VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST)
|
|
|
- Veronika Darmali
- 9 tahun lalu
- Tontonan:
Transkripsi
1 VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST) 3 JARINGAN SYARAF BIOLOGIS (JSB) Otak manusia berisi sekitar 0 sel syaraf (neuron) yang bertugas untuk memproses informasi yang masuk. Tiap sel syaraf dihubungkan dengan sel syaraf lain hingga sekitar 0 4 sinapsis. Tiap sel bekerja seperti suatu prosesor sederhana. Masing-masing sel tersebut saling berinteraksi sehingga mendukung kemampuan kerja otak manusia. akson dari sel syaraf lain sinapsis dendrit badan sel (soma) akson sinyal ke neuron lain Gambar NEURON
2 dendrit 32 akson badan sel sinapsis inti sel (neucleus) Komponen utama neuron dapat dikelompokkan menjadi 3 bagian :. Dendrit = bertugas menerima informasi = jalur input bagi soma 2. Badan sel (soma) = tempat pengolahan informasi 3. Akson = bertugas mengirimkan impuls-impuls sinyal ke sel syaraf lain = jalur output bagi soma Perhatikan gambar-gambar diatas : Sebuah neuron menerima impuls-impuls sinyal (informasi) dari neuron lain melalui dendrit dan mengirimkan sinyal yang dibangkitkan (hasil penjumlahan) oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. Kekuatan sinapsis bisa menurun / meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold). Model Struktur NEURON JSB dendrit badan sel threshold akson summation JARINGAN SYARAF TIRUAN (JST) JST didefinisikan sebagai suatu sistem pemrosesan informasi yang mempunyai karakteristik menyerupai jaringan syaraf manusia (JSB) JST tercipta sebagai suatu generalisasi model matematis dari pemahaman manusia (human cognition) yang didasarkan atas asumsi sebagai berikut :. Pemrosesan informasi terjadi pada elemen sederhana yang disebut neuron 2. Sinyal mengalir diantara sel saraf/neuron melalui suatu sambungan penghubung 3. Setiap sambungan penghubung memiliki bobot yang bersesuaian. Bobot ini akan digunakan untuk menggandakan / mengalikan sinyal yang dikirim melaluinya. 4. Setiap sel syaraf akan menerapkan fungsi aktivasi terhadap sinyal hasil penjumlahan berbobot yang masuk kepadanya untuk menentukan sinyal keluarannya.
3 33 Perbandingan kemampuan otak manusia dengan CPU Parameter Otak manusia CPU Elemen pengolah 0 sinapsis 0 8 transistor Ukuran elemen 0 6 m 0 6 m Energi yang digunakan 30 W 30 W (CPU) Kecepatan pengolah 00 Hz 0 9 Hz Bentuk komputasi Paralel terdistribusi Serial terpusat Fault tolerant Ya Tidak Proses belajar Ya Tidak Kepandaian Selalu Tidak (kadang-kadang) Analogi JST dengan JSB JST J S Biologis Node / input Badan sel (soma) Input Dendrit Output Akson Bobot Sinapsis Model Struktur NEURON JST Input dari neuron lain Bobot Fungsi Aktivasi Output Bobot Output ke neuron lain X X 2 w j w j2 w jn unit pengolah j X 3 input kekuatan hubungan (bobot) output Jaringan syaraf tiruan dapat belajar dari pengalaman, melakukan generalisasi atas contoh-contoh yang diperolehnya dan mengabstraksi karakteristik esensial input bahkan untuk data yang tidak relevan. Algoritma untuk JST beroperasi secara langsung dengan angka sehingga data yang tidak numerik harus diubah menjadi data numerik. JST tidak diprogram untuk menghasilkan keluaran tertentu. Semua keluaran atau kesimpulan yang ditarik oleh jaringan didasarkan pada pengalamannya selama mengikuti proses pembelajaran. Pada proses pembelajaran, ke dalam JST dimasukkan pola-pola input (dan output) lalu jaringan akan diajari untuk memberikan jawaban yang bisa diterima. Pada dasarnya karakteristik JST ditentukan oleh :. Pola hubungan antar neuron (disebut arsitektur jaringan) 2. Metode penentuan bobot-bobot sambungan (disebut dengan pelatihan atau proses belajar jaringan) 3. Fungsi aktivasi
