PENGEMBANGAN KONVERSI ENERGI PANAS LAUT DEVELOPMENT OF OCEAN THERMAL ENERGY CONVERSION. Calvin E. J. Mamahit

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGEMBANGAN KONVERSI ENERGI PANAS LAUT DEVELOPMENT OF OCEAN THERMAL ENERGY CONVERSION. Calvin E. J. Mamahit"

Transkripsi

1 PENGEMBANGAN KONVERSI ENERGI PANAS LAUT DEVELOPMENT OF OCEAN THERMAL ENERGY CONVERSION Calvin E. J. Mamahit ABSTRAK Masalah energi saat ini sudah begitu nyata kita hadapi dan harus segera dicari solusi yang efektif dan efisien. Energi alternatif adalah salah satu bentuk energi yang dikaji mampu untuk membantu menyelesaikan masalah energi global. Salah satu bentuknya adalah energi panas lautan yang bisa diubah menjadi energi listrik. Proses pengubahan ini disebut konversi energi panas laut (ocean thermal energy conversion otec). Teknologi otec mengalami beberapa perkembangan dan saat ini sudah dikembangkan teknologi yang cukup efektif dan efisien. Untuk dikembangkan di daerah-daerah di Indonesia khususnya Sulawesi Utara, perlu dikaji potensi daerah dan kesiapan daerah tersebut untuk mengembangkan teknologi otec. Ada beberapa keuntungan dan manfaat sampingan dari penerapan teknologi otec di daerah yang tepat. Hampir tidak ada efek negativ terhadap lingkungan sekitar. Hasil produksi listriknya stabil karena tidak menggunakan bahan bakar. Kata Kunci: energi panas laut; otec. ABSTRACT Current energy problems we face are very real and should be sought immediately effective and efficient solutions. Alternative energy is one form of energy that can be studied to help solve global energy problems. One form is ocean thermal energy can be converted into electrical energy. This conversion process called ocean thermal energy conversion - OTEC. OTEC technology experience some current developments and technologies already developed a fairly effective and efficient. To be developed in areas of North Sulawesi in Indonesia in particular, need to be assessed the potential of the region and the region s readiness to develop OTEC technology. There are several advantages and benefits side of the application of OTEC technology in the right areas. Almost no negativ effect on the surrounding environment. The output power is stable because it does not use fuel. Keywords: ocean thermal energy; OTEC. PENDAHULUAN Energi di era industri sekarang di abad XI menjadi suatu hal yang sangat penting untuk dikaji. Dunia menghadapi krisis energi yang dampaknya sudah dirasakan beberapa tahun ke belakang. Ketergantungan kita atas satu jenis sumberdaya saja dan keterbatasan sumberdaya tersebut menjadikan krisis tersebut semakin nyata. Energi fosil yang berupa minyak bumi, gas dan batubara adalah energi yang tidak lestari. Ini artinya sumberdaya tersebut tersedia terbatas dan tidak terbarukan, penghematan hanyalah mengulur waktu saja untuk sampai pada kondisi habis, apalagi pemborosan atau penggunaan yang tidak bijaksana. Krisis energi menjadi masalah yang secepatnya mampu dipecahkan dengan tepat. Ada dua upaya solusi umum yang diterapkan, yaitu penghematan dan pengembangan sumberdaya energi alternatif. Penghematan adalah hal yang baik, tapi bisa kita sepakati bersama bahwa hal tersebut menghambat kemajuan. Penghematan tidak sebanding dengan kemajuan industri yang sangat pesat. Ada beberapa industri ramah lingkungan yang dikembangkan sekarang tetapi tidak menjamin * Staf Pengajar Pada Program Studi Pendidikan teknik Elektro Unima 55

2 56 ELEKTROMATIKA, VOL. 1, N0. 1, Maret 2011 industri tersebut menggunakan energi yang sedikit. Malah kenyataannya pemakaian energi praktis sama atau tidak jauh berbeda dengan industri konvensional. Energi alternatif adalah energi yang berasal dari sumberdaya pengganti energi fosil (minyak bumi, gas alam dan batubara) yang baiknya bersifat lestari atau terbarukan. Sumberdaya energi alternatif ini biasanya berada di alam dan tersedia secara melimpah. Sumberdaya teresebut bisa dikembangkan dengan aman untuk konversi energi atau dijamin tidak beresiko mengancam kehidupan manusia. Ada beberapa sumberdaya energi alternatif yang sudah dikembangkan dan ada yang masih dalam tahap penelitian. Beberapa sumberdaya tersebut seperti: air, angin, uap, panas bumi, nuklir, kelautan, bioenergi dan lain-lain. Air adalah satu-satunya jenis sumberdaya terbarukan yang paling maksimal dikembangkan (terutama di Indonesia) sedangkan yang lainnya belum maksimal karena masih dalam tahap penelitian, ujicoba dan pengkajian efisiensi (faktor ekonomi). Sumberdaya energi kelautan adalah energi yang berasal dari laut dan perairan. Bumi kita memiliki lebih besar wilayah lautan dibandingkan daratan. Indonesia adalah negara kepulauan yang memiliki banyak laut, selat dan teluk. Potensi energi kelautan sangat besar di negara yang memiliki lautan yang luas. Beberapa bentuk sumberdaya energi kelautan, seperti: energi pasang surut air laut, gelombang laut (ombak), arus laut (arus bawah laut) dan energi panas laut. Di Indonesia, semua energi kelautan tersebut masih dalam tahap penelitian, sedangkan di beberapa negara (Eropa, Amerika Serikat, Kanada, Jepang, Korea, India dan Afrika) energi-energi ini sudah dikembangkan. Pengembangan teknologi dimulai dari pembelajaran bidang teknologi tersebut di dalam lingkungan akademis. Pemahaman dimulai dari penguasaan konsep dasar dan penerapan dalam penelitian. Pemahaman komperehensif dari semua mata kuliah dan substansi kajian menghasilkan kompetensi dalam bidang ilmu yang sedang dipelajari. Hal tersebut memudahkan mahasiswa untuk melakukan riset dan pengembangan. Konversi energi adalah salah satu kajian teknologi dalam bidang teknik elektro. Substansi kajiannya terdapat dalam mata kuliah Konversi Energi Listrik atau dalam mata kuliah Pembangkit Tenaga Listrik.Konversi energi adalah suatu proses pengubahan sebuah sumberdaya menjadi energi yang bisa digunakan untuk kebutuhan manusia sehari-hari. Dalam proses pengubahan energi tersebut dibutuhkan beberapa teknik dan peralatan yang selalu direncanakan dengan teliti dan akurat. Konsep dan prinsipprinsip fisis menjadi fundamental dalam pengembangan sistem konversi energi. Efisiensi adalah faktor penting dalam pengkajian. Konversi energi listrik adalah pengubahan sebuah sumberdaya tertentu menjadi energi listrik, dimana energi listrik dihasilkan dari sebuah sistem pembangkit listrik. Konversi energi alternatif berupa energi panas laut adalah topik yang akan kita bahas dalam karya tulis ini. PEMBAHASAN Lautan yang meliputi dua per tiga permukaan bumi, menerima energi panas yang berasal dari penyinaran matahari. Lautan befungsi sebagai suatu penampungan yang cukup besar dari energi surya yang mencapai bumi. Kira-kira seperempat dari daya surya sebesar 1,7 x 1017 Watt yang mencapai atmosfer diserap oleh lautan. Selain itu, air laut juga menerima energi panas yang berasal dari panas bumi, yaitu magma yang berasal dari bawah laut. Pemanasan dari permukaan air di daerah tropikal mengakibatkan permukaaan air laut memiliki suhu kira-kira o C. Bilamana air permukaan yang hangat ini dipakai dalam kombinasi dengan air yang lebih dingin (5 7 o C) pada kedalaman meter, maka suatu sumber energi panas yang relatif besar akan tersedia. Menurut rancangan rancangan terkini energi listrik akan dapat dibangkitkan dalam pusat pusat listrik tenaga panas laut (PLT PL) dengan menggunakan siklus Rankine rangkaian tertutup maupun terbuka. Selisih suhu sebesar 20 o C akan tersedia selama 24 jam sehari dan sepanjang tahun. Hal ini jauh lebih menguntungkan dibanding dengan

