BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Pengertian Kriptografi Kriptografi pada awalnya dijabarkan sebagai ilmu yang mempelajari bagaimana menyembunyikan pesan. Pada kriptografi klasik umumnya merupakan teknik penyandian dengan kunci simetrik dan menyembunyikan pesan yang memiliki arti ke sebuah pesan yang nampaknya tidak memiliki arti dengan metode subsitusi (pergantian huruf) dan/atau transposisi (pertukaran tempat). (Sadikin, 2012). Namun pada pengertian modern kriptografi adalah ilmu yang bersandarkan pada teknik matematika untuk berurusan dengan keamanan informasi seperti kerahasian, keutuhan data dan otentikasi entitas. Jadi pengertian kriptografi modern adalah tidak saja berurusan hanya dengan penyembunyian pesan namun lebih pada sekumpulan teknik yang menyediakan keamanan informasi (Sadikin, 2012) Sistem Kriptografi Sistem kriptografi terdiri dari 5 bagian yaitu, (Stinson, 2002) : 1. Plaintext Plaintext yaitu pesan atau data dalam bentuk aslinya yang dapat terbaca. Plaintext adalah masukan bagi algoritma enkripsi. Untuk selanjutnya digunakan istilah teks asli sebagai pedanan kata plaintext. 2. Secret Key Secret key yang juga merupakan masukan bagi algoritma enkripsi merupakan nilai yang bebas terhadap teks asli dan menentukan hasil keluaran algoritma enkripsi. Untuk selanjutnya digunakan istilah kunci rahasia sebagai padanan kata secret key.

2 6 3. Ciphertext Ciphertext adalah keluaran algoritma enkripsi. Ciphertext dapat dianggap sebagai pesan dalam bentuk tersembunyi. 4. Algoritma Enkripsi Algoritma enkripsi memiliki 2 masukan teks asli dan kunci rahasia. Algoritma enkripsi melakukan transformasi terhadap teks asli sehingga menghasilkan teks sandi. 5. Algoritma Dekripsi Algoritma dekripsi memiliki 2 masukan yaitu teks sandi dan kunci rahasia. Algoritma dekripsi memulihkan kembali teks sandi menjadi teks asli bila kunci rahasia yang dipakai algoritma dekripsi sama dengan rahasia yang dipakai algoritma enkripsi. Contoh sistem kriptografi konvensional dapat dilihat pada gambar 2.1. Eve Alice Bob M Algoritma C Algoritma M Enkripsi Saluran publik Dekripsi K Sumber kunci Saluran Aman (Sumber: Sadikin, Rifki. 2012) Gambar 2.1 Sistem Kriptografi Konvensional Sistem enkripsi harus memenuhi kaidah correctness yaitu untuk memenuhi setiap K κ adalah himpunan kunci dan terdapat teks sandi hasil enkripsi teks asli m, c = e k (m) maka harus berlaku d k (c) = m untuk semua kemungkinan teks asli. Pada gambar 1 kunci rahasia dibangkitkan oleh pembangkit kunci dan dikirim melalui saluran aman ke pihak penyandian (encryptor) maupun penyulih sandi (decryptor). Teks sandi dikirim melalui saluran umum sehingga ada pihak ketiga yang dapat membaca teks sandi itu (Sadikin, 2012).

3 Jenis Kriptografi Berdasarkan jenis kuncinya algoritma kriptografi terdiri dari dua jenis yaitu: 1. Algoritma Simetris (Konvensional) Algoritma simetris (symmetric cryptography) adalah algoritma yang menggunakan kunci enkripsi yang sama dengan kunci dekripsinya, sehingga algoritma ini disebut juga sebagai single key algorithm. Algoritma ini disebut juga konvensional karena algoritma jenis ini biasa digunakan sejak berabad-abad yang lalu. Sebelum melakukan komunikasi, pengirim dan penerima pesan harus menyetujui suatu kunci tertentu yang sama untuk dipakai secara bersama. Keamanan sistem kriptografi simetri tergantung pada kerahasiaan kunci karena membocorkan kunci berarti orang lain bisa mengenkripsi dan mendekripsi pesan. Agar komunikasi tetap aman, maka keberadaan kunci harus tetap dirahasiakan dari pihak yang tidak berkepentingan dengan cara pengirim harus memastikan bahwa jalur yang digunakan dalam pendistribusian kunci adalah jalur yang aman atau memastikan bahwa pihak yang ditunjuk membawa kunci untuk pertukaran data adalah pihak yang dapat dipercaya. Algoritma-algoritma yang termasuk dalam kriptografi simetris adalah semua algoritma kriptografi klasik seperti hill cipher, vigenere cipher, playfair cipher, dll. Beberapa algoritma kriptografi modern juga termasuk kriptografi simetris, diantaranya adalah IDEA, DES (Data Encryption Standard), Blowfish, Twofish, Tripel DES, Serpent, AES (Advanced Encryption Standard), RC2, RC4, RC5, RC6, dll (Namira, 2013). Proses enkripsi-dekripsi algoritma kunci simetris dapat dilihat pada gambar 2.2. Kunci Private, K Kunci Private, K Plaintext (P) Enkripsi Ciphertext (C) Dekripsi Plaintext (P) E k (P) = C D k (C) = P Gambar 2.2 Skema Kriptografi Simetris

4 8 2. Algoritma Asimetris (Kunci Publik) Kriptografi asimetris (asymmetric cryptography) adalah algoritma yang menggunakan kunci yang berbeda untuk proses enkripsi dan dekripsi. Kunci enkripsi dapat disebarkan kepada umum yang dinamakan sebagai kunci publik (public key), sedangkan kunci dekripsi disimpan untuk digunakan sendiri dan dinamakan sebagai kunci pribadi (private key). Oleh karena itulah, kriptografi ini dikenal pula dengan nama kriptografi kunci publik (public key cryptography). Pada kriptografi jenis ini, setiap orang yang berkomunikasi mempunyai sepasang kunci, yaitu kunci private dan kunci publik. Prosesnya, pengirim (sender) mengenkripsi pesan dengan menggunakan kunci publik sipenerima pesan (receiver) dan hanya si penerima pesanlah yang dapat mendekripsi pesan karena hanya ia yang mengetahui kunci private itu sendiri. Contoh algoritma yang termasuk algoritma kriptografi kunci publik diantaranya adalah RSA, Elgamal, DSA, Knapsack, dll (Namira, 2013). Proses enkripsi dan dekripsi algoritma kunci asimetris dapat dilihat pada gambar 2.3 dibawah ini : Kunci Private,K1 Kunci Private,K2 Plaintext (P) Enkripsi Ciphertext (C) Dekripsi Plaintext (P) E k2 (P) = C D k2 (C) = P Gambar 2.3 Skema Kriptografi Asimetris 2.2 Algoritma Knapsack Knapsack merupakan optimasi pengangkutan barang atau disebut juga optimasi kombinatoriol. Knapsack problem adalah salah satu masalah bagaimana cara menentukan pemilihan barang dari sekumpulan barang di mana setiap barang tersebut menmpunyai berat dan profit masing-masing, sehingga dari pemilihan barang tersebut didapatkan profit yang maksimum. (Timothy, 2014) Tujuan Knapsack problem adalah agar dapat mendapatkan keuntungan yang maksimum dari pemilihan barang tanpa melebihi kapasitas daya tampung media