4 ARSITEKTUR JST Pada JST, neuron-neuron akan dikumpulkan dalam lapisan-lapisan (layer) yang disebut dengan lapisan neuron (neuron layers). Neuron-neuron pada satu lapisan akan dihubungkan dengan lapisan-lapisan sebelum dan sesudahnya. Informasi yang diberikan pada jaringan syaraf akan dirambatkan lapisan ke lapisan, mulai dari lapisan input sampai ke lapisan output melalui lapisan tersembunyi (hidden layer). Gambar berikut ini jaringan syaraf dengan 3 lapisan dan bukanlah struktur umum jaringan syaraf karena beberapa jaringan syaraf ada yang tidak memiliki lapisan tersembunyi. 34 Nilai input Neuron-neuron pada lapisan input Neuron-neuron pada lapisan tersembunyi Neuron-neuron pada lapisan output Nilai output Faktor terpenting dalam menentukan kelakuan suatu neuron adalah fungsi aktivasi dan pola bobotnya. Umumnya neuron-neuron yang terletak pada lapisan yang sama akan memiliki keadaan yang sama sehingga pada setiap lapisan yang sama neuron-neuron memiliki fungsi aktivasi yang sama. Bila neuron-neuron pada suatu lapisan (misal lapisan tersembunyi) akan dihubungkan dengan neuron-neuron pada lapisan lain (misal lapisan output) maka setiap neuron pada lapisan tersebut (lapisan tersembunyi) juga harus dihubungkan dengan setiap neuron pada lapisan lainnya (lapisan output) Macam arsitektur JST ada 3 :. Jaringan dengan lapisan tunggal (single layer net) Hanya memiliki lapisan dengan bobot-bobot terhubung. Jaringan ini hanya menerima input kemudian secara langsung akan mengolahnya menjadi output tanpa harus melalui lapisan tersembunyi. Pada gambar berikut neuron-neuron pada kedua lapisan saling berhubungan. Seberapa besar hubungan antara 2 neuron ditentukan oleh bobot yang bersesuaian. Semua unit input akan dihubungkan dengan setiap unit output. Nilai input X X 2 X 3 Lapisan input w w 2 Matriks bobot w 2 w 22 w 3 w 32 Y Y 2 Lapisan output Nilai output
5 2. Jaringan dengan banyak lapisan (multilayer net) Memiliki atau lebih lapisan yang terletak diantara lapisan input dan lapisan output. Umumnya ada lapisan bobot-bobot yang terletak antara 2 lapisan yang bersebelahan. Jaringan dengan banyak lapisan ini dapat menyelesaikan permasalahan yang lebih sulit daripada lapisan tunggal, tentu saja dengan pembelajaran yang lebih rumit. Pada banyak kasus, pembelajaran pada jaringan dengan banyak lapisan ini lebih sukses dalam menyelesaikan masalah. 35 Nilai input X X 2 X 3 Lapisan input v v 2 v 2 v 22 v 3 v 32 Matriks bobot pertama Z Z 2 Lapisan tersembunyi v v 2 Matriks bobot kedua Y Lapisan output Nilai output 3. Jaringan dengan lapisan kompetitif (competitive layer net) Pada jaringan ini sekumpulan neuron bersaing untuk mendapatkan hak menjadi aktif. Umumnya hubungan antar neuron pada lapisan kompetitif ini tidak diperlihatkan pada diagram arsitektur. Gambar berikut menunjukkan salah satu contoh arsitektur jaringan dengan lapisan kompetitif yang memiliki bobot -η A A m A i A j PROSES PEMBELAJARAN JARINGAN Cara belajar JST : Ke dalam JST diinputkan informasi yang sebelumnya telah diketahui hasil keluarannya. Penginputan informasi ini dilakukan lewat node-node atau unit-unit input. Bobot-bobot antarkoneksi dalam suatu arsitektur diberi nilai awal dan kemudian JST dijalankan. Bobot-bobot ini bagi jaringan digunakan untuk belajar dan mengingat suatu informasi. Pengaturan bobot dilakukan secara terus-menerus dan dengan menggunakan kriteria tertentu sampai diperoleh keluaran yang diharapkan.
