BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI Dalam sejarah kehidupan umat manusia yang sudah berjalan selama puluhan ribu tahun lamanya, seni mendisain dan membangun jaringan Pemipaan sudah dikenal berabad-abad lalu. Awal mulanya, sistem pemipaan banyak digunakan oleh masyarakat untuk keperluan pengairan pada pertanian, dengan menggunakan pipa berbahan baku bambu, seperti dilakukan oleh masyarakat di China pada kira-kira antara tahun 3000 dan tahun 2000 sebelum Masehi. Seiring dengan kemajuan kebudayaan umat manusia, maka makin luas jugalah penggunaan pipa dalam berbagai aspek kehidupannya. Pada jaman tersebut, jenis pipa yang dipakai bermacam-macam: pipa kayu dengan menggunakan besi pada titik sambungan, bronze, dan pada tempat-tempat yang elit, pipa yang digunakan adalah dari bahan perak. Namun diakui, baru pada abad ke-19, perkembangan dibidang teknologi pipa terjadi sangat pesat. 6

2 2.1. Kriteria disain jalur perpipaan & tujuan analisa tegangan pipa Dalam mendisain jalur perpipaan banyak parameter parameter yang harus diperhatikan dan harus terpenuhi dalam mendisain suatu jalur pipa, sehingga jalur tersebut aman dan dapat di operasikan secara maksimal. Pada dasarnya jalur perpipaan merupakan media penghubung dari sederetan proses yang terjadi dalam suatu sistem. Dalam mendisain jalur perpipaan ini atau yang sering di sebut pipe routing dibutuhkan keahlian dan pengalaman dalam melakukan pekerjaan di bidang perpipaan. Kriteria kriteria yang harus dipenuhi dalam melakukan disain sebuah jalur perpipaan pada instalasi migas yaitu : a. Menentukan spesifik material pipa yang sesuai kebutuhan. b. Melakukan perhitungan ketebalan dan diameter pipa yang diperlukan. c. Membuat konstruksi jalur perpipaan dan komponen pendukungnya. d. Menentukan letak dan bentuk penyangga. e. Melakukan perhitungan tegangan dan fleksibilitas pipa. Tujuan utama dari analisa tegangan pipa: a. Keselamatan sistem perpipaan termasuk semua komponennya, b. Keselamatan sistem peralatan yang berhubungan lansung dengan sistem perpipaan dan struktur bangunan pendukung sistem tersebut, c. Defleksi pipa agar tidak melebihi limitasinya. 7

3 Jenis batas tegangan yang diijinkan diantaranya: a. Operating: Beban dan Stress yang terjadi pada kondisi operasional akibat kombinasi antara sustain load dan expansion load b. Occasional: Stress yang terjadi kadang2/ dalam waktu yang singkat karena adanya beban sustain dan beban occasional (seperti angin, gempa) c. Sustain: Stress yang terjadi terus menerus akibat beban dari tekanan fluida dan berat pipa d. Expansion: Stress yang terjadi karena perubahan temperatur e. Hydrotest: Stress yang terjadi karena tekanan air pada waktu hydrotest. Analisa tegangan static (Static Stress Analysis): Setiap sistem perpipaan pasti mempunyai basic stress yang nantinya secara kumulatif bisa disebut sebagai static stress. Basic stress terdiri dari: (a) Tegangan axial adalah tegangan yang di timbulkan oleh gaya yang bekerja searah dengan sumbu pipa, dan dapat di rumuskan dengan S = F /A. (b) Tegangan bending/tekuk Stress adalah tegangan yang di timbulkan oleh momen (M) yang kerja diujung-ujung pipa, dan dapat di rumuskan dengan S = Mb / Z (c) Tegangan torsion adalah tegangan yang di timbulkan akibat terjadinya momen puntir pada pipa, dan dapat di rumuskan dengan S = Mt / 2Z (d) Tegangan hoop adalah tegangan yang di timbulkan oleh tekanan internal yang bekerjasecara tangensial dan besarnya bervariasi tergantung pada tabel dinding pipa, dan dapat di rumuskan dengan S = PD / 2t (e) Tegangan longitudinal adalah tegangan yang di timbulkan oleh gaya tekanan 8

4 internal yang bekerja pada dinding pipa searah sumbu pipa, dan dapat di rumuskan dengan S = PD / 4t (f) Tegangan thermal adalah tegangan yang di timbulkan akibat adanya perpindahan panas pada pipa, dan dapat di rumuskan dengan S = ΔT x α x E. Gambar 2.1a. Dasar tegangan pada pipa 2.2 Pemilihan Material Pemilihan material yang sesuai dengan kondisi temperatur, tekanan dan sifat-sifat yang sesuai dengan perkiraan dari fluida yang dialirkan sangatlah penting. Hal tersebut dilakukan untuk mendapatkan suatu kondisi perancangan yang aman bagi lingkungan dan memiliki usia pemakaian yang sesuai dengan perkiraan. Materal yang sering di pakai dalam mendesain pipa diantaranya: a. Carbon Steel: Pipa yang bernama Carbon Steel ini adalah pipa yang paling luas penggunaanya dalam Industri Migas maupun industri lainnya. Tipe Carbon Steel yang paling banyak digunakan, yaitu: 1. ASTM A106: yang mempunyai tiga grade, yaitu Grade A, B, danc. Grade ini merujuk kepada besarnya Tensile Strenght dari material tersebut. Besarnya Tensile Strength dari ASTM A106 adalah: 9

5 -Grade A : 48 ksi -Grade B : 60 ksi -Grade C: 70 ksi 2. ASTM A 53: material ini juga sering digunakan yaitu pipa yang dilapisi oleh unsur zinc (galvanized), atau sering juga digunakan sebagai alternative untuk tipe A106. A53 mempunyai tiga Grade, yaitu Grade A, B, dan C. Disamping itu, A53 juga mempunyai tiga tipe yaitu: Tipe E: Electric Resistance Weld adalah pipa yang memiliki sambungan longitudinal yang mana perpaduannya dibuat oleh panas yang diperoleh dari tahan pipa terhadap aliran arus listrik dalam rangkaian dimana pipa merupakan bagiannya, dan dengan aplikasi tekanan. Tipe F: Furnace Butt Weld adalah pipa yang memiliki sambungan longitudinal yang di las secara mekanik dengan cara melintaskan koil yang telah dibentuk dan dipanaskan melalui perangkat rol-rol pengelasan. Tipe S: Seamless atau pipa tanpa sambungan adalah pipa diproduksi dengan proses piercing dari billet yang di ikuti dengan pengerolan (rolling) atau gambar atau keduanya. 3. ASTM A 333: material ini sering digunakan pada fluida yang mempunyai temperatur yang rendah, mulai dari -10 o C. 10

6 b. Stainless Steel: Stainless Steel mempunyai 18 Grade, namun yang sering digunakan adalah tipe 304L. Pada intinya, Tipe 304 adalah tipe yang mempunyai kadar karbon yang rendah dengan tujuan memperkuat kemampuan menahan korosi. Dengan penambahan huruf L dibelakang namanya, menjadi 304L, menunjukan bahwa tipe tersebut mempunyai kadar karbon konten yang semakin rendah, jauh lebih rendah dari hanya 304 saja. Ada dua tipe stainless steel yang umum dikenal dan digunakan di industri migas, yaitu: ASTM A312: standard ini digunakan untuk Pipa ukuran 8 inchi kebawah. ASTM A358: standard ini digunakan untuk Pipa ukuran diatas 8 inchi keatas. 2.3 Diameter Pipa Pipa mempunyai ukuran tertentu, mulai dari yang paling kecil dengan ukuran diameter sebesar ½ inchi sampai ukuran yang luar biasa besar yaitu pipa dengan diameter 72 inch atau kira-kira 1.8 meter. Secara umum material yang banyak digunakan untuk pipa dan komponennya terbagi atas dua kategori utama yaitu: a.metallic (logam) b.non-metallic (non-logam). Khusus untuk bahan metal, bisa dibagi lagi atas dua kelompok utama yaitu Ferrous (besi) dan Non-Ferrous, termasuk paduan Nickel, tembaga dan 11