5 9 transportasi tersebut. Dalam teori algoritma, persoalan Knapsack termasuk kedalam kelompok NP-complete. Persoalan yang termasuk NP-complete tidak dapat dipecahkan dalam orde waktu polynomial. (Timothy, 2014) Jenis-jenis Knapsack adalah: 1. 0/1 Knapsack Problem Setiap barang hanya terdiri satu unit dan boleh diambil atau tidak sama sekali. 2. 0/n Knapsack Problem Setiap barang terdiri dari n buat unit dan boleh diambil atau tidak sama sekali 3. Bounded Knapsack Problem Setiap barang tersedia n buah unit dan jumlahnya terbatas 4. Unbounded Knapsack Problem Setiap barang tersedia lebih dari satu unit dan jumlahnya tidak terbatas 5. Fractional Knapsack Problem Barang boleh diambil dalam bentuk pecahan atau sebahagian. Contohnya gula, garam, tepung dan lain-lain. (Namira, 2013) Knapsack Problem: Diberikan bobot knapsack adalah M. Diketahui n buah objek yang masing-masing bobotnya adalah w1, w2,, wn. Tentukan nilai bi sedemikian sehingga M = b1w1 + b2w2 + + bnwn yang dalam hal ini, bi bernilai 0 atau 1. Jika bi = 1, berarti objek i dimasukkan kedalam knapsack, sebaliknya jika bi = 0, objek i tidak dimasukkan. Dalam teori algoritma, persoalan knapsack termasuk ke dalam kelompok NP-complete. Persoalan yang termasuk NP-complete tidak dapat dipecahkan dalam orde waktu polynomial. Algoritma Knapsack Sederhana Ide dasar dari algoritma kriptografi knapsack adalah mengkodekan pesan sebagai rangkaian solusi dari dari persoalan knapsack. Setiap bobot wi di dalam persoalan knapsack merupakan kunci private, sedangkan bit-bit plaintext menyatakan bi. Sayangnya, algoritma knapsack sederhana ini hanya dapat digunakan untuk enkripsi, tetapi tidak dirancang untuk dekripsi. Algoritma superincreasing

6 10 Knapsack adalah algoritma yang lemah, karena ciphertext dapat didekripsi menjadi plainteksnya secara mudah dalam waktu lancar. Algoritma non-superincreasing Knapsack atau normal Knapsack adalah kelompok algoritma Knapsack yang sulit (dari segi komputasi) karena membutuhkan waktu dalam orde eksponensial untuk memecahkannya. Namun, superincreasing Knapsack dapat dimodifikasi menjadi non-superincreasing Knapsack dengan menggunakan kunci publik (untuk enkripsi) dan kunci rahasia (untuk dekripsi). Kunci publik merupakan barisan non-superincreasing sedangkan kunci rahasia tetap merupakan barisan superincreasing. Modifikasi ini ditemukan oleh Martin Hellman dan Ralph Merkle. a. Cara membuat kunci publik dan kunci rahasia: 1. Tentukan barisan superincreasing. 2. Kalikan setiap elemen di dalam barisan tersebut dengan n modulo m. Modulus m seharusnya angka yang lebih besar daripada jumlah semua elemen di dalam barisan, sedangkan pengali n seharusnya tidak mempunyai faktor persekutuan dengan m. 3. Hasil perkalian akan menjadi kunci publik sedangkan barisan superincreasing semula menjadi kunci rahasia (Namira, 2013). b. Enkripsi Algoritma Knapsack 1. Menggunakan kunci publik untuk melakukan enkripsi. 2. Plaintext dipecah menjadi blok bit yang panjangnya sama dengan kardinalitas barisan kunci publik. 3. Kalikan setiap bit didalam blok dengan elemen yang berkoresponden di dalam kunci publik. c. Dekripsi Algoritma Knapsack 1. Menggunakan kunci rahasia untuk melakukan dekripsi. 2. Menghitung nilai n -1, yaitu kebalikan n modulo m, sedemikian sehingga n * n -1 1 (mod m).

7 11 3. Mengalikan setiap kriptogram dengan n -1 mod m, lalu nyatakan hasil kalinya sebagai penjumlahan elemen-elemen kunci rahasia untuk memperoleh plaintext dengan menggunakan algoritma pencarian solusi superincreasing (Timothy, 2014). Contoh : Misalkan barisan superincreasing adalah {2, 5, 9, 17, 25, 50}, m = 103, dan n = 31. Barisan non-superincreasing (atau normal) Knapsack dihitung sbb: mod 103 = mod 103 = mod 103 = mod 103 = mod 103 = mod 103 = 5 Jadi, kunci publik adalah {62, 52, 73, 12, 54, 5}, sedangkan kunci rahasia adalah {2,5, 9, 17, 25, 50}. Enkripsi dilakukan dengan cara yang sama seperti algoritma Knapsack sebelumnya. Mula-mula plaintext dipecah menjadi blok bit yang panjangnya sama dengan kardinalitas barisan kunci publik. Kemudian kalikan setiap bit di dalam blok dengan elemen yang berkoresponden di dalam kunci publik. Contoh : Misalkan Plaintext: dan kunci publik yang digunakan seperti pada Contoh sebelumnya. Plaintext dibagi menjadi blok yang panjangnya 6, kemudian setiap bit di dalam blok dikalikan dengan elemen yang berkorepsonden di dalam kunci publik: Blok plaintext ke-1 : Kunci publik : 62, 52, 73, 12, 54, 5 Kriptogram : (1 52) + (1 73)+ (1 5) = 130 Blok plaintext ke-2 : Kunci publik : 62, 52, 73, 12, 54, 5 Kriptogram : (1 62) = 62