3 Mamahit, Pengembangan Konversi Energi Panas Laut 57 pemanfaatan sinar matahari di daratan, yang tersedia hanya siang hari, itupun bilamana udara tidak mendung atau cuaca tidak hujan.bilamana selisih 20 o C itu dimanfaatkan dengan suatu efisiensi efektif sebesar misalnya 1,2%, maka suatu arus air sebesar 5m 3 /s (meter kubik per detik) akan dapat menghasilkan daya elektrik bersih dengan daya sebesar kira-kira 1MW. Dapat dibayangkan bahwa ukuran ukuran yang besar sekali diperlukan untuk dapat membantu suatu PLT PL yang besar. Sebab sejumlah arus air yang meliputi 500 meter kubik per detik yang akan diperlukan untuk dapat membuat suatu PLT PL yang besar, misalnya 100MW. Dengan demikian maka taraf efisiensi yang perlu diusahakan untuk ditingkatkan. Prinsip Kerja Ide pemanfaatan energi panas laut bersumber dari adanya perbedaan temperatur di dalam laut. Jika anda pernah berenang di laut dan menyelam ke bawah permukaannya, anda tentu menyadari bahwa semakin dalam di bawah permukaan, airnya akan semakin dingin. Temperatur di permukaan laut lebih hangat karena panas dari sinar matahari diserap sebagian oleh permukaan laut. Tapi di bawah permukaan, temperatur akan turun dengan cukup drastis. Inilah sebabnya mengapa penyelam menggunakan pakaian khusus selam ketika menyelam jauh ke dasar laut. Pakaian khusus tersebut dapat menangkap panas tubuh sehingga menjaga mereka tetap hangat.sinar matahari yang jatuh di lautan diserap oleh air laut secara efektif dan energi tersebut tertahan pada lapisan permukaan laut pada kedalaman m, dimana gaya angin dan gelombang menyebabkan temperatur dan kadar garam mendekati uniform. Pada wilayah lautan tropis yang terletak kira kira diantara 15 lintang utara dan 15 lintang selatan, energi panas yang diserap dari matahari memanasi air laut pada mixed layer dengan suhu sekitar 28 C (82 F) yang konstant siang dan malam setiap bulan (Avery and Wu.1994). Dibawah mixed layer, air laut menjadi semakin dingin seiring dengan pertambahan kedalaman hingga mencapai kedalaman 800 sampai 1000m (2500 to 3300ft), temperatur air berubah menjadi 4,4 C (40 F). Pada kedalaman 900 m keatas terdapat reservoir air dingin yang sangat besar. Air dingin ini merupakan akumulasi dari air dan es yang mencari dari daerah kutub. Gambar 1. Citra Satelit Temperature Permukaan Laut (NASA.2009)

4 58 ELEKTROMATIKA, VOL. 1, N0. 1, Maret hal diatas adalah adanya reservoir air panas yang besar di permukaan dan reservoir air dingin dibawah dengan perbedaan suhu sekitar 22 C sampai 25 C. Temperatur ini tak berubah drastis sepanjang tahun, dengan variasi beberapa derajat akibat adanya perubahan cuaca dan musim, dan perbedaan suhu antara pergantian siang dan malam hanya berefek sekitar 1 derajat (Rahman.2008). OTEC merupakan singkatan dari Ocean Thermal Energy Conversion adalah salah satu teknologi terbaru yang menggunakan perbedaan suhu antara permukaan laut dan dasar laut untuk mengoperasikan generator yang menghasilkan energi listrik (wikipedia.2009). Sistem kerja OTEC mempunyai kemiripan dengan mesin uap yaitu fluida dievaporasi dan dikondensasi, perbedaan tekanan yang terjadi inilah yang memutar turbin dan kemudian menghasilkan listrik. namun, pada OTEC menggunakan air laut yang tak terbatas jumlahnya sehingga OTEC dapat menjadi salah satu sumber energi terbaharukan (Avery and Wu.1994). Dalam sistem OTEC terdapat dua macam siklus yang bisa digunakan untuk menghasilkan energi, yaitu siklus terbuka (Open- Cycle) dan siklus tertutup (Closed-Cycle). Pada siklus terbuka fluida kerja dilepaskan setelah digunakan dan fluida kerja itu adalah uap air. Air hangat dengan temperatur berkisar 25 C 30 C, dipompa dengan menggunakan pipa masuk ke dalam ruang vakum untuk dievaporasi. Akibat perbedaan tekanan antara tekanan uap air dan tekanan dalam turbin maka uap air yang telah masuk kedalam turbin dapat memutar rotor turbin sehingga menghasilkan listrik. Selanjutnya uap air dialirkan kembali lagi ke kondensator untuk dikondensasikan kembali oleh air dingin yang dipompa dari kedalaman 1000m yang kemudian menjadi air bersih (desalinated water). Sedangkan siklus tertutup menggunakan fluida kerja sebagai pemutar rotor turbin. Dimana fluida kerja tersebut harus mempunyai titik didih yang rendah agar cepat menguap sehingga air hangat dan air dingin yang berasal dari laut dapat berfungsi sebagai evaporator dan kondensor bagi fluida kerja (Avery and Wu.1994). Pembangkit listrik dapat memanfaatkan perbedaan temperatur tersebut untuk menghasilkan energi. Pemanfaatan sumber energi jenis ini disebut dengan konversi energi panas laut (Ocean Themal Energy Conversion atau OTEC). Perbedaan temperatur antara permukaan yang hangat dengan air laut dalam yang dingin dibutuhkan minimal sebesar 77 derajat Fahrenheit (25 C) agar dapat dimanfaatkan untuk membangkitkan listrik dengan baik. Adapun proyek-proyek demonstrasi dari OTEC sudah terdapat di Jepang, India, dan Hawaii. Pada teknologi konversi energi panas laut atau KEPL (Ocean Thermal Energy Conversion, OTEC), siklus Rankine digunakan untuk menarik arus arus energi termal yang memiliki sekurang kurangnya selisih suhu sebesar 20 C. Berdasarkan siklus yang digunakan, OTEC dapat dibedakan menjadi tiga macam: siklus tertutup, siklus terbuka, dan siklus gabungan (hybrid). Pada alat OTEC dengan siklus tertutup, air laut permukaan yang hangat dimasukkan ke dalam alat penukar panas untuk menguapkan fluida yang mudah menguap seperti misalnya amonia. Uap amonia akan memutar turbin yang menggerakkan generator. Uap amonia keluaran turbin selanjutnya dikondensasi dengan air laut yang lebih dingin dan dikembalikan untuk diuapkan kembali (Lihat gambar 2).Pada siklus terbuka, air laut permukaan yang hangat langsung diuapkan pada ruang khusus bertekanan rendah. Kukus yang dihasilkan digunakan sebagai fluida penggerak turbin bertekanan rendah. Kukus keluaran turbin selanjutnya dikondensasi dengan air laut yang lebih dingin dan sebagai Gambar 2. Ocean Thermal Energy Conversion dengan Siklus Tertutup

5 Mamahit, Pengembangan Konversi Energi Panas Laut 59 Hasil yang terjadi hasilnya diperoleh air desalinasi. Pada siklus gabungan, air laut yang hangat masuk ke dalam ruang vakum untuk diuapkan dalam sekejap (flashevaporated) menjadi kukus (seperti siklus terbuka). Kukus tersebut kemudian menguapkan fluida kerja yang memutar turbin (seperti siklus tertutup). Selanjutnya kukus kembali dikondensasi menjadi air desalinasi. Siklus terbuka dengan mendidihkan air laut yang beroperasi pada tekanan rendah, menghasilkan uap air panas yang melewati turbin penggerak /generator Siklus tertutup menggunakan panas permukaan laut untuk menguapkan fluida penggerak dengan Amonia atau Freon. Uap panas menggerakkan turbin, kemudian turbin berkerja menghidupkan generator untuk menghasilkan listrik. Prosesnya, air laut yang angat dipompa melewati tempat pengubah. dimana fluida pemanas tekanan rendah diuapkan hingga menjalankan turbogenerator. Air dingin dari dalam laut dipompa melewati pengubah digunakan sebagai medium kerja maupun sebagai sumber energi. Air hangat yang berasal dari permukaan laut diuapkan dalamsuatu alat penguap (flash evaporator) dan menghasilkan uap air dengan tekanan yang sangat rendah, l.k. 0,02 hingga 0,03 bar dan suhu kira-kira 20 C. Uap itu memutar sebuah turbin uap yang merupakan penggerak mula bagi generator yang menghasilkan energi listrik (Gambar 3). Karena tekanan uap itu rendah sekali maka ukuran ukuran turbin menjadi sangat besar. Setelah melewati turbin, uap yang sudah dimanfaatkan dialirkan kesebuah kondensor yang menghasilkan air tawar. Kondensor didinginkan oleh air laut yang berasal dari lapisan bawah permukaan laut. Dengan demikian, metode dengan siklus Claude ini menghasilkan energi listrik maupun air tawar. Masalah dengan metode ini adalah bahwa ukuran ukuran turbin menjadi sangat besar oleh karena tekanan uap yang begitu rendah. Sebagai contoh, sebuah modul sebesar 10MW yang terdiri atas penguap, turbin dan kondensor, akan memerlukan ukuran garis tengah dan panjang 100 meter. Gambar 3. Skema Prinsip Konversi Energi Panas Laut (Siklus Terbuka)