7 aluminium. Akhirnya, dari jenis bahan material berjenis Ferrous tersebut, material pipa dapat lagi dibagi atas dua yaitu: a. wrought iron, cast iron b. Steel Pipa yang ada dipasaran dan sering digunakan di industri Migas dikelompokan dalam ukuran sebagai berikut: a. Large Bore Pipe: yaitu pipa yang berukuran lebih besar dari 2 inchi. b. Small Bore Pipe: yaitu pipa yang mempunyai ukuran 2 inchi ke bawah. c.tubing : mempunyai ukuran sampai 4 inchi tetapi mempunyai ketebalan dinding yang lebih kecil dari Large Bore dan Small Bore. Ukuran pipa yang biasanya banyak digunakan pada industri perminyakan dan gas alam serta industri lainnya adalah dimulai dari ukuran NPS ½ inch, ¾ in, 1, 2, 3, 4, 6, 8, 10, 12 dan mempunyai Diameter Luar (Outside Diameter) yang sudah distandardkan dan tidaklah sama dengan penamaan NPS nya. Sedangkan pipa 14 inchi keatas mempunyai Diameter Luar (Outside Diameter) yang sama dengan NPS nya. 2.4 Tebal Dinding Pipa Ketebalan dinding pipa memiliki peranan penting dalam sistem perpipaan yang beroperasi pada tekanan dan temperatur yang tinggi, kesalahan dalam menentukan ketebalan dinding pipa yang diperlukan mengakibatkan pipa tidak kuat menahan tekanan saat operasi, sehingga akan menumbulkan banyak permasalahan dalam sistem opearasi dari jalur perpipaan. 12

8 Di dalam pipa sering terdengar istilah schedule number yaitu penyebutan untuk ketebalan pipa. Schedule pipa dapat dikelompokan sbb : Schedule 5, 10, 20, 40, 60, 80, 120, 160 Schedule Standard Schedule Extra Strong ( XS ) Schedule Double Extra Strong ( XXS ) Untuk menghitung ketebalan pipa menurut ASME B31.3 dipakai rumus : P.D t m = 2 ( (S.E.W PY) ) + C (2.1) t m : tebal dinding pipa (mm) P : tekanan internal disain pipa dalam (bar) D : diameter luar pipa (mm) S : stress pada temperatur disain (bar) W : faktor kekuatan sambungan las, misalnya pipe seamless nilai W adalah 1.0 E : faktor kualitas sambungan las, misalnya pipe A106-seamless nilai E yaitu 1.0 Y : nilai Koefisien Y untuk t < D/6 (Tabel 2.1) C : batas korosi yang di izinkan (corrosion allowance). Tabel 2.1. Koefisien Y untuk t < D/6 Temperatur, o F ( o C) Materials 900 (482) (621) & lower (510) (538) (566) (593) & up Ferritic steels 0,4 0,5 0,7 0,7 0,7 0,7 13

9 Austenic steels 0,4 0,4 0,4 0,4 0,5 0,7 Other ductile metals 0,4 0,4 0,4 0,4 0,4 0,4 Cast Iron 0,0 2.5 Rentang Pipa (Pipe Span) Pipa akan mengalami lenturan dan defleksi karena berat pipa itu sendiri dan berat fluida yang mengalir di dalam pipa. a. Allowable span maksimum pada sistem pipa horisontal dibatasi oleh 3 faktor utama, yaitu : bending stress, vertical deflection, and natural frequency. b. Allowable span yang dihitung berdasarkan natural frequency dan limitasi defleksi, dapat diambil sebagai batas bawah dari allowable span yang dihitung berdasarkan bending stress dan defleksi Untuk menghindari terjadinya defleksi pipa yang berlebihan akibat berat pipa dan fluida didalamnya, maka perlu diperhitungkan panjang jarak antara dua tumpuan agar defleksi yang terjadi dapat sekecil mungkin. Untuk mengetahui jarak maksimum antara dua tumpuan dapat mengacu pada tabel pipe span. Adapun perhitungan secara manual dapat dicari dengan menggunakan rumus : L = σ 8.Z. a 1,25W (2.2) Di mana : S a : Tegangan yang diijinkan (N/m 2 ) 14

10 Z : Modulus section pipa ( m 3 ) W : Berat pipa + berat fluida di dalam pipa per satuan panjang (N/m) Adapun besarnya defleksi maksimum yang terjadi ditengah-tengah antara dua tumpuan dapat dicari dengan rumus : = 4 5. W. L 384. E. I (2.3) Di mana : E : Modulus elastisitas material pipa Mpa I : Momen Inertia dari penampang pipa (mm 4 ) 2.6 Fleksibilitas Pipa Fleksibilitas sistem perpipaan serta pipe support yang baik dan aman sangat dibutuhkan untuk menjamin kelangsungan dari proses serta menjamin umur pemakaian dari sistem perpipaan sesuai dengan siklus rancangan. Namun pada kenyataannya di lapangan masih ditemukan kegagalan-kegagalan yang terjadi pada sistem pipa, baik pada saat instalasi maupun operasi. Hal ini jelas merugikan karena sistem tidak dapat beroperasi secara maksimum. Instalasi perpipaan supaya terjamin dan aman dari kerusakan baik karena pemuaian maupun berat instalasi pipa sendiri diperlukan pipe support dan tentunya tidak mengabaikan fleksibilitas instalasinya. Tujuan analisa tegangan piping system dan pipe support adalah untuk mengetahui apakah tingkat tegangan maksimum, momen, serta gaya yang terjadi pada piping system, pipe support,dan equipment masih dalam tingkat tegangan yang dijinkan atau tidak. Besar kecilnya pipe support serta jumlahnya memerlukan suatu analisa dan pengalaman agar instalasi perpipaan tidak rusak dan tahan lama. 15

11 Pipe support merupakan suatu perlengkapan instalasi perpipaan yang tidak dapat dipisahkan karena tanpa penyangga (pipe support), instalasi perpipaan tidak dapat dipasang dengan sempurna. Supaya pipe support dalam instalasi perpipaan dapat berfungsi sempurna, maka sebelum membuat pipe support diperlukan perhitungan perencanaan yang baik, begitu pula tempat pemasangannya. Analisa fleksibilitas merupakan hal penting didalam perhitungan dan perencanaan sistem perpipaan sesuai dengan code. Dalam analisa fleksibilitas, faktor-faktor beban terjadi karena adanya pengaruh perlakuan beban operasi pada sistem perpipaan. Pemasangan pipe support adalah hal yang paling penting agar pengaruh pembebanan selama kondisi operasi sistem perpipaan tidak mengalami kegagalan atau kerusakan. 2.7 Analisis Tegangan Analisis tegangan merupakan bagian yang paling berpengaruh pada perencanaan dan pelaksanaan sistem perpipaan. Dari hasil analisa tegangan ini perencanaan jalur-jalur sistem perpipaan dan perletakkan tumpuan pipa (pipe support location) ditentukan untuk menghindari terjadinya tegangan yang berlebihan pada pipa atau pada tumpuan pipa dan juga untuk mendapatkan kondisi yang fleksibel yang dibutuhkan pada tata letak jalur perpipaan. Analisis tegangan dilakukan terutama pada nozzle-nozzle dari peralatan yang dihubungkan dengan sistem perpipaan dan pada titik-titik tertentu pada jalur perpipaan. Dan analisis ini ditentukan oleh gaya-gaya pada jangkar (anchor), gaya pada penyangga atau tumpuan, momen lengkung dan torsi pada suatu titik atau segmen pada sistem perpipaan. Adapun urutan pekerjaan yang dilakukan dalam analisis tegangan adalah : - Menghitung gaya dan momen, 16