6 Hal yang ingin dicapai dengan melatih/mengajari JST adalah untuk mencapai keseimbangan antara kemampuan memorisasi dan generalisasi. Kemampuan memorisasi = kemampuan JST untuk memanggil kembali secara sempurna sebuah pola yang telah dipelajari. Kemampuan generalisasi = adalah kemampuan JST untuk menghasilkan respon yang bisa diterima terhadap pola-pola input yang serupa (namun tidak identik) dengan pola-pola yang sebelumnya telah dipelajari. Hal ini sangat bermanfaat bila pada suatu saat ke dalam JST diinputkan informasi baru yang belum pernah dipelajari, maka JST masih akan tetap dapat memberikan tanggapan yang baik, memberikan keluaran yang paling mendekati. Paradigma/metode pembelajaran/pelatihan JST :. Pembelajaran terawasi (supervised learning) Pada pembelajaran ini kumpulan input yang digunakan, output-outputnya telah diketahui. Perbedaan antara output-output aktual dengan output-output yang diinginkan digunakan untuk mengoreksi bobot JST agar JST dapat menghasilkan jawaban sedekat (semirip) mungkin dengan jawaban yang benar yang telah diketahui oleh JST. 2. Pembelajaran tak terawasi (unsupervised learning) / pembelajaran tanpa guru Pada pembelajaran ini, JST mengorganisasi dirinya sendiri untuk membentuk vektorvektor input yang serupa, tanpa menggunakan data atau contoh-contoh pelatihan. Struktur menggunakan dasar data atau korelasi antara pola-pola data yang dieksplorasi. Paradigma pembelajaran ini mengorganisasi pola-pola ke dalam kategori-kategori berdasarkan korelasi yang ada. 3. Gabungan pembelajaran terawasi dan tak terawasi (hybrid) Merupakan kombinasi dari kedua pembelajaran tersebut. Sebagian dari bobot-bobotnya ditentukan melalui pembelajaran terawasi dan sebagian lainnya melalui pembelajaran tak terawasi. FUNGSI AKTIVASI Dipakai ntuk menentukan keluaran suatu neuron Merupakan fungsi yang menggambarkan hubungan antara tingkat aktivasi internal (summation function) yang mungkin berbentuk linier atau nonlinear. Beberapa fungsi aktivasi JST diantaranya hard limit, purelin, dan sigmoid. Yang populer digunakan adalah fungsi sigmoid yang memiliki beberapa varian : sigmoid logaritma, sigmoid biner, sigmoid bipolar, sigmoid tangen. Hard limit memberikan batasan tegas 0 atau, purelin memisahkan secara linier, sigmoid berupa fungsi smooth bernilai antara 0 sampai dengan (bila biner) atau antara - sampai (bila bipolar) SUMMATION FUNCTION Fungsi yang digunakan untuk mencari rata-rata bobot dari semua elemen input. Bentuk sederhananya adalah dengan mengalikan setiap nilai input (Xj) dengan bobotnya (Wij) dan menjumlahkannya (disebut penjumlahan berbobot atau Si) N S = W * X i j= i ij j Diibaratkan dengan sebuah neuron yang memonitor sinyal yang datang dari neuron-neuron lain. Neuron ini menghitung penjumlahan berbobotnya dan kemudian menentukan sinyal untuk dikirim ke neuron-neuron lain. SUM SQUARE ERROR dan ROOT MEAN SQUARE ERROR Perhitungan kesalahan merupakan pengukuran bagaimana jaringan dapat belajar dengan baik sehingga jika dibandingkan dengan pola yang baru akan dengan mudah dikenali. Kesalahan pada keluaran jaringan merupakan selisih antara keluaran sebenarnya (current output) dan keluaran yang diinginkan (desired output) Selisih yang dihasilkan antara keduanya biasanya ditentukan dengan cara dihitung menggunakan suatu persamaan. 36
7 Sum Square Error (SSE) :. Hitung keluaran jaringan syaraf untuk masukan pertama 2. Hitung selisih antara nilai keluaran jaringan syaraf dan nilai target/yang diinginkan untuk setiap keluaran 3. Kuadratkan setiap keluaran kemudian hitung seluruhnya SSE = ( T jp X jp p j 2 ) T jp : nilai keluaran jaringan syaraf X jp : nilai target/yang diinginkan untuk setiap keluaran Root Mean Square Error (RMS Error) :. Hitung SSE 2. Hasilnya dibagi dengan perkalian antara banyaknya data pada pelatihan dan banyaknya keluaran, kemudian diakarkan. RMSError p j ( T T jp : nilai keluaran jaringan syaraf X jp : nilai target/yang diinginkan untuk setiap keluaran n p : jumlah seluruh pola p o : jumlah keluaran = n jp p n o X jp 2 ) 37 Keberhasilan suatu proses belajar JST ditunjukkan dengan besarnya error yang minimum. Pada kondisi inilah JST tersebut dapat digunakan. Ketika ada hal baru yang harus diketahui oleh JST maka proses belajar harus diulang kembali dengan menggunakan informasi-informasi yang lama ditambah dengan informasi-infromasi baru. APLIKASI JARINGAN SYARAF TIRUAN Aerospace autopilot pesawat terbang, simulasi jalur penerbangan, sistem kendali pesawat, perbaikan autopilot, simulasi komponen pesawat Otomotif : sistem kendali otomatis