6 60 ELEKTROMATIKA, VOL. 1, N0. 1, Maret 2011 Dalam kaitan ini maka metode kedua, yaitu dengan siklus tertutup, merupakan pilihan yang pada saat ini lebih disukai dan digunakan banyak proyek percobaan. Seperti yang terlihat pada gambar 4, air permukaan yang hangat dipompa kesebuah penukar panas atau evaporator, dimana energi panas dilepaskan kepada suatu medium kerja, misalnya amonia. Amonia cair itu akan berubah menjadi gas dengan tekanan kirakira 8,7 bar dan suhu ±21 o C. Turbin berputar menggerakkan generator listrik yang menghasilkan energi listrik. Gas amonia akan meninggalkan turbin pada tekanan kira-kira 5,1 bar dan suhu ±11 o C dan kemudian di bawa ke kondensor. Pendinginan pada kondensor mengakibatkan gas amonia itu kembali menjadi bentuk benda cair. Perbedaan suhu dalam rangkaian perputaran amonia adalah 10 o C sehingga rendemen Carnot akan menjadi : tetapi menjadi tidak ekonomis karena menjadikan OTEC sulit bersaing dengan pemanfaatan hidrokarbon secara langsung. Selain itu, yang juga perlu diperhatikan adalah ukuran pembangkit listrik OTEC bergantung pada tekanan uap dari fluida kerja yang digunakan. Semakin tinggi tekanan uapnya maka semakin kecil ukuran turbin dan alat penukar panas yang dibutuhkan, sementara ukuran tebal pipa dan alat penukar panas bertambah untuk menahan tingginya tekanan terutama pada bagian evaporator Rendemen ini merupakan efisiensi termodinamika yang baik sekali, namun didalam praktek rendemen yang sebenarnya akan terjadi lebih rendah, yaitu sekitar 2 2,5%. Pada rancangan-rancangan terkini suatu arus air sebesar 3 5m 3 /s baik pada sisi air hangat maupun pada sisi air dingin, diperlukan untuk menghasilkan daya sebesar 1 MW pada generator. Selain amonia (NH3), juga Fron-R-22 (CHClF2) dan Propan (C3H6) memiliki titik didih yang sangat rendah, yaitu antara -30 C sampai -50 C pada tekanan atmosfer dan 30 C pada tekanan antara 10 dan 12,5Kg/cm2. Gas-gas inilah yang prospektif untuk dimanfaatkan sebagai medium kerja pada konversi energi panas laut. Fluida kerja yang populer digunakan adalah amonia karena tersedia dalam jumlah besar, murah, dan mudah ditransportasikan. Namun, amonia beracun dan mudah terbakar. Senyawa seperti CFC dan HCFC juga merupakan pilihan yang baik, sayangnya menimbulkan efek penipisan lapisan ozon. Hidrokarbon juga dapat digunakan, akan Gambar 4. Skema Prinsip Konversi Panas laut (Siklus Tertutup)

7 Mamahit, Pengembangan Konversi Energi Panas Laut 61 tetapi menjadi tidak ekonomis karena menjadikan OTEC sulit bersaing dengan pemanfaatan hidrokarbon secara langsung. Selain itu, yang juga perlu diperhatikan adalah ukuran pembangkit listrik OTEC bergantung pada tekanan uap dari fluida kerja yang digunakan. Semakin tinggi tekanan uapnya maka semakin kecil ukuran turbin dan alat penukar panas yang dibutuhkan, sementara ukuran tebal pipa dan alat penukar panas bertambah untuk menahan tingginya tekanan terutama pada bagian evaporator. Benefit dan Produk Samping Teknologi OTEC Walaupun sampai saat ini biaya investasi awal OTEC masih mahal, namun OTEC memiliki berbagai keuntungan Keuntungan dan keunggulan dari teknologi OTEC ini antara lain adalah : 1.Sumber daya energi untuk OTEC merupakan sumber terbarukan secara alamiah. 2. Hampir tidak ada dampak negatif terhadap lingkungan, bahkan dari sisi ekologi berdampak positif karena akan memperkaya nutrisi pada permukaan air laut. 3.Tidak menghasilkan gas rumah kaca ataupun limbah lainnya. 4. Tidak membutuhkan bahan bakar, biaya operasional relatif rendah. 5. Produksi listrik stabil. Selain itu, walaupun biaya investasi awal OTEC masih dipandang terlalu mahal, namun riset termutakhir menunjukkan berbagai potensi produk samping OTEC yang bermanfaat, sehingga dapat meningkatkan nilai ke-ekonomian dari teknologi OTEC. Produk Samping dari OTEC tersebut antara lain : 1.Air pendingin AC: air dingin sisa proses OTEC dapat dimanfaatkan untuk mendinginkan air biasa yang dibutuhkan AC standar melalui mekanisme tertentu. 2.Pertanian: saat air laut mengalir melalui pipa bawah tanah, akan mendinginkan tanah di sekitarnya, sehingga tanah dapat ditanami berbagai tanaman yang cocok untuk ditanam di iklim dingin. 3.Desalinasi air laut: proses pembangkitan energi. 4.Produksi hidrogen: hidrogen diproduksi dengan proses elektrolisis, dengan memanfaatkan tenaga listrik yang diproduksi dari proses OTEC. 5.Produksi air minum, suplai air untuk aquaculture, ekstraksi mineral. Prospek Di Indonesia Minyak merupakan sumber energi utama di Indonesia. Pemakaiannya terus meningkat baik untuk komoditas ekspor yang menghasilkan devisa maupun untuk memenuhi kebutuhan energi dalam negeri. Sementara cadangannya terbatas sehingga pengelolaannya harus dilakukan seefisien mungkin. Karena itu, ketergantungan akan minyak bumi untuk jangka panjang tidak dapat dipertahankan lagi sehingga perlu ditingkatkan pemanfaatan energi baru dan terbarukan. Energi baru dan terbarukan adalah energi yang pada umumnya sumber daya nonfosil yang dapat diperbarui atau bisa dikelola dengan baik, maka sumber dayanya tidak akan habis. Laut selain menjadi sumber pangan juga mengandung beraneka sumber dayaenergi. Kini para ahli menaruh perhatian terhadap laut sebagai upaya mencari jawaban terhadap tantangan kekurangan energi di waktu mendatang dan upaya menganekakan penggunaan sumber daya energi. Kesenjangan antara kebutuhan dan persediaan energi merupakan masalah yang perlu segera dicari pemecahannya. Apalagi mengingat perkiraan dan perhitungan para ahli pada tahun 2010-an produksi minyak akan menurun tajam dan bisa menjadi titik awal kesenjangan energi. Untuk lautan di wilayah Indonesia, potensi termal 2,5 x 1023 joule dengan efisiensi konversi energi panas laut sebesar tiga persen dapat menghasilkan daya sekitar MW. Potensi energi panas laut yang baik terletak pada daerah antara 6 9 lintang selatan dan bujur timur. Di daerah tersebut pada jarak kurang dari 20km dari pantai didapatkan suhu rata-rata permukaan laut di atas 28 C dan didapatkan perbedaan suhu permukaan dan kedalaman laut (1.000m) sebesar 22,8 C. Sedangkan perbedaan suhu rata-rata tahunan permukaan dan kedalaman lautan (650m) lebih tinggi dari 20 C.

