21,Jaiagor

Lebih terperinci

PENERAPAN METODE TRIPLE EXPONENTIAL SMOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUSAHAAN MEBEL SINAR JEPARA TANJUNGANOM NGANJUK.

PENERAPAN METODE TRIPLE EXPONENTIAL SMOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUSAHAAN MEBEL SINAR JEPARA TANJUNGANOM NGANJUK. PENERAPAN METODE TRIPLE EXPONENTIAL MOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUAHAAN MEBEL INAR JEPARA TANJUNGANOM NGANJUK. ii Rukayah*), Achmad yaichu**) ABTRAK Peneliian ini berujuan unuk

Lebih terperinci

Jurnal Rekursif, Vol. 3 No. 1 Maret 2015, ISSN

Jurnal Rekursif, Vol. 3 No. 1 Maret 2015, ISSN Jural Rekursif, Vol 3 No Mare 05, ISSN 303-0755 PERBANDINGAN KEAKURATAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DAN EPONENTIAL SMOOTHING PADA PERAMALAN PENJUALAN SEMEN DI PT SINAR ABADI

Lebih terperinci

ANALISIS KELAYAKAN INVESTASI PENAMBAHAN ARMADA TRANSPORTASI DAN PERBAIKAN SISTEM PERSEDIAAN PERGUDANGAN (STUDY KASUS PT

ANALISIS KELAYAKAN INVESTASI PENAMBAHAN ARMADA TRANSPORTASI DAN PERBAIKAN SISTEM PERSEDIAAN PERGUDANGAN (STUDY KASUS PT ANALISIS KELAYAKAN INVESTASI PENAMBAHAN ARMADA TRANSPORTASI DAN PERBAIKAN SISTEM PERSEDIAAN PERGUDANGAN (STUDY KASUS PT. LEMINDO ABADI JAYA AREA DISTRIBUSI RIAU DARATAN) Peir Papilo 1, Ramadhail 2 Jurusa

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA Tijaua Pusaka Pegguaa meode peramala Forecasig elah dilakuka oleh berbagai macam peeliia dalam berbagai bidag eruama diguaka dalam memprediksi pejuala pada perusahaa Beriku dibawah

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan BAB 2 LANDASAN TEORI 2.1. Produksi Produksi padi merupakan suau hasil bercocok anam yang dilakukan dengan penanaman bibi padi dan perawaan sera pemupukan secara eraur sehingga menghasilkan suau produksi

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang BAB 2 TINJAUAN TEORITIS 2.1 Pengerian dan Manfaa Peramalan Kegiaan unuk mempeirakan apa yang akan erjadi pada masa yang akan daang disebu peramalan (forecasing). Sedangkan ramalan adalah suau kondisi yang

Lebih terperinci

Rumus-rumus yang Digunakan

Rumus-rumus yang Digunakan Saisika Uipa Surabaya 4. Sampel Tuggal = Rumus-rumus yag Diguaka s..... Sampel berkorelasi D D N N N...... 3. Sampel Bebas a. Uuk varias sama... 3 aau x x s g... 4 b. Sampel Heeroge Guaka Uji Corha - Cox

Lebih terperinci

Prediksi Penjualan Sepeda Motor Merek X Di Kabupaten Dan Kotamadya Malang Dengan Metode Peramalan Hierarki

Prediksi Penjualan Sepeda Motor Merek X Di Kabupaten Dan Kotamadya Malang Dengan Metode Peramalan Hierarki JURNAL SAINS DAN SENI POMITS Vol. 3, No., (4) 337-35 (3-98X Pri) D-34 Sepeda Moor Merek X Di Kabupae Da Koamadya Malag Dega Meode Peramala Hierarki Rika Susai, Desri Susilaigrum, da Suharoo Jurusa Saisika,

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR

MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR Bulei Ilmiah Ma.Sa. da Terapaya (Bimaser) Volume 06, No. (07), hal -0. MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR Ermawai, Helmi, Frasiskus

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TIJAUA TEORITIS 2.1 Peramalan (Forecasing) 2.1.1 Pengerian Peramalan Peramalan dapa diarikan sebagai beriku: a. Perkiraan aau dugaan mengenai erjadinya suau kejadian aau perisiwa di waku yang akan

Lebih terperinci

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan BAB 2 URAIAN EORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan memperkirakan aau memprediksi apa yang erjadi pada waku yang akan daang, sedangkan rencana merupakan penenuan apa yang akan dilakukan