mobil Keuangan dan perbankan pendeteksian uang palsu, evaluator aplikasi kredit, pengidentifikasian pola-pola data pasar saham Militer Pengendali senjata, pendeteksi bom, penelusuran target, pembedaan objek, pengendali sensor, sonar, radar, dan pengolahan sinyal citra yang meliputi kompresi data, ekstraksi bagian istimewa, dan penghilangan derau, pengenalan sinyal atau citra. Elektronik Pembuatan perangkat keras yang bisa mengimplementasikan JST secara efisien, machine vision, pengontrol gerakan dan penglihatan robot, sintesis suara Broadcast : pencarian klip berita melalui pengenalan wajah Keamanan : JST digunakan untuk mengenali mobil dan mengenali wajah oknum Medis : analisis sel kanker Pengenalan suara : pengenalan percakapan, klasifikasi suara Pengenalan tulisan : pengenalan tulisan tangan, penerjemahan tulisan ke dalam tulisan latin Matematika : alat pemodelan masalah dimana bentuk eksplisit dari hubungan antara variabel-variabel tertentu tidak diketahui Pengenalan benda bergerak selain pola dari citra diam, JST juga bisa digunakan untuk mendeteksi citra bergerak dari video seperti citra orang yang bergerak, dll. JST digunakan sebagai detektor virus komputer, penginderaan bau, dll
BAB VIII PENGANTAR JARINGAN SYARAF TIRUAN (JST)
BAB VIII PENGANTAR JARINGAN SYARAF TIRUAN (JST) 8.1 Komponen Jaringan Syaraf JARINGAN SYARAF BIOLOGIS (JSB) Otak manusia berisi sekitar 10 11 sel syaraf (neuron) yang bertugas untuk memproses informasi
FAKULTAS SAINS DAN TEKNOLOGI UIN SUSKA RIAU. IIS AFRIANTY, ST., M.Sc
IIS AFRIANTY, ST., M.Sc Sistem Penilaian Tugas dan Keaktifan : 15% Quiz : 15% UTS : 35% UAS : 35% Toleransi keterlambatan 15 menit Handphone: Silent Costume : aturan UIN Laki-laki Perempuan Menggunakan
JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Pertemuan 11 Diema Hernyka Satyareni, M.Kom
JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Pertemuan 11 Diema Hernyka Satyareni, M.Kom Outline Konsep JST Model Struktur JST Arsitektur JST Aplikasi JST Metode Pembelajaran Fungsi Aktivasi McCulloch
Jaringan syaraf dengan lapisan tunggal
Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang mencoba untuk mensimulasikan proses pembelajaran pada otak manusia. Syaraf manusia Jaringan syaraf dengan lapisan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM INTRODUCTION Jaringan Saraf Tiruan atau JST adalah merupakan salah satu representasi tiruan dari otak manusia yang selalu
Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum
Jaringan Syaraf Tiruan Disusun oleh: Liana Kusuma Ningrum Susilo Nugroho Drajad Maknawi M0105047 M0105068 M01040 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret
BAB VIII JARINGAN SYARAF TIRUAN
BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing
Jaringan Syaraf Tiruan
Jaringan Syaraf Tiruan Pendahuluan Otak Manusia Sejarah Komponen Jaringan Syaraf Arisitektur Jaringan Fungsi Aktivasi Proses Pembelajaran Pembelajaran Terawasi Jaringan Kohonen Referensi Sri Kusumadewi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran
Architecture Net, Simple Neural Net
Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2
BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)
BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam
Jaringan Syaraf Tiruan
07/06/06 Rumusan: Jaringan Syaraf Tiruan Shinta P. Sari Manusia = tangan + kaki + mulut + mata + hidung + Kepala + telinga Otak Manusia Bertugas untuk memproses informasi Seperti prosesor sederhana Masing-masing
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Forecasting Forecasting (peramalan) adalah seni dan ilmu untuk memperkirakan kejadian di masa yang akan datang. Hal ini dapat dilakukan dengan melibatkan data historis dan memproyeksikannya
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Pengenalan Pola Pengenalan pola adalah suatu ilmu untuk mengklasifikasikan atau menggambarkan sesuatu berdasarkan pengukuran kuantitatif fitur (ciri) atau sifat utama dari suatu
Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6
Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia [email protected] Diterima 30 November 2011 Disetujui 14 Desember 2011
BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus
BAB II DASAR TEORI 2.1 Meter Air Gambar 2.1 Meter Air Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor,
JARINGAN SYARAF TIRUAN
JARINGAN SYARAF TIRUAN 8 Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak manusia tersebut. Istilah
BAB 2 TINJAUAN PUSTAKA
7 BAB 2 TINJAUAN PUSTAKA 2.1 Jaringan Syaraf Biologi Otak manusia memiliki struktur yang sangat kompleks dan memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang disebut