8 12 Blok plaintext ke-3 : Kunci publik : 62, 52, 73, 12, 54, 5 Kriptogram : (1 62) + (1 52) + (1 54) + (1 5) = 173 Jadi, ciphertext yang dihasilkan : 130, 62, 173 Dekripsi dilakukan dengan menggunakan kunci rahasia. Mula-mula penerima pesan menghitung n 1, yaitu balikan n modulo m, sedemikian sehingga n. n 1 1 (mod m). Kekongruenan ini dapat dihitung dengan cara yang sederhana sebagai berikut (disamping dengan cara yang sudah pernah diberikan pada Teori Bilangan Bulat): n. n 1 1 (mod m) n. n 1 = 1 + km n 1 = (1 + km)/n, k sembarang bilangan bulat Kalikan setiap kriptogram dengan n 1 mod m, lalu nyatakan hasil kalinya sebagai penjumlahan elemen-elemen kunci rahasia untuk memperoleh plaintext dengan menggunakan algoritma pencarian solusi superincreasing Knapsack. Contoh : Ciphertext dari 130, 62, 173 akan dideskripsikan dengan menggunakan kunci rahasia {2, 5, 9, 17, 25, 50}. Di sini, n = 31 dan m = 103. Nilai n 1 diperoleh sbb: n 1 = ( k)/31 Dengan mencoba k = 0, 1, 2,, maka untuk k = 3 diperoleh n 1 bilangan bulat, yaitu: n 1 = ( )/31 = 10 Ciphertext dari Contoh sebelumnya adalah 130, 62, 173. Plaintext yang berkoresponden diperoleh kembali sebagai berikut: mod 103 = 64 = , berkoresponden dengan mod 103 = 2 = 2 berkoresponden dengan mod 103 = 82 = , berkoresponden dengan Jadi, plaintext yang dihasilkan kembali adalah:

9 Kompresi Data Kompresi data merupakan suatu upaya untuk mengurangi jumlah bit yang digunakan untuk menyimpan atau mentransmisikan data. kompresi data meliputi berbagai teknik kompresi yang diterapkan dalam bentuk perangkat lunak (Software) maupun perangkat keras (Hardware). Bila ditinjau dari penggunaannya, kompresi data dapat bersifat umum untuk segala keperluan atau bersifat khusus untuk keperluan tertentu. Keuntungan data yang terkompresi antara lain: penyimpanan data lebih hemat ruang, mempersulit pembacaan data oleh pihak yang tidak berkepentingan dan memudahkan distribusi data dengan media removable seperti flashdisk, CD, DVD, dll (Tjatur, 2011). Saat ini terdapat berbagai tipe algoritma kompresi, antara lain: Huffman, IFO, LZHUF, LZ77 dan variannya (LZ78, LZW, GZIP), Dynamic Markov Compression (DMC), Block-Sorting Lossless, Run-Length, Shannon-Fano, Arithmetic, PPM (Prediction by Partial Matching), Burrows-Wheeler Block Sorting, dan Half Byte. (Namira, 2013) Klasifikasi tipe kompresi data Secara umum, kompresi data dapat diklasifikasikan ke dalam 2 macam, yaitu (Arief, 2006): 1. Kompresi Lossy Teknik kompresi dimana data yang sudah dikompresi tidak dapat dikembalikan seperti data semula, dinamakan lossy atau distortive atau noise-incurring. Kompresi seperti ini digunakan untuk gambar dan suara dimana kehilangan (loss) data dapat diijinkan dalam kasus tertentu. Contoh data adalah adalah JPEG dan GIF untuk gambar, MPEG untuk video dan MP3 (MPEG Layer-3) untuk format suara. Contoh: metode kompresi lossy adalah Transform Coding, Wavelet, dan lain-lain. 2. Kompresi Lossless Kompresi lossless adalah teknik kompresi untuk data seperti file program, file dokumen dan record basis data dimana sama sekali tidak diijinkan perbedaan

10 14 antara data awal (sebelum kompresi) dan data setelah dilakukan dekompresi. Contoh program kompresi lossless seperti winzip, winrar, dan pkzip. Contoh metode lossless adalah Boldi-Vigna, Shannon-Fano Coding, Huffman Coding, Arithmetic Coding, Run Length Encoding dan lain sebagainya (Rachmat, 2015) Dekompresi Data Dekompresi adalah kebalikan dari proses kompresi. Setiap proses kompresi data tentu saja membutuhkan proses dekompresi kembali untuk mendapatkan data yang sesungguhnya. Pada praktek kasusnya, dekompresi yang baik atau dapat dikatakan efisien jika algoritma dekompresinya sesuai dengan algoritma kompresi pada kasus itu sendiri. Audio, Video, dan Foto adalah contoh data yang sangat sering dilakukan proses kompresi dan dekompresi tentu saja menggunakan dengan algoritma yang sama. Adapun hubungan antara kompresi dan dekompresi dapat dilihat pada gambar dibawah ini (Namira, 2013) : Input Source File Compression Algorithm Output Compression File Input Compression File Decompression Algorithm Output decompresion File Gambar 2.4 Compression Dan Decompression Aplikasi dekompresi data sering juga disebut dengan dekompresor (decompresor). Bagaimanapun dekompresi adalah salah satu solusi terbaik untuk mengembalikan data yang telah mengalami proses kompresi (compressed Files). Kompresor dan dekompresor dapat dikatakan sebagai dua proses yang saling berkaitan baik pada sumber dan tujuan masing-masing proses. Pada kasusnya, source disebut dengan coder dan destinasi pesan disebut dengan decoder.