12 - Menghitung tegangan. Perhitungan gaya, momen dan tegangan dapat dilakukan secara manual maupun dengan komputer. Dalam perencanaan jalur perpipaan pada instalasi ini dilakukan perhitungan gaya dan momen dengan menggunakan program komputer Caesar II.5 dan perhitungan tegangan yang dilakukan secara manual Gaya dan tegangan Untuk perhitungan gaya dan tegangan kita ambil contoh soal jalur perpipaan yang sederhana : Sebatang pipa yang dijepit pada kedua ujungnya dan diberi beban terpusat F pada C, serta batang dipanasi hingga suhunya naik sebesar T seperti gambar 2.7.1a. maka besarnya tegangan Thermal dapat di cari sbb : Penyelesaian : Karena batang dipanasi, maka pipa akan berekspansi secara linier atau terjadinya perpanjangan akan tetapi perpanjangan tersebut terhalang karena pada kedua ujungnya dijepit sehingga pipa mengalami tegangan thermal (σ th ) Besarnya tegangan thermal yang terjadi adalah : S th =. T. E Di mana : S th : Tegangan thermal (N/m 2 ) : Koefisien muai panjang (mm. 0 C) T : Perbedaan temperatur ( 0 C) E : Modulus elastisitas pipa (N/m 2 ) Gaya yang terjadi pada titik A dan B, Faks = S th. A 17

13 Di mana : Faks : Gaya aksial karena tegangan thermal (N) A : Luas penampang pipa (m 2 ) Gambar 2.7.1a. Gambar pipa dijepit pada kedua ujungnya dengan beban terpusat F Bila pada kedua ujung atau salah satu ujung pipa bebas, maka perpanjangan pipa ( L) yang terjadi adalah : L = T.. L Kondisi pembebanan Sistem perpipaan yang dirancang, direncanakan dapat menahan bermacam-macam pembebanan yaitu : Pada keadaan hydrostatic test, dimana system perpipaan yang telah dipasang harus diuji terlebih dahulu sebelum dioperasikan yaitu dengan cara mengalirkan air yang bertekanan kedalam pipa pada jangka waktu tertentu (biasanya paling lama 2 jam) untuk mengetahui ada tidaknya terjadi kebocoran pada sistem perpipaan. Kombinasi beban yang mungkin terjadi pada kondisi hydrotest test ini adalah : 18

14 Beban akibat material dan gaya-gaya luar (berat material dan bagian-bagian dari Percabangan pipa). Beban akibat fluida yang digunakan untuk pengetesan (air atau udara). Pada keadaan beroperasi, dimana sistem telah dioperasikan maka kombinasi beban pada keadaan operasi ini adalah : Beban akibat berat material, berat fluida, temperatur dan gaya luar. Beban akibat berat material, berat fluida, temperatur (disain / operasi), gaya luar, dan tekanan (disain/operasi). Beban akibat berat material, berat fluida, temperatur (disain/operasi), tekanan (disain/operasi), berat konstruksi (settlement) dan gempa bumi Tegangan pipa Menurut standar ASME B31.3 (standar untuk perencanaan sistem perpipaan pada instalasi proses), ada tiga tegangan utama yang bekerja pada elemen pipa lihat Gambar 2.7.3a. Tegangan normal memiliki tiga komponen tegangan yaitu: 1. Tegangan utama longitudinal (Longitudinal principal stress) yaitu tegangan yang bekerja sepanjang garis sumbu pipa, tegangan ini disebabkan oleh pembengkokan, beban gaya aksial atau tekanan. 2. Tegangan utama radial (Radial principal stress) yaitu tegangan yang bekerja pada satu garis mulai dari pusat pipa secara radial sampai ke dinding pipa, tegangan ini bersifat tegangan tekan bila disebabkan oleh tekanan dalam pipa dan tegangan ini bersifat tegangan tarik bila tekanan dalam pipa hampa (vacuum pressure). 19

15 3. Tegangan utama circumferential atau keliling atau disebut juga sebagai Hoop stress, tegangan ini bekerja tegak lurus terhadap tegangan longitudinal dan tegangan radial, tegangan ini bertendensi membelah dinding pipa dalam arah melingkar pipa dan tegangan ini disebabkan tekanan dari dalam pipa. Bila dua atau lebih tegangan utama bekerja pada suatu titik pada sebatang pipa, maka akan menghasilkan tegangan geser, contohnya pada pipa yang diberi penyangga secara menganjur (overhang pipa), dimana tegangan radial yang disebabkan oleh penyangga berkombinasi dengan lenturan yang disebabkan oleh pipa. Gambar 2.7.3a. Gambar sistem sumbu utama Teori-teori Kegagalan (Failure Theories) Teori kegagalan tegangan utama maksimum (maximum principal stress failure theories) menyatakan bila salah satu dari tiga tegangan utama yang saling tegak lurus melebihi dari kekuatan luluh (yield strength) material pada temperatur yang sama maka kegagalan atau kerusakan akan terjadi pada material tersebut. Satu contoh dari aplikasi teori ini adalah sebagai berikut : 20

16 Pipa berdiameter 4 inci (diameter luar= mm), Sch. 80 (tebal dinding pipa t = 8.6 mm) berisi fluida dengan tekanan desain P sebesar = 93 barg = 1350 Psig = 9.3 MPa (N/mm 2 ). Hitung besarnya tegangan-tegangan utama yang terjadi Penyelesaian : Tegangan utama longitudinal (LPS) : LPS = P. Do 9.3 x = 4t 4 x 8.6 = MPa Tegangan utama circumferential (CPS) : P. Do 9.3 x CPS = = - = MPa 2t 2 x 8.6 Tegangan utama radial (RPS) = P = 9.3 MPa Bila teori kegagalan tegangan utama maksimum diterapkan pada kondisi pipa ini maka hanya CPS lah yang perlu diperhatikan. Untuk mencegah pipa dari gagal atau rusak, maka harus dipilih tebal dinding pipa yang menghasilkan harga CPS dibawah harga yield strength dari material pipa pada temperatur dan tekanan pada saat system beroperasi. Teori kegagalan tegangan geser maksimum (maximum shear stress failure theories) adalah harga rata-rata dari tegangan yang paling besar dikurangi dengan tegangan yang paling kecil dan dibagi dua. Dari contoh perhitungan di atas, maka tegangan geser maksimumnya adalah : CPS - RPS MS = = = MPa 2 2 kegagalan tegangan geser maksimum menyatakan bahwa bila harga tegangan geser maksimum melebihi dari setengah harga yield strength material pada temperatur yang sama, maka kegagalan atau kerusakan akan terjadi. Pada contoh 21