BAB II DASAR TEORI. luar dan daging iga sangat umum digunakan di Eropa dan di Amerika Serikat
6 BAB II DASAR TEORI 2.1. Daging Sapi dan Daging Babi 2.1.1.Daging Sapi Daging sapi adalah daging yang diperoleh dari sapi yang biasa dan umum digunakan untuk keperluan konsumsi makanan. Di setiap daerah,
BAB 2 TINJAUAN PUSTAKA
7 BAB 2 TINJAUAN PUSTAKA 21 Anatomi Ayam Pengetahuan tentang anatomi ayam sangat diperlukan dan penting dalam pencegahan dan penanganan penyakit Hal ini karena pengetahuan tersebut dipakai sebagai dasar
BAB II TEORI DASAR. Gambar 2.1 Anatomi Jantung
4 BAB II TEORI DASAR 2.1. Jantung Jantung merupakan otot tubuh yang bersifat unik karena mempunyai sifat membentuk impuls secara automatis dan berkontraksi ritmis [4], yang berupa dua pompa yang dihubungkan
BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning
BAB 2 TINJAUAN PUSTAKA 2.1. Data Mining Data mining adalah kombinasi secara logis antara pengetahuan data, dan analisa statistik yang dikembangkan dalam pengetahuan bisnis atau suatu proses yang menggunakan
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Karyawan atau tenaga kerja adalah bagian
BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu
BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN HANDPHONE DENGAN MENGGUNAKAN METODE BACKPROPAGATION (Studi Kasus : CV.
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN HANDPHONE DENGAN MENGGUNAKAN METODE BACKPROPAGATION (Studi Kasus : CV. Bryan Ponsel) Des Indeks Giawa Mahasiswa Teknik Informatika STMIK Budi
Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series
Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series Oleh: ABD. ROHIM (1206 100 058) Dosen Pembimbing: Prof. Dr. M. Isa Irawan, MT Jurusan Matematika
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar belakang Hujan merupakan salah satu unsur iklim yang berpengaruh pada suatu daerah aliran sungai (DAS). Pengaruh langsung yang dapat diketahui yaitu potensi sumber daya air. Besar
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI. Jasmir, S.Kom, M.Kom
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Pegawai atau karyawan merupakan
BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses
8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1. 1 Latar Belakang Jaringan saraf buatan merupakan kumpulan dari elemen-elemen pemrosesan buatan yang disebut neuron. Sebuah neuron akan mempunyai banyak nilai masukan yang berasal dari
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Beban dan Prakiraan Beban Listrik Di dalam sebuah sistem kelistrikan terdapat 2 sisi yang sangat berbeda, yaitu sisi beban dan sisi pembangkitan. Pada sisi beban atau beban
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Ginjal Ginjal adalah organ tubuh yang berfungsi untuk mengeluarkan urine, yang merupakan sisa hasil metabolisme tubuh dalam bentuk cairan. Ginjal terletak pada dinding bagian luar
PENGENALAN POLA HIV DAN AIDS MENGGUNAKAN ALGORITMA KOHONEN PADA JARINGAN SYARAF TIRUAN BACKPROPAGATION
PENGENALAN POLA HIV DAN AIDS MENGGUNAKAN ALGORITMA KOHONEN PADA JARINGAN SYARAF TIRUAN BACKPROPAGATION Heru Satria Tambunan AMIK Tunas Bangsa Jalan Sudirman Blok A No. -3, Kota Pematang Siantar, Sumatera
BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara
BAB II DASAR TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban
Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat
Prosiding Semirata FMIPA Universitas Lampung, 2013 Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat Andi Ihwan Prodi Fisika FMIPA Untan, Pontianak
PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN :
Prediksi Tinggi Signifikan Gelombang Laut Di Sebagian Wilayah Perairan Indonesia Menggunakan Jaringan Syaraf Tiruan Metode Propagasi Balik Abraham Isahk Bekalani, Yudha Arman, Muhammad Ishak Jumarang Program
METODOLOGI PENELITIAN
III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No. 1, Juni 2015 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan untuk Memprediksi Prestasi
BAB II LANDASAN TEORI
5 BAB II LANDASAN TEORI 2.1. Citra Digital Citra digital dapat didefenisikan sebagai fungsi f(x,y) yaitu dua dimensi, dimana x dan y merupakan koordinat spasial dan f(x,y) disebut dengan intensitas atau
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Barcode Salah satu obyek pengenalan pola yang bisa dipelajari dan akhirnya dapat dikenali yaitu PIN barcode. PIN barcode yang merupakan kode batang yang berfungsi sebagai personal
DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar.