11 Algoritma Boldi-Vigna (ζ4) Zeta (ζ) kode juga dikenal sebagai Boldi-Vigna code, diperkenalkan oleh Paolo Boldi dan Sebastiano Vigna sebagai keluarga Variable-Length Code yang merupakan pilihan terbaik untuk kompresi. Dimulai dengan hukum Zipf, seorang kuasa hukum empiris [Zipf 07] diperkenalkan oleh Linguis George K. Zipf. Menyatakan bahwa frekuensi setiap kata dalam bahasa alami kira-kira berbanding terbalik dengan posisinya dalam tabel frekuensi. Boldi-Vigna kode zeta dimulai dengan bilangan bulat k positif yang menjadi menyusut oleh Faktor kode. Himpunan semua bilangan bulat positif dibagi menjadi [2 0, 2 k - 1], [2 k, 2 2k - 1], [2 2k, 2 3k - 1], dan secara umum [2 hk, 2 (h + 1) k - 1]. Panjang setiap interval adalah 2 (h + 1) k - 2 hk (Salomon, 2007). Diberikan interval [0, z-1] dan sebuah integer x di interval ini, pertama kita hitung s =[ log2 z]. Jika x <2 s - z, dikodekan sebagai unsur xth elemen pada interval ini, pada s - 1 bit. Jika tidak, maka dikodekan sebagai (x - z - 2 s ) th elemen pada interval di s bit. Dengan latar belakang ini, di sini dibahas bagaimana kode zeta dibangun. Mengingat bilangan bulat n akan dikodekan, kami mempekerjakan k untuk menentukan interval di mana n berada. Salah satu yang diketahui, nilai-nilai h dan k yang digunakan dengan cara yang sederhana untuk membangun kode zeta n dalam dua bagian, nilai h + 1 di unary (sebagai nol h diikuti dengan 1), diikuti oleh minimal kode biner dari n - 2 hk dalam interval [0, 2 (h + 1) k - 2 hk - 1] (Salomon, 2007). Contoh: Diberikan k = 3 dan n = 16, kita tentukan dulu n yang terletak di interval [2 3, 2 6-1], yang sesuai dengan h = 1. Dengan demikian, h + 1 = 2 dan kode unary dari 2 adalah 01. Kode biner minimal = 8 dibangun dalam langkah-langkah berikut. Panjang z dari interval [2 3, 2 6-1] adalah 56. Ini berarti bahwa s =[ log2 56] = 6. Nilai 8 akan dikodekan 8 = 26-56, sehingga dikodekan sebagai x - z - 2 s = = 16 dalam enam bit, sehingga Dengan demikian, kode ζ3 dari n = 16 adalah (Salomon, 2007). Contoh daftar kode Boldi-Vigna (ζ4) dapat dilihat pada tabel 2.1 dibawah ini :

12 16 Tabel 2.1 Kode Daftar Boldi-Vigna ζ4 Contoh : Diberikan string = ERNA LESTARI Σ = { E, R, N, A, sp, L, S, T, I }, dengan sp = spasi Maka dibuat sebuah tabel untuk menghitung bit setelah di kompresi. Tabel bisa dilihat pada tabel 2.2 dibawah ini : n ζ Tabel 2.2 Kompresi Dengan Boldi-Vigna (ζ4) Σ Freq Boldi-Vigna (ζ4) Bit Freq*Bit E R A N Sp L S T I Jumlah Bit 58 Bit

13 Parameter pembanding Ada 3 parameter pembanding yang digunakan dalam peneltiaan ini, yaitu Ratio of Compression (RC), Compression Ratio (CR), dan Redudancy (Rd). 1. Ratio of Compression (Rc) Ratio of Compression (Rc) adalah perbandingan antara ukuran data sebelum dikompresi dengan ukuran data setelah dikompresi (Salomon, 2007). Rc = ukuran data sebelum dikompresi ukuran data setelah dikompresi... (1) 2. Compression Ratio (Cr) Compression Ratio (Cr) adalah persentasi besar data yang telah dikompresi yang didapat dari hasil perbandingan antara ukuran data setelah dikompresi dengan ukuran data sebelum dikompresi (Salomon, 2007). Cr = ukuran data setelah dikompresi ukuran data sebelum dikompresi x 100%..... (2) 3. Redudancy (Rd) Redundancy (Rd) adalah kelebihan yang terdapat di dalam data sebelum dikompresi. Jadi setelah data dikompresi dapat dihitung Redundancy data yaitu persentasi dari hasil selisih antara ukuran data sebelum dikompresi dengan data setelah dikompresi (Salomon, 2007). Rd = 100% Cr..... (3) 2.6 Penelitian Yang Relevan Berikut ini beberapa penelitian tentang kriptografi dan kompresi data yang berkaitan dengan algoritma knapsack dan Boldi-Vigna (ζ4): 1. Pada penelitian Namira (2013), Implementasi Algoritma Kriptografi Knapsack Dan Algoritma Kompresi Data Run Length Encoding Untuk Mengamankan Dan Kompresi File Teks. Kesimpulan dari penelitian ini yaitu Enkripsi teks

14 18 dengan menggunakan algoritma Knapsack dapat mengamankan pesan dengan baik. 2. Berdasarkan penelitian oleh Disa (2013), Implementasi Pengamanan File Text Dengan Algoritma Kriptografi Knapsack Dan Algoritma Steganografi FOF (First Of File). Kesimpulan dari penelitian ini yaitu Waktu proses dekripsi jauh lebih lama jika dibandingkan dengan waktu proses enkripsi. Hal ini disebabkan karena penambahan permutasi pada algoritma kriptografi Knapsack. 3. Menurut Markle dan Hellman Knapsack problem akan semakin bagus jika jumlah plaintext n lebih besar dari 100 bit, karena akan menghasilkan ciphertext dua kali lebih banyak dari plaintext awal sehingga sulit bagi kriptanalis untuk menentukan satu dari mereka. 4. Berdasarkan kutipan dari buku David Salomon (2007), algoritma Boldi-Vigna sebagai keluarga Variable-Length Code yang merupakan pilihan terbaik untuk kompresi.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian kriptografi Kriptografi merupakan metode untuk mengirimkan pesan rahasia sehingga hanya penerima pesan yang dimaksud dapat menghapus, menyamarkan atau

Lebih terperinci

Departemen Teknik Informatika Institut Teknologi Bandung 2004

Departemen Teknik Informatika Institut Teknologi Bandung 2004 Bahan Kuliah ke-16 IF5054 Kriptografi Algoritma Knapsack Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 Rinaldi Munir - IF5054 Kriptografi 1 16. Algoritma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Ditinjau dari terminologinya, kata kriptografi berasal dari bahasa Yunani yaitu cryptos yang berarti menyembunyikan, dan graphein yang artinya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani cprytos artinya secret atau hidden (rahasia), dan graphein artinya writing (tulisan).