17 di atas, sistem ini akan aman selama yield strength material pada temperatur yang sama di atas harga MPa Tegangan yang diizinkan (Allowable Stress) Sebagai ilustrasi dimana instalasi jalur perpipaan yang direncanakan pada tulisan ini adalah instalasi dipasang pada temperatur operasi 65 C dan temperatur desain 93 C, jenis pipa ASTM A106 GR B SMLS BE CS SCH 80, dengan adanya peningkatan temperatur maka menyebabkan pipa tersebut memuai. Hal ini menyebabkan terjadinya pemanjangan pada pipa, karena kedua ujung pipa tersebut tidak dapat bergerak karena adanya equipment pada ujung pipa tersebut, maka timbul tegangan dalam pipa. Bila sistem tidak beroperasi lagi, pipa tersebut kembali ke keadaan semula dan tegangan pun akan menghilang. Siklus diatas bila terjadi berulang-ulang akan dapat menimbulkan retakretak pada pipa hal ini disebut degnan kegagalan karena kelelahan (fatique failure) dan selanjutnya dapat mengakibatkan pipa bocor atau pecah, bila fluida yang dialirkan adalah fluida yang mudah terbakar maka akibat yang ditimbulkan dapat berakibat fatal baik bagi instalasi itu sendiri maupun lingkungan sekitarnya. Oleh karena itu dalam standar peraturan mengenai perencanaan instalasi sistem perpipaan ditentukan batas-batas untuk tegangan maksimum yang diijinkan pada sebuah jalur perpipaan bilamana suhunya meningkat dari yang paling rendah sampai yang paling tinggi, baik dalam keadaan beroperasi atau tidak. Batas-batas ini biasanya disebut Allowable displacement stress range atau batas-batas tegangan akibat pemuaian atau penyusutan yang diizinkan (S a ). Menurut ASME B31.3 besar S a tersebut adalah : 22

18 S a = f (1,25 S c + 0,25 S h ) Di mana : S a ; Rentang tegangan perpindahan yang diijinkan, N/mm 2 (kgf/cm 2 ). S c : Tegangan dasar yang diizinkan pada suhu minimum bahan yang diharapkan selama siklus perpindahan dalam analisa, N/mm 2 (kgf/cm 2 ). S h : Tegangan dasar yang diijinkan pada suhu maksimum bahan yang diharapkan selama siklus perpindahan dalam analisa, N/mm 2 (kgf/cm 2 ). f : Factor yang tergantung siklus yang dialami pipa tersebut atau factor pengurangan tegangan. Nilai factor f = 1.0 untuk siklus (pipa memuai dan menyusut), disain direncanakan beroperasi selama 10 Tahun maka siklus yang terjadi adalah selama 3650 jam, dilihat dari tabel siklus pipa pada tabel 2.2. didapat nilai f = 1,0 karena siklus kurang dari Tabel 2.2. Siklus pipa Siklus (N) f kurang 1, , , , , keatas 0,5 2.8 Program Caesar II CAESAR II adalah program computer untuk perhitungan Stress Analysis yangmampu mengakomodasi kebutuhan perhitungan Stress Analysis. 23

19 Software ini sangat membantu dalam Engineering terutama di dalam desain Mechanical dan system perpipaan. Pengguna Caesar II dapat membuat permodelan system perpipaan dengan menggunakan simple beam element kemudian menentukan kondisi pembebanan sesuai dengan kondisi yang dikehendaki. Dengan memberikan/membuat inputan tersebut, Caesar II mampu menghasilkan hasil analisa berupa stress yang terjadi, beban, dan pergeseran terhadap system yang kita analisa. Data masukan : Dimensi dan jenis material Parameter operasi : temperatur, tekanan, fluida Parameter beban : berat isolasi, perpindahan, angin, gempa, dll Code yang digunakan pemodelan : Node, elemen, tumpuan Aturan penempatan node: Definisi geometri : system start, interseksi, perubahan arah, end Perubahan parameter operasi : perubahan temp, tekanan, isolasi Definisi parameter kekakuan elemen : perubahan ukuran pipa, valve, tee, dll. Posisi kondisi batas : restrain, anchor Aplikasi pembebanan : aplikasi gaya, berat isolasi, gempa, dll Pengambilan informasi dari hasil analisis : gaya dalam, stress, displacement, reaksi tumpuan, dll. 24

20 2.8.1 Input Caesar II Parameter yang menjadi masukan (diinput) ke dalam program Caesar II sebagai data yang akan diproses adalah sebagai berikut : a. Node yaitu titik awal perencanaan yang akan disediakan oleh Caesar II dalam dialog box. Biasanya nilai 10 akan menjadi titik awal dari perencanaan jalur perpipaan yang akan dilakukan. b. Data-data disain seperti tekanan, temperatur, corrosion allowance dll. c. Pipe data yaitu data-data yang berkaitan dengan sifat-sifat fisis pipa seperti jenis material, besar diameter, ketebalan pipa, ketebalan isolasi pipa dll. d. Aplication Code yaitu setandard yang akan digunakan, misalnya B 31.3 dll. e. Data-data pendukung yaitu data-data yang akan ditentukan secara otomatis oleh program Caesar II seperti Elastic modulus, Pipe density dll Output Caesar II Hasil output dari Caesar II merupakan hasil perhitungan fleksibilitas dan kekuatan jalur pipa berdasarkan data-data input, dan disajikan dalam bentuk tampilan animasi 3 dimensi dan berupa data-data dalam bentuk angka sebagai indikasi letak dan arah gaya-gaya, momen dan besar tegangan yang terjadi. 25

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : BAB V ANALISA HASIL 5.1. Evaluasi Perhitungan Secara Manual 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : - Diameter luar pipa (Do)

Lebih terperinci

BAB II LANDASAN TEORI. Ribuan tahun yang lalu, sistem pipa sudah dikenal dan digunakan oleh

BAB II LANDASAN TEORI. Ribuan tahun yang lalu, sistem pipa sudah dikenal dan digunakan oleh BAB II LANDASAN TEORI Ribuan tahun yang lalu, sistem pipa sudah dikenal dan digunakan oleh manusia untuk mengalirkan air sebagai kebutuhan air minum dan irigasi. Di Cina, manusia menggunakan bambu sedangkan

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN

BAB III ANALISA DAN PEMBAHASAN BAB III ANALISA DAN PEMBAHASAN 3.1. Perhitungan Ketebalan Pipa (Thickness) Penentuan ketebalan pipa (thickness) adalah suatu proses dimana akan ditentukan schedule pipa yang akan digunakan. Diameter pipa

Lebih terperinci

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : BAB V ANALISA HASIL 5.1. Evaluasi Perhitungan Secara Manual 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : - Diameter luar pipa (Do)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Ribuan tahun yang lalu, sistem pipa sudah dikenal dan digunakan oleh manusia untuk mengalirkan air sebagai kebutuhan air minum dan irigasi. Jadi pada dasarnya sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Sejak dahulu manusia sudah mengenal sistem perpipaan, namun penggunaan sistem dan bahannya masih sangat sederhana, untuk memenuhi kebutuhan mereka secara pribadi ataupun

Lebih terperinci

BAB VII PENUTUP Perancangan sistem perpipaan

BAB VII PENUTUP Perancangan sistem perpipaan BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan dan analisis tegangan sistem perpipaan sistem perpipaan berdasarkan standar ASME B 31.4 (studi kasus jalur perpipaan LPG dermaga Unit 68 ke tangki

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar BAB IV ANALISA DAN PEMBAHASAN 4.1 Data dan Sistem Pemodelan Sumber (referensi) data-data yang diperlukan yang akan digunakan untuk melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1. Data-data Awal ( input ) untuk Caesar II Adapun parameter-parameter yang menjadi data masukan (di input) ke dalam program Caesar II sebagai data yang akan diproses