8 62 ELEKTROMATIKA, VOL. 1, N0. 1, Maret 2011 Dengan potensi sumber energi yang melimpah, konversi energi panas laut dapat dijadikan alternatif pemenuhan kebutuhan energi listrik di Indonesia. Sebagaimana kita ketahui, luas laut Indonesia mencapai 5,8 juta km2, mendekati 70% luas keseluruhan wilayah Indonesia. Dengan luas wilayah mayoritas berupa lautan, wilayah Indonesia memiliki energi yang punya prospek bagus yakni energi arus laut. Hal ini dikarenakan Indonesia mempunyai banyak pulau dan selat sehingga arus laut akibat interaksi Bumi Bulan Matahari mengalami percepatan saat melewati selatselat tersebut. Selain itu, Indonesia adalah tempat pertemuan arus laut yang diakibatkan oleh konstanta pasang surut M2 yang dominan di Samudera Hindia dengan periode sekitar 12 jam dan konstanta pasang surut K1 yang dominan di Samudra Pasifik dengan periode lebih kurang 24 jam. M2 adalah konstanta pasang surut akibat gerak Bulan mengelilingi Bumi, sedangkan K1 adalah konstanta pasang surut yang diakibatkan oleh kecondongan orbit Bulan saat mengelilingi Bumi. bawah laut yang mahal. Jenis ini masih dalam taraf penelitian dan pengembangan. Perkembangan teknologi konversi energi panas laut di Indonesia baru mencapai status penelitian, dengan jenis konversi energi panas laut landasan darat dan dengan kapasitas 100 kw, lokasi di Bali Utara. Di Indonesia, potensi energi samudera sangat besar karena Indonesia adalah negara kepulauan yang terdiri dari pulau dan garis pantai sepanjang km dan terdiri dari laut dalam dan laut dangkal. Biaya investasi belum bisa diketahui di Indonesia tetapi berdasarkan uji coba di beberapa negara industri maju adalah berkisar 9 sen / kwh hingga 15 sen /kwh. Berdasarkan letak penempatan pompa kalor, konversi energi panas laut dapat diklasifikasikan menjadi tiga tipe, konversi energi panas laut landasan darat, konversi energi panas laut terapung landasan permanen, dan konversi terapung kapal. Konversi energi panas laut landasan darat alat utamanya terletak di darat, hanya sebagian kecil peralatan yang menjorok ke laut. Kelebihan sistem ini adalah dayanya lebih stabil dan pemeliharaannya lebih mudah. Kekurangan sistem jenis ini membutuhkan keadaan pantai yang curam, agar tidak memerlukan pipa air dingin yang panjang. Untuk konversi energi panas laut terapung landasan permanen, diperlukan sistem penambat dan sistem transmisi bawah laut, sehingga permasalahan utamanya pada sistem penambat dan teknologi transmisi Secara umum kendala pada teknologi konversi energi panas laut adalah efisiensi pemompaan yang masih rendah, korosi pipa, bahan pipa air dingin, dan biofouling, yang semuanya menyangkut investasi. Selain itu kajian sumberdaya kelautan masih terbatas terhadap langkah pengembangan konversi energi panas laut. Gambar 5. Peta Persebaran Panas Laut

9 Mamahit, Pengembangan Konversi Energi Panas Laut 63 Pengembangan OTEC di Indonesia Indonesia adalah negara kepulauan yang terletak di daerah tropis, di mana perairan di wilayah Indonesia umumnya memiliki perbedaan suhu air permukaan dan laut dalam yang sangat tinggi, serta memiliki intensitas gelombang laut yang kecil, sehingga sangat cocok dalam pengembangan teknologi OTEC. Beberapa pihak swasta di Indonesia sebenarnya telah mengembangkan teknologi ini hingga mencapai tahap komersial, namun jumlahnya masih terbatas sehingga pemanfaatan teknologi ini belum memberikan andil yang besar. Di samping itu perlu adanya perhatian dan keterlibatan dari pemerintah yang besar untuk pengembangan dan pemanfaatan energi alternatif dari laut tersebut, sebagai salah satu upaya menghadapi krisis energi yang terjadi di masa kini. Kelebihan: Tidak menghasilkan gas rumah kaca ataupun limbah lainnya. Tidak membutuhkan bahan bakar. Biaya operasi rendah. Produksi listrik stabil. Dapat dikombinasikan dengan fungsi lainnya: menghasilkan air pendingin, produksi air minum, suplai air untuk aquaculture, ekstraksi mineral, dan produksi hidrogen secara elektrolisis. Keuntungan bagi sisi pemerintah : Pemanfaatan energi baru, seperti tenaga panas laut, akan mengurangi ketergantungan akan BBM atau batu bara yang cadangannya diperkirakan akan habis dalam beberapa tahun mendatang. Penelitian ini akan melibatkan instansi instansi yang terkait /departemen sehingga diharapkan akan memberikan sumbangsihnya dalam bidang ilmu pengetahuan dan teknologi (IPTEK). Penggunaan teknologi ini akan mengurangi dampak pencemaran lingkungan akibat emisi gas buang dari produk BBM atau batu bara. Setiap proyek yang akan dibangun nantinya akan mengurangi jumlah pengangguran, karena tentunya akan menyerap banyak tenaga kerja. Keuntungan bagi penyedia listrik (PT PLN) : Merupakan solusi alternatif untuk masa yang akan datang, sekiranya produksi BBM atau batu bara telah berhenti. Mengurangi ketergantungan akan BBM atau batu bara sebagai bahan baku dalam memproduksi listrik. Jika dimanfaatkan secara optimum, maka dengan efisiensi sekitar tiga persen maka Indonesia dapat menghasilkan MW dari total potensi panas laut yang ada. Hasil sampingan berupa air tawar tentu dapat dimanfaatkan untuk produksi air minum bersih untuk didayakan oleh PLN. Keuntungan bagi konsumen : Konsumen akan merasa lega akan kontinuitas penyediaan energi listrik untuk beberapa waktu mendatang. Kekurangan: Belum ada analisa komperehensif mengenai dampaknya terhadap lingkungan. Jika menggunakan amonia sebagai bahan yang diuapkan menimbulkan potensi bahaya kebocoran. Efisiensi total masih rendah sekitar 1% - 3%. Biaya pembangunan tidak murah, ongkos mendirikan OTEC tepi pantai, setara dengan membangun PLTU. Kendala : Untuk mengubah suatu sistem ketenaga listrikan dari BBM dan batubara menjadi panas laut dibutuhkan biaya investasi yang sangat besar. Efisiensi pembangkit tenaga panas laut (PLT PL) yang masih di bawah 5% tentu bukan merupakan kabar yang baik bagi semua pihak. Belum ada investor yang besedia menanamkan investasinya untuk proyek pembuatan pembangkit tenaga panas laut (PLT PL). Adanya gangguan alam di daerah laut atau pantai akan merugikan sistem kelistrikan dengan teknologi panas laut. Biaya produksi akan tinggi sehingga mau tidak mau jika pemerintah melakukan subsidi, maka budget APBN akan tersedot untuk biaya subsidi.

10 64 ELEKTROMATIKA, VOL. 1, N0. 1, Maret 2011 SIMPULAN OTEC (Konversi Energi Panas Laut) memiliki potensi dan prospek yang sangat baik untuk dikembangkan di Sulawesi Utara. OTEC memiliki banyak manfaat bagi masyarakat dan merupakan suatu yang kompetitif untuk dikembangkan. OTEC memiliki berbagai keuntungan dan keunggulan seperti : 1.Sumber daya energi untuk OTEC merupakan sumber terbarukan secara alamiah. 2. Hampir tidak ada dampak negatif terhadap lingkungan, bahkan dari sisi ekologi berdampak positif karena akan memperkaya nutrisi pada permukaan air laut. 3.Tidak menghasilkan gas rumah kaca ataupun limbah lainnya. 4.Tidak membutuhkan bahan bakar, biaya operasional relatif rendah. 5.Produksi listrik stabil. OTEC juga memiliki beberapa produk sampingan seperti : 1. Air pendingin AC: air dingin sisa proses OTEC dapat dimanfaatkan untuk mendinginkan air biasa yang dibutuhkan AC standar melalui mekanisme tertentu. 2. Pertanian : saat air laut mengalir melalui pipa bawah tanah, akan mendinginkan tanah di sekitarnya, sehingga tanah dapat ditanami berbagai tanaman yang cocok untuk ditanam di iklim dingin. 3. Desalinasi air laut: proses pembangkitan energi. 4. Produksi hidrogen: hidrogen diproduksi dengan proses elektrolisis, dengan memanfaatkan tenaga listrik yang diproduksi dari proses OTEC. 5. Produksi air minum, suplai air untuk aquaculture, ekstraksi mineral. yang sangat tinggi di daerah lautan tropis. 3. Studi lanjut dan pelatihan bagi para teknisi elektro lokal di negara-negara (USA Hawaii, Kanada, Eropa, India, Jepang) yang sudah mengembangkan teknologi OTEC. DAFTAR PUSTAKA Aldo Vieira Da Rosa, Fundamentals of Renewable Eenergy Processes, Kadir, Abdul, Teknologi Konversi Energi Panas Laut : Prinsip, Perkembangan dan Prospek, 2005 Marwan Ja far, Energynomics, Gramedia, Jakarta, 2009 Paul A. Breeze, Power Generation Technologies, 2005 Vega Luis A., Ocean Thermal Energy Conversion (OTEC), Hawaii, USA, William H. Avery, Chih Wu, Renewable Energy From The Ocean: A guide to OTEC, Oxford, SARAN 1.Pemerintah harus segera mengeluarkan kebijakan yang menindak lanjuti secara nyata pengembangan konversi energi terbarukan untuk sesegera mungkin mengantisipasi krisis energi nanti. 2.Tidak ada investasi yang murah untuk sebuah hasil yang baik apalagi kompetitif, OTEC sebenarnya memiliki nilai ekonomi