DAFTAR ISI Halaman Judul i Lembar Pengesahan Pembimbing ii Lembar Pengesahan Penguji iii Halaman Persembahan iv Halaman Motto v Kata Pengantar vi Abstraksi viii Daftar Isi ix Daftar Gambar xii Daftar Tabel
BAB I PENDAHULUAN. diatur di dalam otak sebagai pengendali utama tubuh manusia. Otak manusia
BAB I PENDAHULUAN A. Latar Belakang Manusia telah diciptakaan oleh Tuhan dalam bentuk kesempurnaan. Salah satu ciptaan yang menakjubkan adalah otak manusia dimana semua kecerdasaan diatur di dalam otak
ARTIFICIAL NEURAL NETWORK TEKNIK PERAMALAN - A
ARTIFICIAL NEURAL NETWORK CAHYA YUNITA 5213100001 ALVISHA FARRASITA 5213100057 NOVIANTIANDINI 5213100075 TEKNIK PERAMALAN - A MATERI Neural Network Neural Network atau dalam bahasa Indonesia disebut Jaringan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab ini akan dibahas mengenai teori-teori pendukung pada penelitian ini. Adapun teori tersebut yaitu teori jaringan saraf tiruan dan algoritma backpropragation. 2.1. Jaringan Saraf
Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP
Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis
PENYELESAIAN MASALAH TRAVELING SALESMAN PROBLEM DENGAN JARINGAN SARAF SELF ORGANIZING
Media Informatika, Vol. 6, No. 1, Juni 2008, 39-55 ISSN: 0854-4743 PENYELESAIAN MASALAH TRAVELING SALESMAN PROBLEM DENGAN JARINGAN SARAF SELF ORGANIZING Sukma Puspitorini Program Studi Teknik Informatika
APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION Alvama Pattiserlihun, Andreas Setiawan, Suryasatriya Trihandaru Program Studi Fisika, Fakultas Sains dan Matematika,
PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK
Berkala Fisika ISSN : 1410-9662 Vol.18, No.4, Oktober 2015, hal 151-156 PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK Zaenal
BAB 2 TINJAUAN PUSTAKA
5 BAB 2 TINJAUAN PUSTAKA 2.1. Analisis Analisis adalah kemampuan pemecahan masalah subjek kedalam elemen-elemen konstituen, mencari hubungan-hubungan internal dan diantara elemen-elemen, serta mengatur
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan piranti pengenal/pendeteksi yang handal sangat dibutuhkan. Pengembangan teknologi pengenalan yang berupa kecerdasan buatan (Artificial Intelligence)
Perbandingan Arsitektur Multilayer Feedforward Network dengan memakai Topologi Multiprosesor Ring Array Dan Linear Array
Nico Saputro Perbandingan Arsitektur Multilayer Feedforard Netork dengan memakai Topologi Multiprosesor Ring Array Dan Linear Array Abstrak Jaringan Syaraf Tiruan dapat diimplementasikan secara perangkat
BAB II NEURAL NETWORK (NN)
BAB II NEURAL NETWORK (NN) 2.1 Neural Network (NN) Secara umum Neural Network (NN) adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan syaraf manusia. NN ini merupakan
Gambar 2.1 Neuron biologi manusia (Medsker & Liebowitz, 1994)
BAB 2 LANDASAN TEORI 2.1. Jaringan Saraf Biologi Manusia Otak manusia memiliki struktur yang sangat kompleks, serta memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang
PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA
PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA Tesis untuk memenuhi sebagian persyaratan mencapai
IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR
Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI
MATERI DAN METODE. Cara Pengambilan Data
MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Lapang Bagian Ilmu Produksi Ternak Perah, Fakultas Peternakan Institut Pertanian Bogor. Penelitian dilaksanakan selama dua
BAB I PENDAHULUAN. universitas swasta yang memiliki 7 Fakultas dengan 21 Program Studi yang
BAB I PENDAHULUAN A. Latar Belakang Masalah Universitas Muhammadiyah Ponorogo merupakan salah satu universitas swasta yang memiliki 7 Fakultas dengan 21 Program Studi yang terdiri dari : 3 program studi
BAB II LANDASAN TEORI. landasan pembahasan pada pada bab selanjutnya yaitu Konsep Dasar Time Series,