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1. Data-Data Awal Analisa Tegangan Berikut ini data-data awal yang menjadi dasar dalam analisa tegangan ini baik untuk perhitungan secara manual maupun untuk data

Lebih terperinci

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai BAB III METODE PENELITIAN 3.1. Diagram Alir ( Flow Chart ) Diagram alir studi perencanaan jalur perpipaan dari free water knock out (FWKO) ke pump suction diberikan pada Gambar 3.1 Mulai Perumusan Masalah

Lebih terperinci

ANALISA TEGANGAN PIPA STEAM LOW CONDENSATE DIAMETER 6 PADA PT IKPT

ANALISA TEGANGAN PIPA STEAM LOW CONDENSATE DIAMETER 6 PADA PT IKPT JTM Vol. 04, No. 1, Februari 2015 14 ANALISA TEGANGAN PIPA STEAM LOW CONDENSATE DIAMETER 6 PADA PT IKPT Sigit Mulyanto Program Studi Teknik Mesin Fakultas Teknik, Universitas Mercubuana Email: sigit_mulyanto@yahoo.co.id

Lebih terperinci

ANALISA TEGANGAN PIPA STEAM LOW CONDENSATE DIAMETER 6 PADA PT IKPT

ANALISA TEGANGAN PIPA STEAM LOW CONDENSATE DIAMETER 6 PADA PT IKPT JTM Vol. 04, No. 1, Februari 2015 14 ANALISA TEGANGAN PIPA STEAM LOW CONDENSATE DIAMETER 6 PADA PT IKPT Sigit Mulyanto Program Studi Teknik Mesin Fakultas Teknik, Universitas Mercubuana Email :sigit_mulyanto@yahoo.co.id

Lebih terperinci

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II Asvin B. Saputra 2710 100 105 Dosen Pembimbing: Budi Agung Kurniawan,

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1 Perhitungan Ketebalan Minimum ( Minimum Wall Thickess) Dari persamaan 2.13 perhitungan ketebalan minimum dapat dihitung dan persamaan 2.15 dan 2.16 untuk pipa bending

Lebih terperinci

LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II

LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan 2 BAB II TEORI 2.1 Tinjauan Pustaka Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan yang terjadi mempunyai nilai rasio lebih kecil atau sama dengan 1 dari tegangan yang diijinkan (allowable

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan.

BAB IV ANALISA DAN PEMBAHASAN. Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan. BAB IV ANALISA DAN PEMBAHASAN 4.1 Perhitungan dan Analisa Tegangan 4.1.1 Perhitungan Ketebalan Minimum Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan. Perbedaan ketebalan pipa

Lebih terperinci

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus TUGAS AKHIR Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh

Lebih terperinci

TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II

TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. dalam tugas akhir ini adalah sebagai berikut : Document/Drawing Number. 2. TEP-TMP-SPE-001 Piping Desain Spec

BAB IV ANALISA DAN PEMBAHASAN. dalam tugas akhir ini adalah sebagai berikut : Document/Drawing Number. 2. TEP-TMP-SPE-001 Piping Desain Spec BAB IV ANALISA DAN PEMBAHASAN 4.1 Data dan Sistem Pemodelan Sumber (referensi) data-data yang diperlukan yang akan digunakan untuk melakukan perancangan sistem pemipaan dengan menggunakan program Caesar

Lebih terperinci

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13 BAB II DASAR TEORI 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa 4th failure February 13 1st failure March 07 5th failure July 13 2nd failure Oct 09 3rd failure Jan 11 Gambar 2.1 Riwayat

Lebih terperinci

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline Sidang Tugas Akhir Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline HARIONO NRP. 4309 100 103 Dosen Pembimbing : 1. Dr. Ir. Handayanu, M.Sc 2. Yoyok Setyo H.,ST.MT.PhD

Lebih terperinci

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi 1 Analisa Tegangan pada Pipa yang Memiliki Sumuran Berbentuk Limas dengan Variasi Kedalaman Muhammad S. Sholikhin, Imam Rochani, dan Yoyok S. Hadiwidodo Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan,

Lebih terperinci

BAB II LANDASAN TEORI. Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik

BAB II LANDASAN TEORI. Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik BAB II LANDASAN TEORI 2.1 Definisi dan Teori Perpipaan 2.1.1 Definisi Sistem Perpipaan Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik ke satu atau beberapa titik lainnya digunakan

Lebih terperinci

ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II

ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II TUGAS AKHIR Disusun guna memenuhi sebagian syarat memperoleh gelar Sarjana Teknik pada Fakultas Teknik

Lebih terperinci

4 BAB IV PERHITUNGAN DAN ANALISA

4 BAB IV PERHITUNGAN DAN ANALISA 4 BAB IV PERHITUNGAN DAN ANALISA 4.1 Data Penelitian Data material pipa API-5L Gr B ditunjukkan pada Tabel 4.1, sedangkan kondisi kerja pada sistem perpipaan unloading line dari jetty menuju plan ditunjukan

Lebih terperinci

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline 5.1 Analisis Tegangan dan Fleksibilitas Analisis tegangan dan fleksibilitas pipeline ini dilakukan dengan menggunakan

Lebih terperinci

Tabel 4. Kondisi Kerja Pipa Pipe Line System Sumber. Dokumen PT. XXX Parameter Besaran Satuan Operating Temperature 150 Pressure 3300 Psi Fluid Densit

Tabel 4. Kondisi Kerja Pipa Pipe Line System Sumber. Dokumen PT. XXX Parameter Besaran Satuan Operating Temperature 150 Pressure 3300 Psi Fluid Densit BAB IV ANALISA DAN PEBAHASAN 4.1 Perhitungan Data material pipa API-5L-Gr.65 ditunjukan pada Tabel 4.1, sedangkan kondisi kerja pada sistem perpipaan pipe lin esystem di tunjukan pada Tabel 4.. Tabel 4.1

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Sistem Pemipaan Suatu sistem pemipaan pada suatu pabrik atau kilang mempunyai fungsi utama sebagai jalur transportasi aliran fluida, baik yang berupa gas maupun cairan,

Lebih terperinci

ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT 2 MENUJU HEAT EXCHANGERDI PLTU BELAWAN

ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT 2 MENUJU HEAT EXCHANGERDI PLTU BELAWAN ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT MENUJU HEAT EXCHANGERDI PLTU BELAWAN 1, Jurusan Teknik Mesin, Universitas Sumatera Utara, Jln.Almamater Kampus

Lebih terperinci

BAB IV ANALISIS TEGANGAN PADA CABANG PIPA

BAB IV ANALISIS TEGANGAN PADA CABANG PIPA 44 BAB IV ANALISIS TEGANGAN PADA CABANG PIPA Pada suatu perangkat lunak sistem stress analysis terdapat beberapa variabel yang dapat dijadikan input untuk selanjutnya dapat dilakukan analisis terhadap

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 32 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 PELAKSANAAN Kerja praktek dilaksanakan pada tanggal 01 Februari 28 februari 2017 pada unit boiler PPSDM MIGAS Cepu Kabupaten Blora, Jawa tengah. 4.1.1 Tahapan kegiatan

Lebih terperinci

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping.