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Analisis masalah bertujuan untuk mengidentifikasi permasalahanpermasalahan yang ada pada sistem dimana aplikasi dibangun, meliputi perangkat keras

Lebih terperinci

Kriptografi Kunci Rahasia & Kunci Publik

Kriptografi Kunci Rahasia & Kunci Publik Kriptografi Kunci Rahasia & Kunci Publik Transposition Cipher Substitution Cipher For internal use 1 Universitas Diponegoro Presentation/Author/Date Overview Kriptografi : Seni menulis pesan rahasia Teks

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Definisi Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Definisi Kriptografi BAB 2 LANDASAN TEORI 2. Kriptografi 2.. Definisi Kriptografi Kriptografi adalah ilmu mengenai teknik enkripsi di mana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pengenalan Kriptografi II.1.1 Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat di temukan di dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian Kriptografi Kriptografi merupakan metode untuk mengirimkan pesan rahasia sehingga hanya penerima pesan yang dimaksud dapat menghapus, menyamarkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi merupakan sebuah seni penyandian pesan dalam rangka mencapai tujuan keamanan dalam pertukaran informasi. 2.1.1. Definisi Kriptografi Kriptografi berasal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1. Kriptografi Kriptografi pada awalnya dijabarkan sebagai ilmu yang mempelajari bagaimana penyembunyian pesan. Namun pada pengertian modern kriptografi adalah ilmu yang berdasarkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Keamanan Data Keamanan merupakan salah satu aspek yang sangat penting dari sebuah sistem informasi. Masalah keamanan sering kurang mendapat perhatian dari para perancang dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 8.1. Kriptografi Kriptografi memiliki arti sebagai suatu bidang ilmu yang mempelajari metodemetode pengiriman pesan dalam bentuk rahasia sehingga hanya pihak yang dituju saja yang

Lebih terperinci

BAB I PENDAHULUAN. Dalam bidang teknologi informasi, komunikasi data sangat sering

BAB I PENDAHULUAN. Dalam bidang teknologi informasi, komunikasi data sangat sering BAB I PENDAHULUAN 1.1 Latar Belakang Dalam bidang teknologi informasi, komunikasi data sangat sering dilakukan. Komunikasi data ini berhubungan erat dengan pengiriman data menggunakan sistem transmisi

Lebih terperinci

ENKRIPSI-DEKRIPSI DENGAN ALGORITMA GENETIKA

ENKRIPSI-DEKRIPSI DENGAN ALGORITMA GENETIKA ENKRIPSI-DEKRIPSI DENGAN ALGORITMA GENETIKA Studi Kasus : "Implementasi konsep Algoritma Genetik untuk meningkatkan aspek kerahasiaan data pada Algoritma Knapsack" 1. Pendahuluan Masalah keamanan dan kerahasiaan

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB 2 LANDASAN TEORI Bab ini akan membahas tinjauan teoritis yang berkaitan dengan algoritma kriptografi ElGamal dan algoritma kompresi Elias Gamma Code. 2.1 Kriptografi Kriptografi mempunyai peranan

Lebih terperinci

BAB Kriptografi

BAB Kriptografi BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yakni kata kriptos dan graphia. Kriptos berarti secret (rahasia) dan graphia berarti writing (tulisan). Kriptografi merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 BAB 2 LANDASAN TEORI 2.1. Kriptografi 2.1.1. Definisi Kriptografi Kriptografi berasal dari bahasa Yunani yang terdiri dari dua kata yaitu cryto dan graphia. Crypto berarti rahasia dan graphia berarti

Lebih terperinci

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI DENGAN MENGGUNAKAN ALGORITMA RSA DAN MEMAKAI METODE LSB

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI DENGAN MENGGUNAKAN ALGORITMA RSA DAN MEMAKAI METODE LSB IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI DENGAN MENGGUNAKAN ALGORITMA RSA DAN MEMAKAI METODE LSB Imam Ramadhan Hamzah Entik insanudin MT. e-mail : imamrh@student.uinsgd.ac.id Universitas Islam Negri Sunan

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Penelitian sebelumnya yang terkait dengan penelitian ini adalah penelitian yang dilakukan oleh Syaukani, (2003) yang berjudul Implementasi Sistem Kriptografi

Lebih terperinci

+ Basic Cryptography

+ Basic Cryptography + Basic Cryptography + Terminologi n Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Crypto berarti secret (rahasia) dan graphy berarti writing (tulisan). n Para pelaku

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom.,M.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani criptos yang artinya adalah rahasia, sedangkan graphein artinya tulisan. Jadi kriptografi

Lebih terperinci

BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION. Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode

BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION. Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION 3.1 Kompresi Data Definisi 3.1 Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode untuk menghemat kebutuhan tempat

Lebih terperinci

BAB I PENDAHULUAN. diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi.

BAB I PENDAHULUAN. diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi. BAB I PENDAHULUAN 1.1 Latar Belakang Pada proses pengiriman data (pesan) terdapat beberapa hal yang harus diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi. Oleh karenanya

Lebih terperinci

Optimasi Enkripsi Teks Menggunakan AES dengan Algoritma Kompresi Huffman

Optimasi Enkripsi Teks Menggunakan AES dengan Algoritma Kompresi Huffman Optimasi Enkripsi Teks Menggunakan AES dengan Algoritma Kompresi Huffman Edmund Ophie - 13512095 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Penerapan Pohon Biner Huffman Pada Kompresi Citra

Penerapan Pohon Biner Huffman Pada Kompresi Citra Penerapan Pohon Biner Huffman Pada Kompresi Citra Alvin Andhika Zulen (3507037) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha No 0 Bandung,

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku atau

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Kriptografi Kriptografi pada awalnya dijabarkan sebagai ilmu yang mempelajari bagaimana menyembunyikan pesan. Namun pada pengertian modern kriptografi adalah ilmu yang bersandarkan

Lebih terperinci

Kriptosistem Knapsack

Kriptosistem Knapsack Kriptosistem Knapsack Disusun Oleh : Akik Hidayat 1 Universitas padjadjaran Bandung 2007 1. Jurusan Matematika FMIPA Universitas Padjadjaran Jl. Raya Bandung Sumedang Km 21 Jatinangor Tlp/Fax 022-7794696

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Bilangan 2.1.1 Keterbagian Jika a dan b Z (Z = himpunan bilangan bulat) dimana b 0, maka dapat dikatakan b habis dibagi dengan a atau b mod a = 0 dan dinotasikan dengan

Lebih terperinci

BAB 1 PENDAHULUAN. khususnya internet sangatlah cepat dan telah menjadi salah satu kebutuhan dari

BAB 1 PENDAHULUAN. khususnya internet sangatlah cepat dan telah menjadi salah satu kebutuhan dari 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Dewasa ini perkembangan teknologi komputer dan jaringan komputer, khususnya internet sangatlah cepat dan telah menjadi salah satu kebutuhan dari sebagian

Lebih terperinci

Aplikasi Merkle-Hellman Knapsack Untuk Kriptografi File Teks

Aplikasi Merkle-Hellman Knapsack Untuk Kriptografi File Teks Aplikasi Merkle-Hellman Knapsack Untuk Kriptografi File Teks Akik Hidayat 1, Rudi Rosyadi 2, Erick Paulus 3 Prodi Teknik Informatika, Fakultas MIPA, Universitas Padjadjaran Jl. Raya Bandung Sumedang KM