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN A. Latar Belakang PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN Pembangkit listrik yang terdapat di Indonesia sebagian besar menggunakan sumber daya tidak terbarukan untuk memenuhi kebutuhan listrik

Lebih terperinci

OCEAN ENERGY (ENERGI SAMUDERA)

OCEAN ENERGY (ENERGI SAMUDERA) OCEAN ENERGY (ENERGI SAMUDERA) HASBULLAH, S.Pd.MT Electrical Engineering Dept. TEKNIK ELEKTRO FPTK UPI 2008 FPTK UPI 2009 ENERGI GELOMBANG SAMUDERA Energi gelombang laut adalah satu potensi laut dan samudra

Lebih terperinci

Kajian Pemanfaatan Potensi Suhu Air Laut Sebagai Sumber Energi Terbarukan Menghasilkan Energi Listrik

Kajian Pemanfaatan Potensi Suhu Air Laut Sebagai Sumber Energi Terbarukan Menghasilkan Energi Listrik JURNAL INOVTEK POLBENG, VOL. 07, NO., JUNI 07 ISSN: 088-65 E-ISSN: 580-798 Kajian Pemanfaatan Potensi Suhu Air Laut Sebagai Sumber Energi Terbarukan Menghasilkan Energi Listrik Sugeng Riyanto Program Studi

Lebih terperinci

KAJIAN POTENSI SUHU AIR LAUT PERAIRAN PULAU TARAKAN DAN BUNYU SEBAGAI SUMBER ENERGI TERBARUKAN. Sugeng Riyanto

KAJIAN POTENSI SUHU AIR LAUT PERAIRAN PULAU TARAKAN DAN BUNYU SEBAGAI SUMBER ENERGI TERBARUKAN. Sugeng Riyanto KAJIAN POTENSI SUHU AIR LAUT PERAIRAN PULAU TARAKAN DAN BUNYU SEBAGAI SUMBER ENERGI TERBARUKAN Sugeng Riyanto Prodi Teknik Elektro Universitas Borneo Tarakan sugengriyanto@borneo.ac.id Absrak: Tarakan

Lebih terperinci

Pengantar Teknologi Energi PENDAHULUAN

Pengantar Teknologi Energi PENDAHULUAN PENDAHULUAN Lautan yang meliputi dua per tiga permukaan bumi, menerima energi panas yang berasal dari penyinaran matahari. Lautan befungsi sebagai suatu penampungan yang cukup besar dari energi surya yang

Lebih terperinci

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan Energi ramah lingkungan atau energi hijau (Inggris: green energy) adalah suatu istilah yang menjelaskan apa yang dianggap sebagai sumber energi

Lebih terperinci

STUDI PEMANFAATAN ENERGI PANAS LAUT DAN GELOMBANG LAUT UNTUK SISTEM KELISTRIKAN DI KABUPATEN KARANGASEM BALI

STUDI PEMANFAATAN ENERGI PANAS LAUT DAN GELOMBANG LAUT UNTUK SISTEM KELISTRIKAN DI KABUPATEN KARANGASEM BALI Tugas Akhir TE 091399 STUDI PEMANFAATAN ENERGI PANAS LAUT DAN GELOMBANG LAUT UNTUK SISTEM KELISTRIKAN DI KABUPATEN KARANGASEM BALI Nison Hastari Raharjo NRP 2209 105 104 Dosen Pembimbing: Ir. Syariffuddin

Lebih terperinci

RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC)

RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC) RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC) Aep Saepul Uyun 1, Dhimas Satria, Ashari Darius 2 1 Sekolah Pasca Sarjana

Lebih terperinci

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02 ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN Disusun Oleh: GRACE ELIZABETH 30408397 3 ID 02 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA 2011 ENERGI TERBARUKAN Konsep energi

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Penelitian Energi memiliki peranan penting dalam menunjang kehidupan manusia. Seiring dengan perkembangan zaman, kebutuhan akan energi terus meningkat. Untuk dapat

Lebih terperinci

DAFTAR ISI... SAMPUL DALAM... LEMBAR PENGESAHAN... PENETAPAN PANITIA PENGUJI... SURAT KETERANGAN BEBAS PLAGIAT... UCAPAN TERIMAKASIH... ABSTRACT...

DAFTAR ISI... SAMPUL DALAM... LEMBAR PENGESAHAN... PENETAPAN PANITIA PENGUJI... SURAT KETERANGAN BEBAS PLAGIAT... UCAPAN TERIMAKASIH... ABSTRACT... viii DAFTAR ISI SAMPUL DALAM... LEMBAR PENGESAHAN... PENETAPAN PANITIA PENGUJI... SURAT KETERANGAN BEBAS PLAGIAT... UCAPAN TERIMAKASIH... ABSTRAK... ABSTRACT... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL...

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 1 BAB I PENDAHULUAN I.1 Latar Belakang Energi listrik memegang peran penting dalam kehidupan manusia pada saat ini. Hampir semua aktivitas manusia berhubungan dengan energi listrik. Seperti yang ditunjukkan

Lebih terperinci

AMONIA SEBAGAI FLUIDA KERJA PEMBANGKIT LISTRIK TENAGA PANAS LAUT ALTERNATIF SOLUSI KELISTRIKAN DI INDONESIA

AMONIA SEBAGAI FLUIDA KERJA PEMBANGKIT LISTRIK TENAGA PANAS LAUT ALTERNATIF SOLUSI KELISTRIKAN DI INDONESIA AMONIA SEBAGAI FLUIDA KERJA PEMBANGKIT LISTRIK TENAGA PANAS LAUT ALTERNATIF SOLUSI KELISTRIKAN DI INDONESIA Burhanuddin Halimi Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesa

Lebih terperinci

USULAN PROGRAM KREATIVITAS MAHASISWA

USULAN PROGRAM KREATIVITAS MAHASISWA USULAN PROGRAM KREATIVITAS MAHASISWA OTEC (OCEAN THERMAL ENERGY CONVERSION), TEKNOLOGI ENERGI MASA DEPAN INDONESIA BIDANG KEGIATAN PKM-GT DIUSULKAN OLEH : MUHAMMAD AKBAR 2012417001 / 2012 M. FIKRI ALISYABANA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

PEMBANGKIT LISTRIK ENERGI PASANG SURUT

PEMBANGKIT LISTRIK ENERGI PASANG SURUT MAKALAH SUMBER ENERGI NON KONVENSIONAL PEMBANGKIT LISTRIK ENERGI PASANG SURUT OLEH: PUTU NOPA GUNAWAN NIM : D411 10 009 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS HASANUDDIN 2013 BAB I PENDAHULUAN

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

BAB I PENDAHULUAN. l.1 LATAR BELAKANG

BAB I PENDAHULUAN. l.1 LATAR BELAKANG 1 BAB I PENDAHULUAN l.1 LATAR BELAKANG Konsumsi per kapita sumber energi non terbarukan di bumi yang meliputi gas, minyak bumi, batu bara, merupakan salah satu kekayaan ekonomi yang dimiliki suatu Negara

Lebih terperinci

GEOTHERMAL SEBAGAI ENERGI ALTERNATIF

GEOTHERMAL SEBAGAI ENERGI ALTERNATIF GEOTHERMAL SEBAGAI ENERGI ALTERNATIF Makalah ini diajukan untuk memenuhi tugas MID AMISCA 2008 Disusun oleh: Kelompok 1 Kelompok 2 Fazri Azhar (10507001) Dinda Husna (10507057) Mila Vanesa (10507013) Sukmawati

Lebih terperinci

BAB I PENDAHULUAN. Pada akhir Desember 2011, total kapasitas terpasang pembangkit listrik di