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah. Didalam sebuah Plant, entah itu LNG Plant, Petrochemical Plant, Fertilizer Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di Offshore,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Bagan Pemodelan Perancangan Sistem Perpipaan Berikut adalah diagram alir perancangan, pembentukan geometri, pemodelan, dan analisa sistem perpipaan. Gambar 3.1 Diagram

Lebih terperinci

TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT

TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Starta Satu (S1) Disusun Oleh : Nama : Abdul Latif

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Diagram Alir ( Flow Chart ) Mulai Perumusan Masalah Mengetahui tegangan pada system perpipaan & mengetahui jumlah penyangga pipa (pipe support) Penyiapan data yang di masukan

Lebih terperinci

PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA

PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA *Hendri Hafid Firdaus 1, Djoeli Satrijo 2 1 Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro 2

Lebih terperinci

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata

Lebih terperinci

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN 4.1 Perhitungan Bejana Tekan Seperti yang diuraikan pada BAB II, bahwa bejana tekan yang dimaksud dalam penyusunan tugas akhir ini adalah suatu tabung tertutup

Lebih terperinci

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis studi kasus pada pipa penyalur yang dipendam di bawah tanah (onshore pipeline) yang telah mengalami upheaval buckling. Dari analisis ini nantinya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Material A106 gr B (Carbon Steel) Baja merupakan paduan yang sebagian besar terdiri dari unsur besi dan karbon 0,2%-2,1% (Choudhuryet al., 2001).Selain itu juga mengandung unsur-unsur

Lebih terperinci

PERHITUNGAN TEGANGAN PIPA DARI DISCHARGE KOMPRESOR MENUJU AIR COOLER MENGGUNAKAN SOFTWARE CAESAR II 5.10 PADA PROYEK GAS LIFT COMPRESSOR STATION

PERHITUNGAN TEGANGAN PIPA DARI DISCHARGE KOMPRESOR MENUJU AIR COOLER MENGGUNAKAN SOFTWARE CAESAR II 5.10 PADA PROYEK GAS LIFT COMPRESSOR STATION JTM Vol. 05, No. 2, Juni 2016 50 PERHITUNGAN TEGANGAN PIPA DARI DISCHARGE KOMPRESOR MENUJU AIR COOLER MENGGUNAKAN SOFTWARE CAESAR II 5.10 PADA PROYEK GAS LIFT COMPRESSOR STATION Arief Maulana Jurusan Teknik

Lebih terperinci

BAB V METODOLOGI. Mulai

BAB V METODOLOGI. Mulai BAB V METODOLOGI 5.1. Diagram Alir Pemodelan dan Pemeriksaan Tegangan, Defleksi, Kebocoran pada Flange, dan Perbandingan Gaya dan Momen Langkah-langkah proses pemodelan sampai pemeriksaan tegangan pada

Lebih terperinci

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk BAB I PENDAHULUAN Sistem Perpipaan merupakan bagian yang selalu ada dalam industri masa kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk mentransportasikan fluida adalah dengan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 33 III. METODE PENELITIAN Metode penelitian adalah suatu cara yang digunakan dalam penelitian, sehingga pelaksanaan dan hasil penelitian bisa untuk dipertanggungjawabkan secara ilmiah. Penelitian ini menggunakan

Lebih terperinci

ANALISIS STATIK TEGANGAN PIPA PADA SISTEM PENDINGIN SEKUNDER REAKTOR KARTINI YOGYAKARTA

ANALISIS STATIK TEGANGAN PIPA PADA SISTEM PENDINGIN SEKUNDER REAKTOR KARTINI YOGYAKARTA ANALISIS STATIK TEGANGAN PIPA PADA SISTEM PENDINGIN SEKUNDER REAKTOR KARTINI YOGYAKARTA Edy Karyanta, Budi Santoso, Hana Subhiyah PRPN BATAN, Kawasan PUSPIPTEK, Gedung 71, Tangerang Selatan, 15310 ABSTRAK

Lebih terperinci

DESAIN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN MAIN STEAM (HIGH PRESSURE) PADA COMBINED CYCLE POWER PLANT

DESAIN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN MAIN STEAM (HIGH PRESSURE) PADA COMBINED CYCLE POWER PLANT DESAIN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN MAIN STEAM (HIGH PRESSURE) PADA COMBINED CYCLE POWER PLANT *Muhammad Zainal Mahfud 1, Djoeli Satrijo 2, Toni Prahasto 2 1 Mahasiswa Jurusan Teknik Mesin, Fakultas

Lebih terperinci

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK Erinofiardi, Ahmad Fauzan Suryono, Arno Abdillah Jurusan Mesin, Fakultas Teknik, Universitas Bengkulu Jl. W.R. Supratman Kandang

Lebih terperinci

BAB III OPTIMASI KETEBALAN TABUNG COPV

BAB III OPTIMASI KETEBALAN TABUNG COPV BAB III OPTIMASI KETEBALAN TABUNG COPV 3.1 Metodologi Optimasi Desain Tabung COPV Pada tahap proses mengoptimasi desain tabung COPV kita perlu mengidentifikasi masalah terlebih dahulu, setelah itu melakukan

Lebih terperinci

ANALISA TEGANGAN PIPA PADA TURBIN RCC OFF GAS TO PROPYLENE PROJECT

ANALISA TEGANGAN PIPA PADA TURBIN RCC OFF GAS TO PROPYLENE PROJECT ANALISA TEGANGAN PIPA PADA TURBIN RCC OFF GAS TO PROPYLENE PROJECT ( ROPP ) PERTAMINA BALONGAN MENGGUNAKAN PROGRAM CAESAR II 5.10 Abstrak Telah dilakukan analisa tentang tegangan pipa pada turbin Rcc Off

Lebih terperinci

PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN kn LOGO

PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN kn LOGO www.designfreebies.org PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN 130-150 kn Latar Belakang Kestabilan batuan Tolok ukur keselamatan kerja di pertambangan bawah tanah Perencanaan

Lebih terperinci

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang Aulia Havidz 1, Warjito 2 1&2 Teknik Mesin, Departemen Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

NAJA HIMAWAN

NAJA HIMAWAN NAJA HIMAWAN 4306 100 093 Ir. Imam Rochani, M.Sc. Ir. Hasan Ikhwani, M.Sc. ANALISIS PERBANDINGAN PERANCANGAN PADA ONSHORE PIPELINE MENGGUNAKAN MATERIAL GLASS-REINFORCED POLYMER (GRP) DAN CARBON STEEL BERBASIS

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan Caesar II

Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan Caesar II JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) F-168 Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan

Lebih terperinci

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II 1 Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II Andis Dian Saputro dan Budi Agung Kurniawan Jurusan Teknik

Lebih terperinci

DAFTAR ISI. i ii iii iv vi v vii

DAFTAR ISI. i ii iii iv vi v vii DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... NASKAH SOAL... HALAMAN PERSEMBAHAN... INTISARI... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN...

Lebih terperinci

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh III. METODE PENELITIAN Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh rumah tangga yaitu tabung gas 3 kg, dengan data: Tabung 3 kg 1. Temperature -40 sd 60 o C 2. Volume 7.3

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF)

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF) 35 BAB IV PEMBAHASAN 4.1 Data Perancangan Jenis bejana tekan Tekanan kerja / Po Temperatur kerja / To Panjang silinder Diameter dalam silinder / Di Panjang bejana tekan (head to head) / z Joint efisiensi

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 15 BAB III TINJAUAN PUSTAKA 3.1 PENGERTIAN BOILER Boiler atau ketel uap adalah bejana tertutup pada ujung pangkalnya digunakan untuk memproduksi uap. Dalam perkembangan ketel uap dilengkapi dengan pipa

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Diagram alir studi perencanaan jalur perpipaan dari tower DA-501 ke tower DA-401 dijelaskan seperti diagram alir dibawah ini: Mulai Memasukan Sistem Perpipaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Sistem Perpipaan Awal mulanya, sistem perpipaan banyak digunakan oleh masyarakat untuk keperluan pengairan pada pertanian dengan menggunakan pipa berbahan baku bambu,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sejarah dan Pedahuluan Sistem Perpipaan Sejak dahulu kala sistem perpipaan sudah dikenal untuk berbagai kebutuhan sehari-hari seperti saluran air maupun untuk saluran pembuangan,