Lebih terperinci

MODEL VECTOR AUTOREGRESSIVE (VAR) DALAM MERAMAL PRODUKSI KELAPA SAWIT PTPN XIII Faradhila Amry, Dadan Kusnandar, Naomi Nessyana Debataraja

MODEL VECTOR AUTOREGRESSIVE (VAR) DALAM MERAMAL PRODUKSI KELAPA SAWIT PTPN XIII Faradhila Amry, Dadan Kusnandar, Naomi Nessyana Debataraja Bulei Ilmiah Mah. Sa. da Terapaya (Bimaser) Volume 07, No. (018), hal 77 84. MODEL VECTOR AUTOREGRESSIVE (VAR) DALAM MERAMAL PRODUKSI KELAPA SAWIT PTPN XIII Faradhila Amry, Dada Kusadar, Naomi Nessyaa

Lebih terperinci

PENGGUNAAN METODE PERAMALAN DALAM PRODUKSI KAYU UNTUK PENENTUAN TOTAL PERMINTAAN (KONSUMEN)

PENGGUNAAN METODE PERAMALAN DALAM PRODUKSI KAYU UNTUK PENENTUAN TOTAL PERMINTAAN (KONSUMEN) Widiyarii, Pegguaa Meode Peramala dalam. PENGGUNAAN METODE PERAMALAN DALAM PRODUKSI KAYU UNTUK PENENTUAN TOTAL PERMINTAAN (KONSUMEN) Widiyarii Program Sudi Tekik Idusri Fakulas Tekik da MIPA, Uiversias

Lebih terperinci

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN Nomi Kelari *, Hasriai 2, Musraii 2 Mahasiswa Program S Maemaika 2 Dose Jurusa Maemaika Fakulas Maemaika da Ilmu Pegeahua

Lebih terperinci

BAB 3 LANDASAN TEORI. masa lampau akan berlanjut ke masa depan. Hampir seluruh peramalan didasarkan. pada asumsi bahwa masa lampau akan berulang.

BAB 3 LANDASAN TEORI. masa lampau akan berlanjut ke masa depan. Hampir seluruh peramalan didasarkan. pada asumsi bahwa masa lampau akan berulang. BAB 3 LANDASAN TEORI 3. Peramala 3.. Defiisi Peramala Peramala adalah perkiraa probabilisik aau peggambara dari ilai aau kodisi di masa depa. Asumsi yag umum dipakai dalam peramala adalah pola masa lampau

Lebih terperinci

B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan

B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan 30 B A B III METODE PENELITIAN 3. Peeapa Lokai da Waku Peeliia Objek peeliia dalam peeliia ii adalah megaalii perbadiga harga jual produk melalui pedekaa arge pricig dega co-plu pricig pada oko kue yag

Lebih terperinci

PERAMALAN PERMINTAAN EKSPOR INDUSTRI MEBEL DI PT.SPU JEPARA

PERAMALAN PERMINTAAN EKSPOR INDUSTRI MEBEL DI PT.SPU JEPARA PERAMALAN PERMINTAAN EKSPOR INDUSTRI MEBEL DI PT.SPU JEPARA DISUSUN OLEH : NAMA : AZIS WIDODO NIM : 41605110061 JURUSAN : TEKNIK INDUSTRI PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS

Lebih terperinci

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA Laar Belakag Masalah Semaki berambah pesaya pembagua dibidag kosruksi maka meyebabka meigka pula kebuuha aka meerial-maerial

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2 METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA Roki Nuari *, Aziskha, Edag Lily Mahasiswa Program S Maemaika Dose Jurusa Maemaika Fakulas

Lebih terperinci

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ [email protected] DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg

Lebih terperinci

PREDIKSI PRODUKSI JAGUNG DI JAWA TENGAH DENGAN ARIMA DAN BOOTSTRAP

PREDIKSI PRODUKSI JAGUNG DI JAWA TENGAH DENGAN ARIMA DAN BOOTSTRAP Prosidig SPMIPA. pp. 57-6. 6 ISBN : 979.74.47. PREDIKSI PRODUKSI JAGUNG DI JAWA TENGAH DENGAN ARIMA DAN BOOTSTRAP Sri Rahayu, Taro Jurusa Maemaika FMIPA UNDIP Semarag Jl. Prof. Soedaro, Kampus UNDIP Tembalag,