BAB I PENDAHULUAN. Pada akhir Desember 2011, total kapasitas terpasang pembangkit listrik di BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik adalah energi yang sangat penting bagi kehidupan manusia. Pada akhir Desember 2011, total kapasitas terpasang pembangkit listrik di Indonesia mencapai

Lebih terperinci

ATLAS POTENSI ENERGI LAUT. Harkins Prabowo. Pusat Penelitian dan Pengembangan Geologi Kelautan S A R I

ATLAS POTENSI ENERGI LAUT. Harkins Prabowo. Pusat Penelitian dan Pengembangan Geologi Kelautan S A R I ATLAS POTENSI ENERGI LAUT Harkins Prabowo Pusat Penelitian dan Pengembangan Geologi Kelautan harkinz@yahoo.com S A R I Meskipun luas wilayah laut Indonesia tiga kali lebih besar dibandingkan luas daratannya,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan BAB I PENDAHULUAN 1. 1. Latar Belakang Masalah Energi merupakan kebutuhan penting bagi manusia, khususnya energi listrik, energi listrik terus meningkat seiring dengan bertambahnya jumlah populasi manusia

Lebih terperinci

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA Diajukan oleh: FERI SETIA PUTRA D 400 100 058 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

Bab 1 Pendahuluan 1.1 Latar Belakang

Bab 1 Pendahuluan 1.1 Latar Belakang Bab 1 Pendahuluan 1.1 Latar Belakang Pada saat ini, penggunaan sumber energi fosil tak pelak lagi merupakan sumber energi utama yang digunakan oleh umat manusia. Dalam penggunaan energi nasional di tahun

Lebih terperinci

Pemanasan Bumi. Suhu dan Perpindahan Panas

Pemanasan Bumi. Suhu dan Perpindahan Panas Pemanasan Bumi Meteorologi Suhu dan Perpindahan Panas Suhu merupakan besaran rata- rata energi kine4k yang dimiliki seluruh molekul dan atom- atom di udara. Udara yang dipanaskan akan memiliki energi kine4k

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Listrik merupakan salah satu energi yang sangat dibutuhkan oleh manusia pada era modern ini. Tak terkecuali di Indonesia, negara ini sedang gencargencarnya melakukan

Lebih terperinci

Iklim Perubahan iklim

Iklim Perubahan iklim Perubahan Iklim Pengertian Iklim adalah proses alami yang sangat rumit dan mencakup interaksi antara udara, air, dan permukaan daratan Perubahan iklim adalah perubahan pola cuaca normal di seluruh dunia

Lebih terperinci

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara.

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara. 1 BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan energi listrik terus-menerus meningkat yang disebabkan karena pertumbuhan penduduk dan industri di Indonesia berkembang dengan pesat, sehingga mewajibkan

Lebih terperinci

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap BAB I PENDAHULUAN 1.1. Latar Belakang Beberapa tahun terakhir ini energi merupakan persoalan yang krusial didunia. Peningkatan permintaan energi yang disebabkan oleh pertumbuhan populasi penduduk dan menipisnya

Lebih terperinci

APA ITU GLOBAL WARMING???

APA ITU GLOBAL WARMING??? PEMANASAN GLOBAL APA ITU GLOBAL WARMING??? Pemanasan global bisa diartikan sebagai menghangatnya permukaan Bumi selama beberapa kurun waktu. Atau kejadian meningkatnya temperatur rata-rata atmosfer, laut

Lebih terperinci

BAB I PENDAHULUAN. Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan

BAB I PENDAHULUAN. Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan BAB I PENDAHULUAN 1.1. Latar Belakang Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan terhadap penyediaan energi listrik terus mengalami peningkatan. Peningkatan konsumsi energi

Lebih terperinci

Efisiensi PLTU batubara

Efisiensi PLTU batubara Efisiensi PLTU batubara Ariesma Julianto 105100200111051 Vagga Satria Rizky 105100207111003 Sumber energi di Indonesia ditandai dengan keterbatasan cadangan minyak bumi, cadangan gas alam yang mencukupi

Lebih terperinci

Pembangkit Non Konvensional OTEC

Pembangkit Non Konvensional OTEC Pembangkit Non Konvensional OTEC OTEC Ada yang tahu apa itu OTEC? OTEC OTEC (Ocean Thermal Energy Conversion) atau Konversi Energi Termal Lautan atau dapat juga disebut : Pembangkit listrik tenaga panas

Lebih terperinci

VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA

VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA Pada bagian ini dibahas efisiensi energi dalam perekonomian Indonesia, yang rinci menjadi efisiensi energi menurut sektor. Disamping itu,

Lebih terperinci

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

PLTU (PEMBANGKIT LISTRIK TENAGA UAP) PLTU (PEMBANGKIT LISTRIK TENAGA UAP) I. PENDAHULUAN Pusat pembangkit listrik tenaga uap pada saat ini masih menjadi pilihan dalam konversi tenaga dengan skala besar dari bahan bakar konvensional menjadi

Lebih terperinci

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya.

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. I. PENDAHULUAN A. Latar Belakang Turbin angin pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. Turbin angin

Lebih terperinci

BAB 1 PENDAHULUAN. Studi kelayakan..., Arde NugrohoKristianto, FE UI, Universitas Indonesia

BAB 1 PENDAHULUAN. Studi kelayakan..., Arde NugrohoKristianto, FE UI, Universitas Indonesia BAB 1 PENDAHULUAN 1.1 Latar Belakang Sumber energi listrik mengalami peningkatan inovasi di setiap tahunnya khususnya di bidang sumber energi terbarukan, hal ini dikarenakan jumlah penelitian, dan permintaan

Lebih terperinci

BAB I PENDAHULUAN. hampir setiap kehidupan manusia memerlukan energi. Energi ada yang dapat

BAB I PENDAHULUAN. hampir setiap kehidupan manusia memerlukan energi. Energi ada yang dapat BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan hal yang sangat penting dalam kehidupan manusia, karena hampir setiap kehidupan manusia memerlukan energi. Energi ada yang dapat diperbaharui dan ada

Lebih terperinci

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam BAB 1 PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan salah satu faktor yang sangat penting dalam menunjang pembangunan nasional. Penyediaan energi listrik secara komersial yang telah dimanfaatkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kebutuhan akan energi hampir semua negara meningkat secara sinigfikan. Tetapi jika dilihat dari energi yang dapat dihasilkan sangat terbatas dan juga masih sangat mahal

Lebih terperinci

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama.

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama. I. PENDAHULUAN A. Latar Belakang Seiring perkembangan zaman, ketergantungan manusia terhadap energi sangat tinggi. Sementara itu, ketersediaan sumber energi tak terbaharui (bahan bakar fosil) semakin menipis

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Proses terjadinya pasang surut secara umum Pasang surut dikatakan sebagai naik turunya permukaan laut secara berkala akibatnya adanya gaya tarik benda-benda

Lebih terperinci

Generation Of Electricity

Generation Of Electricity Generation Of Electricity Kelompok 10 : Arif Budiman (0906 602 433) Junedi Ramdoner (0806 365 980) Muh. Luqman Adha (0806 366 144) Saut Parulian (0806 366 352) UNIVERSITAS INDONESIA FAKULTAS TEKNIK ELEKTRO

Lebih terperinci

I. PENDAHULUAN. optimal. Salah satu sumberdaya yang ada di Indonesia yaitu sumberdaya energi.

I. PENDAHULUAN. optimal. Salah satu sumberdaya yang ada di Indonesia yaitu sumberdaya energi. I. PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara kepulauan yang kaya akan sumberdaya alam. Akan tetapi, sumberdaya alam yang melimpah ini belum termanfaatkan secara optimal. Salah satu sumberdaya

Lebih terperinci

Rancang Bangun Pembangkit Listrik dengan Sistem Konversi Energi Panas Laut (OTEC)

Rancang Bangun Pembangkit Listrik dengan Sistem Konversi Energi Panas Laut (OTEC) Rancang Bangun Pembangkit Listrik dengan Sistem Konversi Energi Panas Laut (OTEC) Oleh : Andhika Pratama Yassen (4303 100 029) Dosen Pembimbing: Ir. Arief Suroso, M.Sc Ir. Mukhtasor M.Eng. Ph.D OTEC atau

Lebih terperinci

SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA. Dr. Setiyono Depok, 26 Januari 2015

SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA. Dr. Setiyono Depok, 26 Januari 2015 SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA Dr. Setiyono Depok, 26 Januari 2015 KETAHANAN ENERGI DAN PENGEMBANGAN PEMBANGKITAN Ketahanan Energi Usaha mengamankan energi masa depan suatu bangsa dengan

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Cabai merah besar (Capsicum Annum L.) merupakan komoditas yang banyak mendapat perhatian karena memiliki nilai ekonomis yang cukup tinggi. Buahnya dapat digolongkan

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Energi fosil masih menjadi sumber energi utama yang paling banyak digunakan oleh manusia terutama di Indonesia. Indonesia merupakan salah satu negara yang menggunakan

Lebih terperinci

ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR

ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR TUGAS AKHIR ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR Disusun Untuk Memenuhi Tugas Dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik (S-1) Jurusan Teknik Mesin

Lebih terperinci

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Semakin maraknya krisis energi yang disebabkan oleh menipisnya cadangan minyak bumi, gas dan batubara di Indonesia,membuat kita harus segera memikirkan

Lebih terperinci

Studi Distribusi Panas di Laut untuk Ocean Thermal Energy Conversion (OTEC)

Studi Distribusi Panas di Laut untuk Ocean Thermal Energy Conversion (OTEC) Studi Distribusi Panas di Laut untuk Ocean Thermal Energy Conversion (OTEC) Oleh : Putu Yoga Perdana (4303 100 038) Dosen Pembimbing: Ir. Arief Suroso, MSc. Suntoyo, S.T., M.Eng, Ph.D Latar Belakang Perumusan

Lebih terperinci

Bab I Pendahuluan 1.1 Latar Belakang

Bab I Pendahuluan 1.1 Latar Belakang Bab I Pendahuluan 1.1 Latar Belakang Kemajuan teknologi dan pertumbuhan penduduk dunia yang pesat mengakibatkan bertambahnya kebutuhan energi seiring berjalannya waktu. Energi digunakan untuk membangkitkan

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1] BAB I PENDAHULUAN I.1. Latar Belakang Dewasa ini kelangkaan sumber energi fosil telah menjadi isu utama. Kebutuhan energi tersebut setiap hari terus meningkat. Maka dari itu, energi yang tersedia di bumi

Lebih terperinci

PEMANASAN GLOBAL PENYEBAB PEMANASAN GLOBAL

PEMANASAN GLOBAL PENYEBAB PEMANASAN GLOBAL PEMANASAN GLOBAL APA ITU PEMANASAN GLOBAL Perubahan Iklim Global atau dalam bahasa inggrisnya GLOBAL CLIMATE CHANGE menjadi pembicaraan hangat di dunia dan hari ini Konferensi Internasional yang membahas

Lebih terperinci

BAB I PENDAHULUAN. banyak sekali dampak yang ditimbulkan oleh pemanasan global ini.

BAB I PENDAHULUAN. banyak sekali dampak yang ditimbulkan oleh pemanasan global ini. BAB I PENDAHULUAN A. LATAR BELAKANG Bumi merupakan satu-satunya tempat tinggal bagi makhluk hidup. Pelestarian lingkungan dilapisan bumi sangat mempengaruhi kelangsungan hidup semua makhluk hidup. Suhu

Lebih terperinci

PEMBANGKIT LISTRIK DENGAN SISTEM OCEAN THERMAL ENERGY CONVERSION

PEMBANGKIT LISTRIK DENGAN SISTEM OCEAN THERMAL ENERGY CONVERSION PRO S ID IN G 20 1 1 HASIL PENELITIAN FAKULTAS TEKNIK PEMBANGKIT LISTRIK DENGAN SISTEM OCEAN THERMAL ENERGY CONVERSION Jurusan Perkapalan Fakultas Teknik Universitas Hasanuddin Jl. Perintis Kemerdekaan

Lebih terperinci

BAB I PENDAHULUAN. udara yang diakibatkan oleh pembakaran bahan bakar tersebut, sehingga

BAB I PENDAHULUAN. udara yang diakibatkan oleh pembakaran bahan bakar tersebut, sehingga BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Tingkat pemakaian bahan bakar terutama bahan bakar fosil di dunia semakin meningkat seiring dengan semakin bertambahnya populasi manusia dan meningkatnya laju

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.5. La Nina. El Nino. Pancaroba. Badai tropis.

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.5. La Nina. El Nino. Pancaroba. Badai tropis. SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.5 1. Perubahan iklim global yang terjadi akibat naiknya suhu permukaan air laut di Samudra Pasifik, khususnya sekitar daerah ekuator

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar belakang Air merupakan unsur yang vital dalam kehidupan manusia. Seseorang tidak dapat bertahan hidup tanpa air, karena itulah air merupakan salah satu penopang hidup bagi manusia.

Lebih terperinci

KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA

KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA Rohana (1), Rimbawati (2) Jurusan Teknik Elektro Universitas Muhammadiyah sumatera Utara JL. Kapt Mukhtar Basri, BA No.3 Medan, 20238 E-mail

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini, ketersediaan sumber energi fosil dunia semakin menipis, sumber energi ini semakin langka dan harganya pun semakin melambung tinggi. Hal ini tidak dapat dihindarkan

Lebih terperinci

BAB I PENDAHULUAN. menjadi dua, yaitu energi terbarukan (renewable energy) dan energi tidak

BAB I PENDAHULUAN. menjadi dua, yaitu energi terbarukan (renewable energy) dan energi tidak 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terkenal sebagai negara yang kaya dengan potensi sumber daya alamnya terutama energi, baik yang berasal dari hasil tambang, air dan udara. Berdasarkan jenisnya

Lebih terperinci

BAB I PENDAHULUAN. Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari,

BAB I PENDAHULUAN. Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

BAB I PENDAHULUAN. Pentingnya peran energi dalam kebutuhan sehari-hari mulai dari zaman dahulu

BAB I PENDAHULUAN. Pentingnya peran energi dalam kebutuhan sehari-hari mulai dari zaman dahulu BAB I PENDAHULUAN 1.1 Latar Belakang Topik tentang energi saat ini menjadi perhatian besar bagi seluruh dunia. Pentingnya peran energi dalam kebutuhan sehari-hari mulai dari zaman dahulu hingga sekarang

Lebih terperinci

Program Studi Teknik Mesin BAB I PENDAHULUAN. manusia berhubungan dengan energi listrik. Seiring dengan pertumbuhan

Program Studi Teknik Mesin BAB I PENDAHULUAN. manusia berhubungan dengan energi listrik. Seiring dengan pertumbuhan BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat berperan penting dalam kehidupan manusia saat ini, dimana hampir semua aktifitas manusia berhubungan

Lebih terperinci

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan kebutuhan energi listrik pada zaman globalisasi ini, Indonesia melaksanakan program percepatan pembangkitan listrik sebesar 10.000 MW dengan mendirikan

Lebih terperinci

Krisis Pangan, Energi, dan Pemanasan Global

Krisis Pangan, Energi, dan Pemanasan Global Krisis Pangan, Energi, dan Pemanasan Global Benyamin Lakitan Kementerian Negara Riset dan Teknologi Rakorda MUI Lampung & Jawa Jakarta, 22 Juli 2008 Isu Global [dan Nasional] Krisis Pangan Krisis Energi

Lebih terperinci

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter A. Prasetyadi, FA. Rusdi Sambada Jurusan Teknik Mesin, Fakultas Sains dan Teknologi, Universitas Sanata Dharma Kampus 3, Paingan, Maguwoharjo,

Lebih terperinci

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI INTISARI Oleh: Ir. Agus Sugiyono *) PLN sebagai penyedia tenaga listrik yang terbesar mempunyai kapasitas terpasang sebesar

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Krisis energi dan lingkungan akhir-akhir ini menjadi isu global. Pembakaran BBM dan batubara menghasilkan pencemaran lingkungan dan CO 2 yang mengakibatkan pemanasan

Lebih terperinci

Atmosphere Biosphere Hydrosphere Lithosphere

Atmosphere Biosphere Hydrosphere Lithosphere Atmosphere Biosphere Hydrosphere Lithosphere Atmosfer Troposfer Lapisan ini berada pada level yang paling rendah, campuran gasgasnya adalah yang paling ideal untuk menopang kehidupan di bumi. Di lapisan

Lebih terperinci

BAB I PENDAHULUAN. yang akan di ubah menjadi energi listrik, dengan menggunakan sel surya. Sel

BAB I PENDAHULUAN. yang akan di ubah menjadi energi listrik, dengan menggunakan sel surya. Sel 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi Surya adalah sumber energi yang tidak akan pernah habis ketersediaannya dan energi ini juga dapat di manfaatkan sebagai energi alternatif yang akan di ubah