Lebih terperinci

BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI

BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI 3.1. Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat ditemukan di dalam buku

Lebih terperinci

BAB I PENDAHULUAN. melalui ringkasan pemahaman penyusun terhadap persoalan yang dibahas. Hal-hal

BAB I PENDAHULUAN. melalui ringkasan pemahaman penyusun terhadap persoalan yang dibahas. Hal-hal BAB I PENDAHULUAN Bab Pendahuluan akan menjabarkan mengenai garis besar skripsi melalui ringkasan pemahaman penyusun terhadap persoalan yang dibahas. Hal-hal yang akan dijabarkan adalah latar belakang,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengkodekan informasi menggunakan bit atau information-bearing unit yang lain yang lebih rendah daripada representasi data yang tidak

Lebih terperinci

Perhitungan dan Implementasi Algoritma RSA pada PHP

Perhitungan dan Implementasi Algoritma RSA pada PHP Perhitungan dan Implementasi Algoritma RSA pada PHP Rini Amelia Program Studi Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati Bandung. Jalan A.H Nasution No.

Lebih terperinci

TUGAS KRIPTOGRAFI Membuat Algortima Sendiri Algoritma Ter-Puter Oleh : Aris Pamungkas STMIK AMIKOM Yogyakarta emali:

TUGAS KRIPTOGRAFI Membuat Algortima Sendiri Algoritma Ter-Puter Oleh : Aris Pamungkas STMIK AMIKOM Yogyakarta emali: TUGAS KRIPTOGRAFI Membuat Algortima Sendiri Algoritma Ter-Puter Oleh : Aris Pamungkas STMIK AMIKOM Yogyakarta emali: arismsv@ymail.com Abstrak Makalah ini membahas tentang algoritma kriptografi sederhana

Lebih terperinci

Sedangkan berdasarkan besar data yang diolah dalam satu kali proses, maka algoritma kriptografi dapat dibedakan menjadi dua jenis yaitu :

Sedangkan berdasarkan besar data yang diolah dalam satu kali proses, maka algoritma kriptografi dapat dibedakan menjadi dua jenis yaitu : KRIPTOGRAFI 1. 1 Latar belakang Berkat perkembangan teknologi yang begitu pesat memungkinkan manusia dapat berkomunikasi dan saling bertukar informasi/data secara jarak jauh. Antar kota antar wilayah antar

Lebih terperinci

ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA

ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA ABSTRAK ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA Makalah ini membahas tentang pengamanan pesan rahasia dengan menggunakan salah satu algoritma Kryptografi, yaitu algoritma ElGamal. Tingkat keamanan

Lebih terperinci

I. PENDAHULUAN. andil yang besar dalam perkembangan komunikasi jarak jauh. Berbagai macam model alat komunikasi dapat dijumpai, baik yang berupa

I. PENDAHULUAN. andil yang besar dalam perkembangan komunikasi jarak jauh. Berbagai macam model alat komunikasi dapat dijumpai, baik yang berupa 1 I. PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia telekomunikasi di dunia berkembang pesat seiring dengan semakin banyaknya penggunaan fasilitas internet di hampir seluruh lapisan masyarakat dunia.

Lebih terperinci

Algoritma Kriptografi Kunci Publik. Dengan Menggunakan Prinsip Binary tree. Dan Implementasinya

Algoritma Kriptografi Kunci Publik. Dengan Menggunakan Prinsip Binary tree. Dan Implementasinya Algoritma Kriptografi Kunci Publik Dengan Menggunakan Prinsip Binary tree Dan Implementasinya Hengky Budiman NIM : 13505122 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10,

Lebih terperinci

KOMPRESI FILE MENGGUNAKAN ALGORITMA HUFFMAN KANONIK

KOMPRESI FILE MENGGUNAKAN ALGORITMA HUFFMAN KANONIK KOMPRESI FILE MENGGUNAKAN ALGORITMA HUFFMAN KANONIK Asrianda Dosen Teknik Informatika Universitas Malikussaleh ABSTRAK Algoritma Huffman adalah salah satu algoritma kompresi. Algoritma huffman merupakan

Lebih terperinci

Universitas Sumatera Utara BAB 2 LANDASAN TEORI

Universitas Sumatera Utara BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Algoritma RC4 RC4 merupakan salah satu jenis stream cipher, yaitu memproses unit atau input data pada satu saat. Dengan cara ini enkripsi maupun dekripsi dapat dilaksanakan pada

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1. Latar Belakang Masalah. Perkembangan teknologi saat ini telah mengubah cara masyarakat baik itu perusahaan militer dan swasta dalam berkomunikasi. Dengan adanya internet, pertukaran

Lebih terperinci

1. PENDAHULUAN 1.1. Latar Belakang Masalah

1. PENDAHULUAN 1.1. Latar Belakang Masalah 1. PENDAHULUAN 1.1. Latar Belakang Masalah Kompresi data merupakan suatu proses pengubahan ukuran suatu file atau dokumen menjadi lebih kecil secara ukuran. Berkembangnya teknologi hardware dan software

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis memaparkan teori-teori ilmiah yang didapat dari metode pencarian fakta yang digunakan untuk mendukung penulisan skripsi ini dan sebagai dasar pengembangan sistem

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kompresi 2.1.1 Sejarah kompresi Kompresi data merupakan cabang ilmu komputer yang bersumber dari Teori Informasi. Teori Informasi sendiri adalah salah satu cabang Matematika yang

Lebih terperinci

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung, Jawa Barat e-mail: if15073@students.if.itb.ac.id

Lebih terperinci

Pengenalan Kriptografi

Pengenalan Kriptografi Pengenalan Kriptografi (Week 1) Aisyatul Karima www.themegallery.com Standar kompetensi Pada akhir semester, mahasiswa menguasai pengetahuan, pengertian, & pemahaman tentang teknik-teknik kriptografi.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Bertukar informasi merupakan hal yang biasa kita lakukan. Bertukar informasi jarak jauh dapat dilakukan melalui kantor pos, surat dan surel (surat elektronik).

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi.