Lebih terperinci

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM EVALUASI UNTUK MENENTUKAN KEPUTUSAN INVESTASI. Modul ke: 06Fakultas EKONOMI DAN BISNIS

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM EVALUASI UNTUK MENENTUKAN KEPUTUSAN INVESTASI. Modul ke: 06Fakultas EKONOMI DAN BISNIS Modul ke: 06Fakulas EKONOMI DAN BISNIS EVALUASI UNTUK MENENTUKAN KEPUTUSAN INVESTASI Program Sudi Akuasi Idik Sodiki,SE,MBA,MM Krieria Kepuusa Ivesasi aau Pegaggara Modal o Beberapa krieria yag aka diperguaka

Lebih terperinci

Sistim Komunikasi 1. Pertemuan 5 Konversi Analog ke Digital

Sistim Komunikasi 1. Pertemuan 5 Konversi Analog ke Digital isim Komuikasi 1 Peremua 5 Koversi Aalog ke Digial Murik Alayrus Tekik Elekro Fakulas Tekik, UMB [email protected] 1 Base Ba Moulaio Paa bagia sebelum kia meapaka siyal koiyu erhaap waku, misalyasiyalm(),

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEORI. Tijaua Pusaka Bidag percaaa da pegawasa produksi da persediaa dalam orgaisasi-orgaisasi maufacurig da jasa berkaia dega peramala permiaa, perecaaa kapasias keseluruha orgaisasi, peeua

Lebih terperinci

BAB IV METODOLOGI PENELITIAN

BAB IV METODOLOGI PENELITIAN 30 BAB IV METODOLOGI PENELITIAN 4.1 Beuk da Meode Peeliia Peeliia Opimalisasi da Sraegi Pemafaaa Souher Bluefi Tua di Samudera Hidia Selaa Idoesia diarahka pada upaya uuk megugkapa suau masalah aau keadaa

Lebih terperinci

V. PENGUJIAN HIPOTESIS

V. PENGUJIAN HIPOTESIS V. PENGUJIAN IPOTEI A. IPOTEI TATITIK Defiisi uau hipoesa saisik adalah suau peryaaa aau dugaa megeai sau aau lebih variabel populasi. ipoesis digologka mejadi. ipoesis ol adalah hipoesis yag dirumuska

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa BAB 2 TINJAUAN TEORITI 2.1. Pengerian-pengerian Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. edangkan ramalan adalah suau siuasi aau kondisi yang diperkirakan

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode Peramalan merupakan bagian dari ilmu Statistika. Salah satu metode

BAB 2 LANDASAN TEORI. Metode Peramalan merupakan bagian dari ilmu Statistika. Salah satu metode 20 BAB 2 LADASA TEORI 2.1. Pengerian Peramalan Meode Peramalan merupakan bagian dari ilmu Saisika. Salah sau meode peramalan adalah dere waku. Meode ini disebu sebagai meode peramalan dere waku karena

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL LINEAR DENGAN MENGGUNAKAN METODE TRANSFORMASI ELZAKI

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL LINEAR DENGAN MENGGUNAKAN METODE TRANSFORMASI ELZAKI Bulei Ilmiah Ma. Sa. da erapaya (Bimaser) Volume 4, No. (5), hal 7 6. PNYLSAIAN PRSAMAAN DIFRNSIAL PARSIAL LINAR DNGAN MNGGUNAKAN MOD RANSFORMASI LZAKI Noa Miari, Mariaul Kifiah, Helmi INISARI Persamaa

Lebih terperinci

PERAMALAN ORDER INTAKE DI PT.KSB INDONESIA

PERAMALAN ORDER INTAKE DI PT.KSB INDONESIA PERAMALAN ORDER INTAKE DI PT.KSB INDONESIA DISUSUN OLEH : NAMA : BUDIYANTO NIM : 4160511005 JURUSAN : TEKNIK INDUSTRI PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA

Lebih terperinci

MODEL ARIMA(0,1,1) UNTUK PERAMALAN JUMLAH NASABAH PADA PT. PRUDENTIAL LIFE INSURANCE KOTA PEKANBARU TUGAS AKHIR

MODEL ARIMA(0,1,1) UNTUK PERAMALAN JUMLAH NASABAH PADA PT. PRUDENTIAL LIFE INSURANCE KOTA PEKANBARU TUGAS AKHIR MODEL ARIMA(0,,) UNTUK PERAMALAN JUMLAH NASABAH PADA PT. PRUDENTIAL LIFE INSURANCE KOTA PEKANBARU TUGAS AKHIR Diajuka Sebagai Salah Sau Syara Uuk Memperoleh Gelar Sarjaa Sais pada Jurusa Maemaika Oleh:

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Air merupakan kebuuhan pokok bagi seiap makhluk hidup di dunia ini ermasuk manusia. Air juga merupakan komponen lingkungan hidup yang pening bagi kelangsungan hidup

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Sisem Produksi Proses maufakur dapa digambarka seperi erliha dalam Gambar.., berupa keragka masuka-keluara, dimaa masukaya berupa baha baku, selajuya baha baku dikoversi (dega

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan BAB II LADASA TEORI 2.1 Pengerian peramalan (Forecasing) Peramalan (Forecasing) adalah suau kegiaan yang mengesimasi apa yang akan erjadi pada masa yang akan daang dengan waku yang relaif lama (Assauri,

Lebih terperinci

ALGORITMA DATA MINING

ALGORITMA DATA MINING ALGORITMA DATA MINING A. DECISION TREE. Kosep Decisio Tree Megubah daa mejadi poho kepuusa (decisio ree) da aura-aura kepuusa (rule). Sebagai cooh misalya igi membua aura yag dapa diguaka uuk meeuka apakah

Lebih terperinci

BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF

BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF Pada bab ini akan dibahas mengenai sifa-sifa dari model runun waku musiman muliplikaif dan pemakaian model ersebu menggunakan meode Box- Jenkins beberapa ahap

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 Teknik Industri Peramalan

BAB 2 LANDASAN TEORI 2.1 Teknik Industri Peramalan BAB 2 LANDASAN TEORI Pada bab ii aka dijelaska eori-eori yag medukug meode peeliia pada peulisa skripsi ii yag disebu sebagai ladasa eori. Teori yag aka dijelaska aka mecakup meode dari subjek ekik idusri

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Black dan Scholes (1973) menyatakan bahwa nilai aset mengikuti Gerak

BAB II TINJAUAN PUSTAKA. Black dan Scholes (1973) menyatakan bahwa nilai aset mengikuti Gerak BAB II TINJAUAN PUSTAKA. Peeliia Terdahulu Black da Scholes (973) meyaaka bahwa ilai ase megikui Gerak Brow Geomeri, dega drif μ (ekpekasi dari reur) da volailias σ (deviasi sadar dari reur). Berawal dari

Lebih terperinci

BAB III FORMULA PENENTUAN HARGA OPSI ASIA

BAB III FORMULA PENENTUAN HARGA OPSI ASIA 3 BAB III FORMULA PEETUA HARA OPSI ASIA Pada Bab III ii aka dibahas megeai opsi Asia da aalisisya, di maa yag aka dibahas hayalah beberapa ipe opsi Asia, da erbaas pada eis Europea call saa. Jeis-eis opsi

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN 29 IV. METODE PENELITIAN 4.1. Lokasi da Waku Peeliia Peeliia ii dilaksaaka di Kecamaa Pamijaha, Kabupae Bogor, Provisi Jawa Bara. Pemiliha lokasi peeliia dilakuka secara segaja (purposive) dega perimbaga

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Metode Pegumpula Data Dalam melakuka sebuah peelitia dibutuhka data yag diguaka sebagai acua da sumber peelitia. Disii peulis megguaka metode yag diguaka utuk melakuka pegumpula

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL FOKKER-PLANCK DENGAN METODE GARIS

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL FOKKER-PLANCK DENGAN METODE GARIS PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL FOKKER-PLANCK DENGAN METODE GARIS Sii Muyassaroh Mahasiswa Jurusa Maemaika Fakulas Sais da Tekologi UIN Maulaa Malik Ibrahim Malag e-mail: [email protected] ABSTRAK

Lebih terperinci

Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember ABSTRAK

Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember ABSTRAK PERBANDINGAN METODE DES (DOUBLE EXPONENTIAL SMOOTHING) DENGAN TES (TRIPLE EXPONENTIAL SMOOTHING) PADA PERAMALAN PENJUALAN ROKOK (STUDI KASUS TOKO UTAMA LUMAJANG) 1 Fajar Riska Perdana (1110651142) 2 Daryano,

Lebih terperinci

PERAMALAN HARGA SAHAM SYARI AH RUPIAH EQUITY FUND PT. PRUDENTIAL LIFE INSURANCE PEKANBARU MENGGUNAKAN METODE BOX-JENKINS TUGAS AKHIR.