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

EVALUASI DISAIN INSTALASI PIPA FRESH FIRE WATER STORAGE TANK

EVALUASI DISAIN INSTALASI PIPA FRESH FIRE WATER STORAGE TANK EVALUASI DISAIN INSTALASI PIPA FRESH FIRE WATER STORAGE TANK Ir. Budi Santoso, Ir. Petrus Zacharias PRPN BATAN, Kawasan PUSPIPTEK, Gedung 71, Tangerang Selatan, 15310 ABSTRAK EVALUASI DISAIN INSTALASI

Lebih terperinci

PENENTUAN WELDING SEQUENCE TERBAIK PADA PENGELASAN SAMBUNGAN-T PADA SISTEM PERPIPAAN KAPAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

PENENTUAN WELDING SEQUENCE TERBAIK PADA PENGELASAN SAMBUNGAN-T PADA SISTEM PERPIPAAN KAPAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA Tugas Akhir PENENTUAN WELDING SEQUENCE TERBAIK PADA PENGELASAN SAMBUNGAN-T PADA SISTEM PERPIPAAN KAPAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA Disusun oleh : Awang Dwi Andika 4105 100 036 Dosen Pembimbing

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

BAB II TEORI DASAR TEGANGAN PIPA DAN PENGENALAN CAESAR II

BAB II TEORI DASAR TEGANGAN PIPA DAN PENGENALAN CAESAR II BAB II TEORI DASAR TEGANGAN PIPA DAN PENGENALAN CAESAR II Dalam perancangan, analisa, maupun modifikasi suatu sistem perpipaan ada persyaratan-persyaratan yang harus dipenuhi khususnya kode standar yang

Lebih terperinci

III. METODELOGI. satunya adalah menggunakan metode elemen hingga (Finite Elemen Methods,

III. METODELOGI. satunya adalah menggunakan metode elemen hingga (Finite Elemen Methods, III. METODELOGI Terdapat banyak metode untuk melakukan analisis tegangan yang terjadi, salah satunya adalah menggunakan metode elemen hingga (Finite Elemen Methods, FEM). Metode elemen hingga adalah prosedur

Lebih terperinci

BAB I PENDAHULUAN. Minyak dan gas bumi merupakan suatu fluida yang komposisinya

BAB I PENDAHULUAN. Minyak dan gas bumi merupakan suatu fluida yang komposisinya BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Minyak dan gas bumi merupakan suatu fluida yang komposisinya tergantung pada sumbernya di dalam bumi, yang pada umumnya merupakan campuran senyawa kimia dengan

Lebih terperinci

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN SISTEM PERPIPAAN DENGAN METODE ELEMEN HINGGA TUGAS AKHIR FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN SISTEM PERPIPAAN DENGAN METODE ELEMEN HINGGA TUGAS AKHIR FAKULTAS TEKNIK JURUSAN TEKNIK MESIN UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN SISTEM PERPIPAAN DENGAN METODE ELEMEN HINGGA TUGAS AKHIR EBIET KURNIAWAN L2E 007 029 FAKULTAS TEKNIK JURUSAN TEKNIK MESIN SEMARANG OKTOBER 2012 i

Lebih terperinci

SISTEM TRANSPORTASI FLUIDA (Sistem Pemipaan)

SISTEM TRANSPORTASI FLUIDA (Sistem Pemipaan) SISTEM TRANSPORTASI FLUIDA (Sistem Pemipaan) Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Highlights Pendahuluan Jenis jenis pipa Jenis jenis fitting

Lebih terperinci

Jurnal Teknika Atw 1

Jurnal Teknika Atw 1 PENGARUH BENTUK PENAMPANG BATANG STRUKTUR TERHADAP TEGANGAN DAN DEFLEKSI OLEH BEBAN BENDING Agung Supriyanto, Joko Yunianto P Program Studi Teknik Mesin,Akademi Teknologi Warga Surakarta ABSTRAK Dalam

Lebih terperinci

PERANCANGAN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN AUXILIARY STEAM PADA COMBINED CYCLE POWER PLANT

PERANCANGAN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN AUXILIARY STEAM PADA COMBINED CYCLE POWER PLANT PERANCANGAN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN AUXILIARY STEAM PADA COMBINED CYCLE POWER PLANT *Muchammad Akbar Ghozali 1, Djoeli Satrijo 2, Toni Prahasto 2 1 Mahasiswa Jurusan Teknik Mesin, Fakultas

Lebih terperinci

FRAME DAN SAMBUNGAN LAS

FRAME DAN SAMBUNGAN LAS FRAME DAN SAMBUNGAN LAS RINI YULIANINGSIH 1 Ketika ketika mendesain elemen-elemen mesin, kita juga harus mendesain juga untuk housing, frame atau struktur yang mensupport dan melindungi 1 Desain frame

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Bagan Pemodelan Perancangan Sistem Perpipaan Berikut adalah diagram alir perancangan, pembuatan layout jalur perpipaan, pemodelan, dan analisa sistem perpipaan. Mulai

Lebih terperinci

A. Dasar-dasar Pemilihan Bahan

A. Dasar-dasar Pemilihan Bahan BAB II TINJAUAN PUSTAKA A. Dasar-dasar Pemilihan Bahan Di dalam merencanakan suatu alat perlu sekali memperhitungkan dan memilih bahan-bahan yang akan digunakan, apakah bahan tersebut sudah sesuai dengan

Lebih terperinci

ANALISA TEGANGAN SISTEM PERPIPAAN BONGKAR MUAT KAPAL TANKER MT. AVILA 6300 DWT. DENGAN MENGGUNAKAN PERANGKAT LUNAK CAESAR II v5.10.

ANALISA TEGANGAN SISTEM PERPIPAAN BONGKAR MUAT KAPAL TANKER MT. AVILA 6300 DWT. DENGAN MENGGUNAKAN PERANGKAT LUNAK CAESAR II v5.10. ANALISA TEGANGAN SISTEM PERPIPAAN BONGKAR MUAT KAPAL TANKER MT. AVILA 6300 DWT DENGAN MENGGUNAKAN PERANGKAT LUNAK CAESAR II v5.10. Hartono Yudo Program Studi S1 Teknik Perkapalan Fakultas Teknik Universitas

Lebih terperinci

BAB II DASAR TEORI SISTEM PEMIPAAN

BAB II DASAR TEORI SISTEM PEMIPAAN BAB II DASAR TEORI SISTEM PEMIPAAN 2.1 DEFINISI SISTEM PEMIPAAN Desain/Perancangan Sistem Pemipaan pada dasarnya bertanggung jawab untuk mempelajari dan menghasilkan sebuah sistem perpipaan untuk mentransportasikan

Lebih terperinci

DAFTAR NOTASI. Am = Luas rata-rata permukaan pipa. c = Jumlah dari toleransi mekanis

DAFTAR NOTASI. Am = Luas rata-rata permukaan pipa. c = Jumlah dari toleransi mekanis DAFTAR NOTASI A = Luas Ai = Luas permukaan dalam pipa Am = Luas rata-rata permukaan pipa c = Jumlah dari toleransi mekanis D = Diameter pipa D C = Diameter (inci) dari bukaan lingkaran sama dengan jumlah