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi. 2.1.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa yunani yaitu

Lebih terperinci

Kriptografi, Enkripsi dan Dekripsi. Ana Kurniawati Kemal Ade Sekarwati

Kriptografi, Enkripsi dan Dekripsi. Ana Kurniawati Kemal Ade Sekarwati Kriptografi, Enkripsi dan Dekripsi Ana Kurniawati Kemal Ade Sekarwati Terminologi Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Crypto berarti secret (rahasia) dan graphy

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, akan dibahas landasan teori, penelitian terdahulu, kerangka pikir dan hipotesis yang mendasari penyelesaian permasalahan pengamanan data file dengan kombinasi algoritma

Lebih terperinci

KEAMANAN DATA DENGAN METODE KRIPTOGRAFI KUNCI PUBLIK

KEAMANAN DATA DENGAN METODE KRIPTOGRAFI KUNCI PUBLIK KEAMANAN DATA DENGAN METODE KRIPTOGRAFI KUNCI PUBLIK Chandra Program Studi Magister S2 Teknik Informatika Universitas Sumatera Utara Jl. Universitas No. 9A Medan, Sumatera Utara e-mail : chandra.wiejaya@gmail.com

Lebih terperinci

Teknik Kompresi Citra Menggunakan Metode Huffman

Teknik Kompresi Citra Menggunakan Metode Huffman SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 26 A-5 Teknik Kompresi Citra Menggunakan Metode Huffman Tri Rahmah Silviani, Ayu Arfiana Program Pascasarjana Universitas Negeri Yogyakarta Email:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, akan dibahas landasan teori mengenai teori-teori yang digunakan dan konsep yang mendukung pembahasan, serta penjelasan mengenai metode yang digunakan. 2.1. Pengenalan

Lebih terperinci

Penggabungan Algoritma Kriptografi Simetris dan Kriptografi Asimetris untuk Pengamanan Pesan

Penggabungan Algoritma Kriptografi Simetris dan Kriptografi Asimetris untuk Pengamanan Pesan Penggabungan Algoritma Kriptografi Simetris dan Kriptografi Asimetris untuk Pengamanan Pesan Andreas Dwi Nugroho (13511051) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB I PENDAHULUAN. Dalam dunia modern sekarang ini kebanyakan aktivitas manusia selalu

BAB I PENDAHULUAN. Dalam dunia modern sekarang ini kebanyakan aktivitas manusia selalu BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam dunia modern sekarang ini kebanyakan aktivitas manusia selalu berhubungan dengan dokumentasi atau data. Data-data yang ada haruslah tersimpan dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI Bab 2 membahas tinjauan teoritis yang berkaitan dengan algoritma kriptografi LUC dan algoritma kompresi Goldbach Codes. 2.1 Kriptografi Informasi dalam sebuah data memiliki nilai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya

BAB II TINJAUAN PUSTAKA. Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya secret (rahasia), sedangkan gráphein artinya writing (tulisan), jadi kriptografi berarti secret

Lebih terperinci

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA Rachmansyah Budi Setiawan NIM : 13507014 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi atau Cryptography berasal dari kata kryptos yang artinya tersembunyi dan grafia yang artinya sesuatu yang tertulis (bahasa Yunani) sehingga kriptografi

Lebih terperinci

Rancang Bangun Kombinasi Chaisar Cipher dan Vigenere Cipher Dalam Pengembangan Algoritma Kriptografi Klasik

Rancang Bangun Kombinasi Chaisar Cipher dan Vigenere Cipher Dalam Pengembangan Algoritma Kriptografi Klasik Rancang Bangun Kombinasi Chaisar Cipher dan Vigenere Cipher Dalam Pengembangan Algoritma Kriptografi Klasik Jamaludin Politeknik Ganesha Medan jamaludinmedan@gmail.com Abstrak Kriptografi klasik digunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengkodekan informasi menggunakan bit atau information-bearing unit yang lain yang lebih rendah daripada representasi data yang tidak

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi, tingkat keamanan terhadap suatu informasi yang bersifat rahasia pun semakin tinggi. Hal ini merupakan aspek yang paling penting

Lebih terperinci

KOMPRESI TEKS MENGGUNAKAN ALGORITMA DAN POHON HUFFMAN. Nama : Irfan Hanif NIM :

KOMPRESI TEKS MENGGUNAKAN ALGORITMA DAN POHON HUFFMAN. Nama : Irfan Hanif NIM : KOMPRESI TEKS MENGGUNAKAN ALGORITMA DAN POHON HUFFMAN Nama : Irfan Hanif NIM : 13505049 Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha No 10 Bandung E-mail : if15049@students.if.itb.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi.

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1. Kriptografi Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. 2.1.1. Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa Yunani yang terdiri

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. (Cryptography is the art and science of keeping messages secure) Crypto berarti secret

Lebih terperinci

Advanced Encryption Standard (AES) Rifqi Azhar Nugraha IF 6 A.

Advanced Encryption Standard (AES) Rifqi Azhar Nugraha IF 6 A. Latar Belakang Advanced Encryption Standard (AES) Rifqi Azhar Nugraha 1137050186 IF 6 A DES dianggap sudah tidak aman. rifqi.an@student.uinsgd.ac.id Perlu diusulkan standard algoritma baru sebagai pengganti

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi BAB I PENDAHULUAN A. Latar Belakang Kemajuan dan perkembangan teknologi informasi dewasa ini telah berpengaruh pada seluruh aspek kehidupan manusia, termasuk bidang komunikasi. Pada saat yang sama keuntungan

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka BAB II TINJAUAN PUSTAKA Penelitian tentang implementasi Kriptografi dengan algoritma one time pad pernah dilakukan dan memuat teori-teori dari penelitian sejenis. Di bawah ini adalah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Keamanan informasi merupakan hal yang sangat penting dalam menjaga kerahasiaan informasi terutama yang berisi informasi sensitif yang hanya boleh diketahui

Lebih terperinci

Reference. William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014)

Reference. William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014) KRIPTOGRAFI Reference William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014) Bruce Schneier Applied Cryptography 2 nd Edition (2006) Mengapa Belajar Kriptografi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA Setelah membaca bab ini maka pembaca akan memahami pengertian tentang kompresi, pengolahan citra, kompresi data, Teknik kompresi, Kompresi citra. 2.1 Defenisi Data Data adalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi informasi secara tidak langsung dunia komunikasi juga ikut terpengaruh. Dengan adanya internet, komunikasi jarak jauh dapat dilakukan

Lebih terperinci

PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER

PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER Dwi Indah Sari (12110425) Mahasiswa Program Studi Teknik Informatika, Stmik Budidarma

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Kriptografi adalah ilmu sekaligus seni untuk menjaga keamanan pesan (message).