BAB II LANDASAN TEORI Pada bab II dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada pada bab selanjutnya yaitu Konsep Dasar Time Series, Wisatawan Mancanegara, dan
JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORKS)
JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORKS) (Artificial Neural Networks) BAB I PENDAHULUAN 1.1 Sejarah JST JST : merupakan cabang dari Kecerdasan Buatan (Artificial Intelligence ) JST : meniru
Farah Zakiyah Rahmanti
Farah Zakiyah Rahmanti Latar Belakang Struktur Dasar Jaringan Syaraf Manusia Konsep Dasar Permodelan JST Fungsi Aktivasi JST Contoh dan Program Jaringan Sederhana Metode Pelatihan Supervised Learning Unsupervised
POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :
Modifikasi Estimasi Curah Hujan Satelit TRMM Dengan Metode Jaringan Syaraf Tiruan Propagasi Balik Studi Kasus Stasiun Klimatologi Siantan Fanni Aditya 1)2)*, Joko Sampurno 2), Andi Ihwan 2) 1)BMKG Stasiun
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Bagian ini membahas jaringan saraf tiruan, pengenalan tulisan tangan, dan algoritma backpropagation. 2. Jaringan Saraf Tiruan Jaringan saraf tiruan (JST)
KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION. Dhita Azzahra Pancorowati
KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION Dhita Azzahra Pancorowati 1110100053 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi
ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK
Jurnal Computech & Bisnis, Vol. 6, No. 2, Desember 2012, 69-74 ISSN 2442-4943 ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Riffa Haviani Laluma STMIKMardira Indonesia,
lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,
LAMPIRAN 15 Lampiran 1 Algoritme Jaringan Syaraf Tiruan Propagasi Balik Standar Langkah 0: Inisialisasi bobot (bobot awal dengan nilai random yang paling kecil). Langkah 1: Menentukan maksimum epoch, target
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di
KLASIFIKASI ARITMIA EKG MENGGUNAKAN JARINGAN SYARAF TIRUAN DENGAN FUNGSI AKTIVASI ADAPTIF
KLASIFIKASI ARITMIA EKG MENGGUNAKAN JARINGAN SYARAF TIRUAN DENGAN FUNGSI AKTIVASI ADAPTIF Asti Rahma Julian 1, Nanik Suciati 2, Darlis Herumurti 3 Teknik Informatika, Fakultas Teknologi Informasi, ITS
MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA
MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA Ramli e-mail:[email protected] Dosen Tetap Amik Harapan Medan ABSTRAK Jaringan Syaraf Tiruan adalah pemrosesan
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Kecerdasan Buatan Pertemuan 11 Jaringan Syaraf Tiruan (Artificial Neural Network)
Analisis Jaringan Saraf Tiruan dengan Metode Backpropagation Untuk Mendeteksi Gangguan Psikologi
Analisis Jaringan Saraf Tiruan dengan Metode Backpropagation Untuk Mendeteksi Gangguan Psikologi Kiki, Sri Kusumadewi Laboratorium Komputasi & Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi
NEURAL NETWORK BAB II
BAB II II. Teori Dasar II.1 Konsep Jaringan Saraf Tiruan (Artificial Neural Network) Secara biologis jaringan saraf terdiri dari neuron-neuron yang saling berhubungan. Neuron merupakan unit struktural
2.1. Dasar Teori Bandwidth Regression
2.1. Dasar Teori 2.1.1. Bandwidth Bandwidth adalah ukuran kapasitas dari sistem transmisi (Comer, 2004) Bandwidth adalah konsep pengukuran yang sangat penting dalam jaringan, tetapi konsep ini memiliki
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: [email protected] ABSTRAK:
SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON
Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,
2.1 Definisi Operasional Indikator Pemerataan Pendidikan
BAB II TINJAUAN PUSTAKA 2.1 Definisi Operasional Indikator Pemerataan Pendidikan Pendidikan di Indonesia diselenggarakan sesuai dengan sistem pendidikan nasional yang ditetapkan dalam UU No. 20 tahun 2003
JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA
JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA Dahriani Hakim Tanjung STMIK POTENSI UTAMA Jl.K.L.Yos Sudarso Km 6.5 Tanjung Mulia Medan [email protected] Abstrak
OPTICAL CHARACTER RECOGNIZATION (OCR)
LAPORAN JARINGAN SYARAF TIRUAN OPTICAL CHARACTER RECOGNIZATION (OCR) DISUSUN OLEH: DIJAS SCHWARTZ. S (524) FIRNAS NADIRMAN (481) INDAH HERAWATI (520) NORA SISKA PUTRI (511) OKTI RAHMAWATI (522) EKSTENSI
MODEL N EURON NEURON DAN
1 MODEL NEURON DAN ARSITEKTUR JARINGAN 1 1 Model Neuron Mengadopsi esensi dasar dari system syaraf biologi, syaraf tiruan digambarkan sebagai berikut : Menerima input atau masukan (baikdari data yang dimasukkan
PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION
PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION Amriana 1 Program Studi D1 Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik UNTAD ABSTRAK Jaringan saraf tiruan untuk aplikasi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Jaringan Syaraf Tiruan Artificial Neural Network atau Jaringan Syaraf Tiruan (JST) adalah salah satu cabang dari Artificial Intelligence. JST merupakan suatu sistem pemrosesan
BAB I PENDAHULUAN. I.1. Mengapa Jaringan Syaraf Tiruan
BAB I PENDAHULUAN I.1. Mengapa Jaringan Syaraf Tiruan Beberapa tugas dapat dengan mudah dikerjakan oleh manusia, tetapi SULIT dilakukan oleh mesin Von Neuman dengan paradigma konvensional melalui pendekatan
BAB 3 METODOLOGI PENELITIAN
BAB 3 METODOLOGI PENELITIAN 3.1. Data Yang Digunakan Dalam melakukan penelitian ini, penulis membutuhkan data input dalam proses jaringan saraf tiruan backpropagation. Data tersebut akan digunakan sebagai
terinspirasi dari sistem biologi saraf makhluk hidup seperti pemrosesan informasi
25 BAB III JARINGAN SARAF TIRUAN (JST) 3.1 Pengertian JST JST merupakan sebuah model atau pola dalam pemrosesan informasi. Model ini terinspirasi dari sistem biologi saraf makhluk hidup seperti pemrosesan
Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network
Neural Network (NN) adalah suatu prosesor yang melakukan pendistribusian secara besar-besaran, yang memiliki kecenderungan alami untuk menyimpan suatu pengenalan yang pernah dialaminya, dengan kata lain
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Parameter Gauss Untuk dapat melakukan pengolahan data menggunakan ANN, maka terlebih dahulu harus diketahui nilai set data input-output yang akan digunakan. Set data inputnya yaitu
BAB 2 KONSEP DASAR PENGENAL OBJEK
BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis
sinapsis antar neuron di pusat susunan syaraf.
BAB II LANDASAN TEORI 2.1 Sistem Jaringan Syaraf Manusia Tubuh Manusia dilengkapi dengan dua perangkat pengatur seluruh kegiatan tubuh. Kedua perangkat ini merupakan sistem koordinasi yang terdiri dari
IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI
IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI Andi Harmin Program Studi : Teknik Komputer STMIK Profesional Makassar [email protected]
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Regresi Logistik Biner Regresi logistik biner merupakan salah satu pendekatan model matematis yang digunakan untuk menganalisis hubungan beberapa faktor dengan sebuah variabel
PENGENALAN POLA HURUF ROMAWI DENGAN JARINGAN SARAF TIRUAN PERSEPTRON LAPIS JAMAK
PENGENALAN POLA HURUF ROMAWI DENGAN JARINGAN SARAF TIRUAN PERSEPTRON LAPIS JAMAK Eko Budi Wahyono*), Suzuki Syofian**) *) Teknik Elektro, **) Teknik Informatika - Fakultas Teknik Abstrak Pada era modern
JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI
Media Informatika, Vol. 2, No. 2, Desember 2004, 1-11 ISSN: 0854-4743 JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Kiki, Sri Kusumadewi Jurusan Teknik Informatika,
Jurnal Coding, Sistem Komputer Untan Volume 04, No.2 (2016), hal ISSN : x
DETEKSI PENYAKIT PADA TANAMAN JERUK PONTIANAK DENGAN METODE JARINGAN SARAF TIRUAN BACKPROPAGATION [1] Fitrajaya Nugraha, [2] Beni Irawan, [3] Dwi Marisa Midyanti [1] [3] Jurusan Sistem Komputer, Fakultas