PERAMALAN HARGA SAHAM SYARI AH RUPIAH EQUITY FUND PT. PRUDENTIAL LIFE INSURANCE PEKANBARU MENGGUNAKAN METODE BOX-JENKINS TUGAS AKHIR. PERAMALAN HARGA SAHAM SYARI AH RUPIAH EQUITY FUND PT. PRUDENTIAL LIFE INSURANCE PEKANBARU MENGGUNAKAN METODE BOX-JENKINS TUGAS AKHIR Diajuka Sebagai Salah Sau Syara Uuk Memperoleh Gelar Sarjaa Sais pada

Lebih terperinci

PERAMALAN KURSIDRTERHADAP USDMENGGUNAKAN DOUBLE MOVING AVERAGES DAN DOUBLEEXPONENTIAL SMOOTHING.

PERAMALAN KURSIDRTERHADAP USDMENGGUNAKAN DOUBLE MOVING AVERAGES DAN DOUBLEEXPONENTIAL SMOOTHING. PERAMALAN KURSIDRERHADAP USDMENGGUNAKAN DOUBLE MOVING AVERAGES DAN DOUBLEEXPONENIAL SMOOHING. Padrul Jaa 1), Rokhimi 2), Ismi Ratri Prihatiigsih 3) 1,2,3 PedidikaMatematika, Uiversitas PGRI Yogyakarta

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o ANALII BEDA Fx. ugiyao da Agus usworo Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg Meguji apakah erdapa perbedaa yg sigifika

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Perumbuhan ekonomi merupakan salah sau ukuran dari hasil pembangunan yang dilaksanakan khususnya dalam bidang ekonomi. Perumbuhan ersebu merupakan rangkuman laju-laju

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Peramala.1.1. Kosep Dasar Peramala Peramala merupaka bagia dari suau proses pegambila suau kepuusa. Sebelum melakuka peramala harus dikeahui erlebih dahulu apa sebearya persoala

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. yang akan datang. Peramalan menjadi sangat penting karena penyusunan suatu

BAB 2 TINJAUAN PUSTAKA. yang akan datang. Peramalan menjadi sangat penting karena penyusunan suatu BAB 2 TINJAUAN PUSTAKA 2.1 Pengerian Peramalan Peramalan adalah kegiaan memperkirakan apa yang erjadi pada waku yang akan daang sedangkan rencana merupakan penenuan apa yang akan dilakukan pada waku yang

Lebih terperinci

B. DESKRIPSI SINGKAT MATA KULIAH

B. DESKRIPSI SINGKAT MATA KULIAH A. IDENTITAS MATA KULIAH Nama Maa Kuliah : Kalkulus 1 Kode Maa Kuliah : MUG1A4 SKS : 4 (empa) Jeis : Maa kuliah wajib Jam pelaksaaa : Taap muka di kelas = 4 jam per peka Tuorial/ resposi Semeser / Tigka

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER STATISTIK CUKUP Oleh: Ramayai Rizka M (11810101003), Dey Ardiao (1181010101), Ikfi Ulyawai (1181010103), Falviaa Yulia Dewi (1181010106), Ricki Dio Rosada (11810101034), Nurma Yuia D (11810101035), Wula

Lebih terperinci

ANALISA SISTEM ANTRIAN DENGAN METODE KOMPUTASI TURBO PASCAL

ANALISA SISTEM ANTRIAN DENGAN METODE KOMPUTASI TURBO PASCAL Aalisa Sisem Aria Dega Meode Kompuasi Turbo Pascal ANALISA SISTEM ANTRIAN DENGAN METODE KOMPUTASI TURBO PASCAL RINA OKTAVIYANTHI Uiversias Serag Raya, [email protected] Absrak. Sisem aria yag erjadi di

Lebih terperinci

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis BAB 3 METODE PENELITIAN 3.1 Peetapa Kriteria Optimasi Disii peerapa kriteria optimasi yag diguaka utuk megaalisis kebutuha pokok pada PT. Kusuma Kecaa Khatulistiwa yaitu : 1. Aalisis forecastig (peramala

Lebih terperinci

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro ANALII BEA Agus usworo wi Marhaedro Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg sigifika di aara kelompok-kelompok Tekik