Lebih terperinci

DESAIN PROTOTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT Aep Saepul Uyun, Arif Fadilah. Universitas Darma Persada-Jakarta

DESAIN PROTOTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT Aep Saepul Uyun, Arif Fadilah. Universitas Darma Persada-Jakarta DESAIN PROTOTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT Aep Saepul Uyun, Arif Fadilah 1 Sekolah Pascasarjana Energi Terbarukan, Fakultas Teknik 2 Fakultas Teknologi Kelautan Universitas Darma Persada-Jakarta

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi menjadi peran penting dalam menunjang kehidupan manusia. Ketersediaan energi Indonesia saat ini masih didominasi oleh energi fosil. Energi fosil Indonesia jumlahnya

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Isu energi merupakan isu yang sedang hangat diperdebatkan. Topik dari perdebatan ini adalah berkurangnya persediaan sumber-sumber energi terutama sumber energi berbasis

Lebih terperinci

Lampiran 1. Draft Jurnal MODEL OWC SEBAGAI SEAWALL VERTIKAL UNTUK BANGUNAN PENAHAN EROSI PANTAI

Lampiran 1. Draft Jurnal MODEL OWC SEBAGAI SEAWALL VERTIKAL UNTUK BANGUNAN PENAHAN EROSI PANTAI Lampiran 1. Draft Jurnal MODEL OWC SEBAGAI SEAWALL VERTIKAL UNTUK BANGUNAN PENAHAN EROSI PANTAI Abstrak Energi ombak sebagai salah satu sumber daya bahari merupakan sumber energi alternatif yang berkelanjutan,

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang Perubahan iklim global akibat efek rumah kaca merupakan permasalahan lingkungan serius yang saat ini sedang

BAB I PENDAHULUAN I.1. Latar Belakang Perubahan iklim global akibat efek rumah kaca merupakan permasalahan lingkungan serius yang saat ini sedang BAB I PENDAHULUAN I.1. Latar Belakang Perubahan iklim global akibat efek rumah kaca merupakan permasalahan lingkungan serius yang saat ini sedang dihadapi oleh manusia. Dampak yang ditimbulkan oleh pembakaran

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Energi listrik merupakan salah satu kebutuhan pokok yang cukup penting bagi manusia dalam kehidupan. Saat ini, hampir setiap kegiatan manusia membutuhkan energi

Lebih terperinci

Soal-soal Open Ended Bidang Kimia

Soal-soal Open Ended Bidang Kimia Soal-soal Open Ended Bidang Kimia 1. Fuel cell Permintaan energi di dunia terus meningkat sepanjang tahun, dan menurut Proyek International Energy Outlook 2013 (IEO-2013) konsumsi energi dari 2010 sampai

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Energi merupakan isu yang sangat krusial bagi masyarakat dunia, terutama semenjak terjadinya krisis minyak dunia pada awal dan akhir dekade 1970-an dan pada akhirnya

Lebih terperinci

Pendahuluan ENERGI DAN LISTRIK PERTANIAN. Jika Σ E meningkat kegiatan : - ekonomi - ilmu pengetahuan - apresiasi manusia Akan berkembang dengan subur

Pendahuluan ENERGI DAN LISTRIK PERTANIAN. Jika Σ E meningkat kegiatan : - ekonomi - ilmu pengetahuan - apresiasi manusia Akan berkembang dengan subur ENERGI DAN LISTRIK PERTANIAN Pendahuluan Segala sesuatu di dunia sangat bergantung kepada. Misalnya: - Air untuk mandi hasil pemompaan dengan - sikat gigi sesuatu yang dihasilkan dengan. (proses produk

Lebih terperinci

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. Nur imam (2014110005) 2. Satria Diguna (2014110006) 3. Boni Marianto (2014110011) 4. Ulia Rahman (2014110014) 5. Wahyu Hidayatul

Lebih terperinci

Perubahan iklim dunia: apa dan bagaimana?

Perubahan iklim dunia: apa dan bagaimana? Perubahan iklim dunia: apa dan bagaimana? Oleh : Imam Hambali Pusat Kajian Kemitraan & Pelayanan Jasa Transportasi Kementerian Perhubungan Pada awal Februari 2007 yang lalu Intergovernmental Panel on Climate

Lebih terperinci

BAB I PENDAHULUAN. Tabel 1.1. Potensi Sumber Daya Energi Fosil [1]

BAB I PENDAHULUAN. Tabel 1.1. Potensi Sumber Daya Energi Fosil [1] BAB I PENDAHULUAN I.1 Latar Belakang Ketersediaan sumber daya energi tak terbarukan semakin lama semakin menipis. Pada Outlook Energi Indonesia 2014 yang dikeluarkan oleh Badan Pengkajian dan Penerapan

Lebih terperinci

PENGARUH VARIASI JUMLAH LUBANG BURNER TERHADAP KALORI PEMBAKARAN YANG DIHASILKAN PADA KOMPOR METHANOL DENGAN VARIASI JUMLAH LUBANG 12, 16 DAN 20

PENGARUH VARIASI JUMLAH LUBANG BURNER TERHADAP KALORI PEMBAKARAN YANG DIHASILKAN PADA KOMPOR METHANOL DENGAN VARIASI JUMLAH LUBANG 12, 16 DAN 20 TUGAS AKHIR PENGARUH VARIASI JUMLAH LUBANG BURNER TERHADAP KALORI PEMBAKARAN YANG DIHASILKAN PADA KOMPOR METHANOL DENGAN VARIASI JUMLAH LUBANG 12, 16 DAN 20 Tugas Akhir ini Disusun Guna Memperoleh Gelar

Lebih terperinci

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas I. PENDAHULUAN 1.1. Latar Belakang Energi panas bumi (Geothermal) merupakan sumber energi terbarukan berupa energi thermal (panas) yang dihasilkan dan disimpan di dalam inti bumi. Saat ini energi panas

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

Gambar 1 menunjukkan komponen-komponen yang menjalankan mobil kriogenik (cryocar) ini. Nitrogen cair yang sangat dingin disimpan dalam tangki

Gambar 1 menunjukkan komponen-komponen yang menjalankan mobil kriogenik (cryocar) ini. Nitrogen cair yang sangat dingin disimpan dalam tangki Mobil Hijau Mobil Hijau? Jangan salah sangka dulu! Mobil-mobil masa depan ini disebut Mobil Hijau bukan karena warnanya. Justru warna mobil-mobil ini bermacam-macam, bukan hanya hijau. Mobil ini disebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik BAB I 1. PENDAHULUAN 1.1 Latar Belakang Salah satu kebutuhan energi yang hampir tidak dapat dipisahkan lagi dalam kehidupan manusia pada saat ini adalah kebutuhan energi listrik. Banyak masyarakat aktifitasnya

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Alam menyediakan begitu banyak energi. Potensi sumber daya alam dapat digunakan untuk kebutuhan dan kepentingan manusia. Menurut proses pembentukannya, sumber daya

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pengeringan pakaian dengan menjemur secara langsung di luar ruangan dengan menggunakan panas sinar matahari dan tambahan bantuan angin sudah terjadi selama beratus-ratus

Lebih terperinci

Skema proses penerimaan radiasi matahari oleh bumi

Skema proses penerimaan radiasi matahari oleh bumi Besarnya radiasi yang diserap atau dipantulkan, baik oleh permukaan bumi atau awan berubah-ubah tergantung pada ketebalan awan, kandungan uap air, atau jumlah partikel debu Radiasi datang (100%) Radiasi

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

diharapkan dapat membantu pemerintah dalam mengatasi ketergantungan masyarakat terhadap penggunaan bahan bakar minyak yang ketersediaannya semakin

diharapkan dapat membantu pemerintah dalam mengatasi ketergantungan masyarakat terhadap penggunaan bahan bakar minyak yang ketersediaannya semakin BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Saat ini zaman sudah semakin berkembang dan modern. Peradaban manusia juga ikut berkembang untuk memenuhi kebutuhan hidupnya. Manusia terus berpikir bagaimana

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Batu bara

BAB I PENDAHULUAN. Gambar 1.1 Batu bara BAB I PENDAHULUAN 1.1 LATAR BELAKANG Sumber daya alam atau biasa disingkat SDA adalah sesuatu yang dapat dimanfaatkan untuk berbagai kepentingan dan kebutuhan hidup manusia agar hidup lebih sejahtera yang

Lebih terperinci