BAB II TINJAUAN PUSTAKA. Kriptografi adalah ilmu sekaligus seni untuk menjaga keamanan pesan (message). BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi adalah ilmu sekaligus seni untuk menjaga keamanan pesan (message). Kata cryptography berasal dari kata Yunani yaitu kryptos yang artinya tersembunyi

Lebih terperinci

Implementasi Sistem Keamanan File Menggunakan Algoritma Blowfish pada Jaringan LAN

Implementasi Sistem Keamanan File Menggunakan Algoritma Blowfish pada Jaringan LAN Implementasi Sistem Keamanan File Menggunakan Algoritma Blowfish pada Jaringan LAN Anggi Purwanto Program Studi Teknik Telekomunikasi, Fakultas Teknik Elektro dan Komunikasi Institut Teknologi Telkom Jl.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Keamanan dan kerahasiaan dokumen merupakan salah satu aspek yang sangat penting dalam sistem informasi. Data dan informasi menjadi suatu hal yang tidak dapat dipisahkan

Lebih terperinci

Penerapan Matriks dalam Kriptografi Hill Cipher

Penerapan Matriks dalam Kriptografi Hill Cipher Penerapan Matriks dalam Kriptografi Hill Cipher Micky Yudi Utama/514011 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha Bandung 402, Indonesia micky.yu@students.itb.ac.id

Lebih terperinci

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI MENGGUNAKAN ALGORITMA RSA DAN METODE LSB

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI MENGGUNAKAN ALGORITMA RSA DAN METODE LSB IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI MENGGUNAKAN ALGORITMA RSA DAN METODE LSB Rian Arifin 1) dan Lucky Tri Oktoviana 2) e-mail: Arifin1199@gmail.com Universitas Negeri Malang ABSTRAK: Salah satu cara

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengubah sebuah aliran data input menjadi aliran data baru yang memiliki ukuran lebih kecil. Aliran yang dimaksud adalah berupa file

Lebih terperinci

STUDI DAN MODIFIKASI ALGORITMA BLOCK CHIPER MODE ECB DALAM PENGAMANAN SISTEM BASIS DATA. Arief Latu Suseno NIM:

STUDI DAN MODIFIKASI ALGORITMA BLOCK CHIPER MODE ECB DALAM PENGAMANAN SISTEM BASIS DATA. Arief Latu Suseno NIM: STUDI DAN MODIFIKASI ALGORITMA BLOCK CHIPER MODE ECB DALAM PENGAMANAN SISTEM BASIS DATA Arief Latu Suseno NIM: 13505019 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Aplikasi Pengamanan Data dengan Teknik Algoritma Kriptografi AES dan Fungsi Hash SHA-1 Berbasis Desktop

Aplikasi Pengamanan Data dengan Teknik Algoritma Kriptografi AES dan Fungsi Hash SHA-1 Berbasis Desktop Aplikasi Pengamanan Data dengan Teknik Algoritma Kriptografi AES dan Fungsi Hash SHA-1 Berbasis Desktop Ratno Prasetyo Magister Ilmu Komputer Universitas Budi Luhur, Jakarta, 12260 Telp : (021) 5853753

Lebih terperinci

PERANCANGAN APLIKASI KERAHASIAAN PESAN DENGAN ALGORITMA HILL CIPHER

PERANCANGAN APLIKASI KERAHASIAAN PESAN DENGAN ALGORITMA HILL CIPHER PERANCANGAN APLIKASI KERAHASIAAN PESAN DENGAN ALGORITMA HILL CIPHER Septi Maryanti 1), Abdul Rakhman 2), Suroso 3) 1),2),3) Jurusan Teknik Elektro, Program Studi Teknik Telekomunikasi, Politeknik Negeri

Lebih terperinci

KEAMANAN DATA DENGAN MENGGUNAKAN ALGORITMA RIVEST CODE 4 (RC4) DAN STEGANOGRAFI PADA CITRA DIGITAL

KEAMANAN DATA DENGAN MENGGUNAKAN ALGORITMA RIVEST CODE 4 (RC4) DAN STEGANOGRAFI PADA CITRA DIGITAL INFORMATIKA Mulawarman Februari 2014 Vol. 9 No. 1 ISSN 1858-4853 KEAMANAN DATA DENGAN MENGGUNAKAN ALGORITMA RIVEST CODE 4 (RC4) DAN STEGANOGRAFI PADA CITRA DIGITAL Hendrawati 1), Hamdani 2), Awang Harsa

Lebih terperinci

Tanda Tangan Digital Dengan Menggunakan SHA-256 Dan Algoritma Knapsack Kunci-Publik

Tanda Tangan Digital Dengan Menggunakan SHA-256 Dan Algoritma Knapsack Kunci-Publik Tanda Tangan Digital Dengan Menggunakan SHA-256 Dan Algoritma Knapsack Kunci-Publik Bhimantyo Pamungkas - 13504016 Program Studi Teknik Informatika ITB, Bandung 40132, email: btyo_pamungkas@yahoo.co.id

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Penelitian sebelumnya terkait dengan penelitian ini, Perancangan Kriptografi Kunci Simetris Menggunakan Fungsi Bessel dan Fungsi Legendre membahas penggunaan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kemajuan teknologi internet sebagai media penghantar informasi telah diadopsi oleh hampir semua orang dewasa ini. Dimana informasi telah menjadi sesuatu yang sangat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

BAB 1 PENDAHULUAN. dalam bahasa sandi (ciphertext) disebut sebagai enkripsi (encryption). Sedangkan

BAB 1 PENDAHULUAN. dalam bahasa sandi (ciphertext) disebut sebagai enkripsi (encryption). Sedangkan BAB 1 PENDAHULUAN 1.1 Latar Belakang Dunia semakin canggih dan teknologi informasi semakin berkembang. Perkembangan tersebut secara langsung maupun tidak langsung mempengaruhi sistem informasi. Terutama

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peningkatan teknologi komputer memberikan banyak manfaat bagi manusia di berbagai aspek kehidupan, salah satu manfaatnya yaitu untuk menyimpan data, baik data berupa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pemampatan data (data compression) merupakan salah satu kajian di dalam ilmu komputer yang bertujuan untuk mengurangi ukuran file sebelum menyimpan atau memindahkan

Lebih terperinci

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA Rachmansyah Budi Setiawan NIM : 13507014 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

Oleh: Benfano Soewito Faculty member Graduate Program Universitas Bina Nusantara

Oleh: Benfano Soewito Faculty member Graduate Program Universitas Bina Nusantara Konsep Enkripsi dan Dekripsi Berdasarkan Kunci Tidak Simetris Oleh: Benfano Soewito Faculty member Graduate Program Universitas Bina Nusantara Dalam tulisan saya pada bulan Agustus lalu telah dijelaskan

Lebih terperinci