Lebih terperinci

BAB VI PEMBAHASAN DAN HASIL

BAB VI PEMBAHASAN DAN HASIL BAB VI PEMBAHASAN DAN HASIL 6.1. Persiapan Permodelan Sebelum melakukan pemodelan dan analisis, perlu dilakukan olah data terlebih dahulu dari data-data yang diperoleh untuk mempermudah dalam melakukan

Lebih terperinci

Tujuan Pembelajaran:

Tujuan Pembelajaran: P.O.R.O.S Tujuan Pembelajaran: 1. Mahasiswa dapat memahami pengertian poros dan fungsinya 2. Mahasiswa dapat memahami macam-macam poros 3. Mahasiswa dapat memahami hal-hal penting dalam merancang poros

Lebih terperinci

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340 JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: 2301-9271 G-340 Analisa Pengaruh Variasi Tanggem Pada Pengelasan Pipa Carbon Steel Dengan Metode Pengelasan SMAW dan FCAW Terhadap Deformasi dan Tegangan

Lebih terperinci

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA Willyanto Anggono 1), Hariyanto Gunawan 2), Ian Hardianto

Lebih terperinci

Analisis Kekuatan Tangki CNG Ditinjau Dengan Material Logam Lapis Komposit Pada Kapal Pengangkut Compressed Natural Gas

Analisis Kekuatan Tangki CNG Ditinjau Dengan Material Logam Lapis Komposit Pada Kapal Pengangkut Compressed Natural Gas JURNAL TEKNIK POMITS Vol. Vol., No. 1, (01) ISSN: 7-59 (01-971 Print) G-67 Analisis Kekuatan Tangki CNG Ditinjau Dengan Material Logam Lapis Komposit Pada Kapal Pengangkut Compressed Natural Gas Aulia

Lebih terperinci

Bab III Data Perancangan GRP Pipeline

Bab III Data Perancangan GRP Pipeline Bab III Data Perancangan GRP Pipeline 3.2 Sistem Perpipaan Sistem perpipaan yang dirancang sebagai studi kasus pada tugas akhir ini adalah sistem perpipaan penyalur fluida cair yaitu crude dan well fluid

Lebih terperinci

BAB III DATA PEMODELAN SISTEM PERPIPAAN

BAB III DATA PEMODELAN SISTEM PERPIPAAN BAB III DATA PEMODELAN SISTEM PERPIPAAN Dalam pemodelan sistem perpipaan diperlukan data-data pendukung sebagai input perangkat lunak dalam analisis. Data yang diperlukan untuk pemodelan suatu sistem perpipaan

Lebih terperinci

BAB III DATA DESAIN DAN HASIL INSPEKSI

BAB III DATA DESAIN DAN HASIL INSPEKSI BAB III DATA DESAIN DAN HASIL INSPEKSI III. 1 DATA DESAIN Data yang digunakan pada penelitian ini adalah merupakan data dari sebuah offshore platform yang terletak pada perairan Laut Jawa, di utara Propinsi

Lebih terperinci

Metode pengujian lentur posisi tegak kayu dan bahan struktur. bangunan berbasis kayu

Metode pengujian lentur posisi tegak kayu dan bahan struktur. bangunan berbasis kayu Metode pengujian lentur posisi tegak kayu dan bahan struktur 1 Ruang lingkup bangunan berbasis kayu Metode pengujian ini menyediakan penurunan sifat lentur posisi tegak kayu dan bahan struktur bangunan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Poros Poros merupakan suatu bagian stasioner yang beputar, biasanya berpenampang bulat, dimana terpasang elemen-elemen seperti roda gigi (gear), pulley, flywheel, engkol,

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

PROPYLENE PROJECT (ROPP)

PROPYLENE PROJECT (ROPP) Analisa pipe support terhadap flexibility dan tegangan yang terjadi pada sistem perpipaan PT PERTAMINA (Persero) Residu Catalyst Cracking OFFGAS to PROPYLENE PROJECT (ROPP) 030 Hendra Akbar (1), Rudi Walujo

Lebih terperinci

BAB IV PERANGKAT LUNAK (SOFTWARE) CAESAR II VERSI 2014

BAB IV PERANGKAT LUNAK (SOFTWARE) CAESAR II VERSI 2014 71 BAB IV PERANGKAT LUNAK (SOFTWARE) CAESAR II VERSI 2014 Sejak diperkenalkan pada tahun 1984, CAESAR II telah menjadi software yang banyak digunakan sebagai pipe flexibility dan stress analysis software.

Lebih terperinci

Kata Pengantar. Bab 1 : Sistim Pemipaan dan Perusahaan EPC 1

Kata Pengantar. Bab 1 : Sistim Pemipaan dan Perusahaan EPC 1 Daftar Isi Kata Pengantar vii Bab 1 : Sistim Pemipaan dan Perusahaan EPC 1 1.1 Sejarah Pipa 1 1.2. Jenis Pipa dan Ukurannya 3 1.2.1. Ukuran Pipa 7 1.2.2. Schedule Pipa 8 1.2.3. Pipe Ends 9 1.2.4. Jenis

Lebih terperinci

ANALISA KEGAGALAN POROS DENGAN PENDEKATAN METODE ELEMEN HINGGA

ANALISA KEGAGALAN POROS DENGAN PENDEKATAN METODE ELEMEN HINGGA ANALISA KEGAGALAN POROS DENGAN PENDEKATAN METODE ELEMEN HINGGA Jatmoko Awali, Asroni Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hjar Dewantara No. 116 Kota Metro E-mail : asroni49@yahoo.com

Lebih terperinci

ANALISA KEGAGALAN PIPA BAJA TAHAN KARAT 316L DI BANGUNAN LEPAS PANTAI PANGKAH-GRESIK

ANALISA KEGAGALAN PIPA BAJA TAHAN KARAT 316L DI BANGUNAN LEPAS PANTAI PANGKAH-GRESIK ANALISA KEGAGALAN PIPA BAJA TAHAN KARAT 316L DI BANGUNAN LEPAS PANTAI PANGKAH-GRESIK SALMON PASKALIS SIHOMBING NRP 2709100068 Dosen Pembimbing: Dr. Hosta Ardhyananta S.T., M.Sc. NIP. 198012072005011004

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Berikut adalah data data awal dari Upper Hinge Pass yang menjadi dasar dalam

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Berikut adalah data data awal dari Upper Hinge Pass yang menjadi dasar dalam BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1. Data Data Awal Analisa Tegangan Berikut adalah data data awal dari Upper Hinge Pass yang menjadi dasar dalam analisa tegangan ini, baik perhitungan analisa tegangan

Lebih terperinci

11 Firlya Rosa, dkk;perhitungan Diameter Minimum Dan Maksimum Poros Mobil Listrik Tarsius X3 Berdasarkan Analisa Tegangan Geser Dan Faktor Keamanan

11 Firlya Rosa, dkk;perhitungan Diameter Minimum Dan Maksimum Poros Mobil Listrik Tarsius X3 Berdasarkan Analisa Tegangan Geser Dan Faktor Keamanan Machine; Jurnal Teknik Mesin Vol. No. 1, Januari 2017 ISSN : 2502-2040 PERHITUNGAN DIAMETER MINIMUM DAN MAKSIMUM POROS MOBIL LISTRIK TARSIUS X BERDASARKAN ANALISA TEGANGAN GESER DAN FAKTOR KEAMANAN Firlya

Lebih terperinci

Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya

Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya 1. PENDAHULUAN Jika ditemukan sumber gas yang baru, maka perlu dipertimbangkan pula untuk mengalirkannya melalui sistem perpipaan yang telah ada. Hal ini dilakukan untuk menghemat biaya pengadaan sistem

Lebih terperinci