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. Sedangkan ramalan adalah suau aau kondisi yang diperkirakan akan erjadi

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kosep Supply Chai Supply chai adalah jariga isasi-isasi yag secara bersama-sama bekerja uuk mecipaka da meghaarka suau produk ke aga pemakai akhir (ed user). Isasi-isasi ersebu

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

TUGAS AKHIR. Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika. Oleh: AFRIANTI

TUGAS AKHIR. Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika. Oleh: AFRIANTI MODEL TIME SERIES UNTUK PERAMALAN TINGKAT PENJUALAN JENIS BAHAN BAKAR MINYAK (BBM) DI STASIUN PENGISIAN BAHAN BAKAR UNTUK UMUM (SPBU) ARIFIN ACHMAD-PEKANBARU TUGAS AKHIR Diajuka sebagai Salah Sau Syara

Lebih terperinci

Pemodelan Pencemaran Udara Menggunakan Metode Vector Autoregressive (Var) di Provinsi Riau

Pemodelan Pencemaran Udara Menggunakan Metode Vector Autoregressive (Var) di Provinsi Riau Pemodela Pecemara Udara Megguaka Meode Vecor Auoregressive (Var) di Provisi Riau Ari Pai Desvia 1, Maryam Julliaa D 2 Jurusa Maemaika, Fakulas Sais da Tekologi, UIN Sula Syarif Kasim Riau Jl. HR. Soebraas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengantar metode ARIMA Box Jenkins dan analisis spektral.

BAB II TINJAUAN PUSTAKA. pengantar metode ARIMA Box Jenkins dan analisis spektral. BAB II TINJAUAN PUSTAKA. Pedahulua Pada Bab II aka dijelaska pegeria pegeria da eori dasar yag diguaka sebagai ladasa pembahasa pada bab selajuya. Teori yag aka dibahas pada Bab II ii secara garis besar

Lebih terperinci

Perancangan Sistem Informasi Perbankan di PT. Bank Pembangunan Kalteng Palangkaraya Menggunakan Skema Galaksi

Perancangan Sistem Informasi Perbankan di PT. Bank Pembangunan Kalteng Palangkaraya Menggunakan Skema Galaksi Peracaga Sisem Iformasi Perbaka di PT. Bak Pembagua Kaleg Palagkaraya Megguaka Skema Galaksi ) Melia Pujiai, ) Krisoko Dwi Haromo, 3) Ahoy Y. M. Tumimomor Fakulas Tekologi Iformasi Uiversias Krise Saya

Lebih terperinci

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND Noeryani 1, Ely Okafiani 2, Fera Andriyani 3 1,2,3) Jurusan maemaika, Fakulas Sains Terapan, Insiu Sains & Teknologi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Pada penelitian ini, peneliti menetapkan objek pada anak kelompok B TK Damhil

BAB III METODOLOGI PENELITIAN. Pada penelitian ini, peneliti menetapkan objek pada anak kelompok B TK Damhil BAB III METODOLOGI PENELITIAN 3.1 Tempa da Waku Peeliia 3.1.1 Tempa Peeliia Pada peeliia ii, peelii meeapka objek pada aak kelompok B TK Damhil Kecamaa Koa elaa Koa Goroalo. Peeapa lokasi ersebu berdasarka

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryao Sudirham Aalisis Ragkaia Lisrik Di Kawasa Waku 3- Sudaryao Sudirham, Aalisis Ragkaia Lisrik () BAB 3 Peryaaa Siyal da Spekrum Siyal Dega mempelajari lajua eag model siyal ii, kia aka memahami

Lebih terperinci

MODEL KOREKSI KESALAHAN DENGAN METODE BAYESIAN PADA DATA RUNTUN WAKTU INDEKS HARGA KONSUMEN KOTA - KOTA DI PAPUA

MODEL KOREKSI KESALAHAN DENGAN METODE BAYESIAN PADA DATA RUNTUN WAKTU INDEKS HARGA KONSUMEN KOTA - KOTA DI PAPUA Prosidig Semiar Nasioal Sais da Pedidika Sais IX, Fakulas Sais da Maemaika, UKSW Salaiga, Jui 4, Vol 5, No, ISSN :87-9 MODEL KOREKSI KESALAHAN DENGAN MEODE BAYESIAN PADA DAA RUNUN WAKU INDEKS HARGA KONSUMEN

Lebih terperinci