BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1. PengertianUmum Alat pengkondisi udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk mengkondisikan udara yang sejuk dan nyaman bagi tubuh (Cengel, 1998). Untuk negara beriklim tropis yang terdiri dari musim hujan dan musim panas, pada saat musim panas suhu ruangan tinggi sehingga penghuni tidak nyaman. Begitu pun saat musim hujan, kelembaban yang tinggi mengakibatkan ruangan menjadi tidak nyaman. Kondisi nyaman yang dimaksud adalah kondisi nyaman secara thermal yang disebut thermal comfort zone. Untuk mendapatkan kondisi termal yang nyaman maka dilakukan pengkondisian terhadap ruangan yang dihuni. Pengkondisian dilakukan dengan berbagai cara antara lain dengan metode ventilasi alami yaitu dengan memasang jendela dan kisi kisi ventilasi sehingga memungkinkan pertukaran udara dari ruangan ke udara luar. Namun kenyataannya dengan metode alami banyak memiliki keterbatasan seperti suhu udara luar yang masih tinggi, partikel partikel debu yang akhirnya ikut masuk kedalam ruangan sehingga tidak menjamin kebersihan udara. Dengan demikian dibutuhkan alat bantu mekanis untuk mengalirlkan udara segar dari luar ke dalam 7

2 ruangan, metode ventilasi mekanis menggunakan blower yang digerakan oleh motor untuk memperlancar sirkulasi udara ruangan. Ventilasi mekanis ini pun memiliki kekurangan karena suhu udara yang masih tinggi walaupun debu tidak lagi menjadi masalah karena dalam ventilasi mekanis telah dilengkapi dengan filter yang menyaring debu dari udara. Kemudian metode ini juga tidak mampu mengangkat uap air yang ada dalam ruangan sehingga ruangan menjadi lembab. Maka kemudian muncullah pengkondisi udara, dengan pengkondisi udara kelembaban udara dapat diatur, serta udara yang disirkulasikan memiliki temperatur yang rendah sehingga kondisi termal dalam ruangan juga dapat diatur. Kualitas udara yang ada dalam ruangan juga dapat diatur dengan mengalirkan udara segar melalui pengkondisi udara Thermal Comfort Zone Kenyamanan termal didefinisikan sebagai "That condition of mind which expresses satisfaction with the thermal environment (ASHRAE, 1992). Yaitu suatu kondisi pikiran yang mengungkapkan kepuasan akan kodisi termal lingkungan. Definisi lain kenyaman termal adalah suatu interaksi termal antara manusia dan lingkungannya yang memuaskan pikiran manusia. Seorang manusia dikatakan nyaman secara termal apabila ia tidak mengatakan lingkungannya perlu lebih dingin atau lebih panas. Manusia sebagai individu memiliki sifat sifat yang sangat bervariasi seperti sifat fisik, sifat dan kemudahan beradaptasi, sehingga tidak mungkin dapat memberikan suhu ideal yang dapat diterima dan memuaskan untuk semua kelompok tentang lingkungan termal yang nyaman. ASHRAE Standard , Thermal Conditions for Human Occupancy, bertujuan untuk mengetahui kombinasi ruangan dan factor personal yang dapat menghasilkan 8

3 lingkungan termal yang dapat diterima oleh 80% atau lebih penghuni dalam suatu ruangan. Kata diterima dalam hal ini disamakan dengan keadaan kepuasan, dimana kata puas dihubungkan secara tidak langsung dengan suatu keadaan cukup hangat, netral, cukup dingin. Standard ini banyak sekali digunakan berbagai Negara, dan standart ini cocok sekali digunakan untuk ruangan dengan pengkondisian udara buatan. Skala ASHRAE 55 menggunakan skala 7 poin untuk mengukur sensasi kenyamana termal yang dirasakan / Thermal Sensation Vote (TSV). 7-Skala menurut ashrae diberikan nilai +3 (hot), +2 (warm), +1 (slighty warm), 0 (neutral), -1 (slightly cool), -2 (cool), -3 (cold). Selain skala diatas ada juga Skala Bredford yang lebih dikenal dengan nama respon kenyamanan (Comfort response). Skala Bredford juga menggunakan 7 poin yaitu +3 ( much too warm ), +2 (too warm), +1 (comfortably warm), 0 (comfortable), -1 (comfortably cool), -2 (too cool), -3 (much too cold). Jika thermal comfort zone dipetakan dalam diagram psikometri maka akan terlihat seperti pada gambar berikut. 9

4 Gambar 2. 1 Pemetaan Thermal Comfort Zone pada Psikometri (Sumber: ASHRAE,1992 ) 2.3. Faktor Kenyamanan Termal Faktor kenyamanan termal dipengaruhi oleh dua hal yaitu faktor iklim lingkungan dan faktor psikologi (pribadi) penghuninya. Faktor iklim terdiri dari suhu udara, suhu radiasai rata rata, kecepatan udara, kelembaban udara relatif, sedangkan untuk faktor pribadi terdiri dari aktifikat yang dilakukan dan kebiasaan berpakaian penghuninya. 1. Suhu Udara Suhu udara merupakan faktor terpenting yang mempengruhi kenyamanan termal. Berdasarkan beberapa pengujian yang dilakukan diketahui bahwa jika suhu lingkungan naik maka suhu permukaan kulit akan ikut naik. Penentuan suhu nyaman untuk setiap ruangan akan berbeda - beda tergantung kondisi lingkungan itu sendiri. Seperti dijelaskan sebelumnya hal ini dikarenakan suhu permukaan kulit yang melepaskan panas juga berubah. 10

5 Karena itu berdasarkan (SNI, 2001) zona kenyamanan thermal untuk daerah tropis dikelompokkan menjadi: - sejuk nyaman, antara temperatur efektif 20,50C ~ 22,80C. - nyaman optimal, antara temperatur efektif 22,80C ~ 25,80C. - hangat nyaman, antara temperatur efektif 25,80C ~ 27,10C. 2. Kelembaban Relatif. Kelembaban udara relatif dalam ruangan adalah perbandingan antara jumlah uap air yang dikandung oleh udara tersebut dibandingkan dengan jumlah kandungan uap air pada keadaan jenuh pada temperatur udara ruangan tersebut. Untuk daerah tropis, kelembaban udara relatif yang dianjurkan antara 40% ~ 50%,tetapi untuk ruangan yang jumlah orangnya padat seperti ruang pertemuan, kelembaban udara relatif masih diperbolehkan berkisar antara 55% ~ 60%. 3. Pergerakan Udara (Kecepatan Udara) Kecepatan berpengaruh pada kecepatan penguapan pada permukaan kulit, misalnya ketika ruangan bersuhu rendah yang sudah dianggap nyaman memiliki aliran udaranya tertentu, maka ketika suhu ruangan meningkat kecepatan udara juga harus ditingkatkan agar dapat kembali didapatkan keadaan nyaman. Jadi kecepana udara ditingkatkan untuk mengkompensasi kenaikan suhu yang terjadi. Tabel Kecepatan udara terhadap temperatur udara kering 11

6 Gambar 2. 2 Hubungan kecepatan udara terhadap kenaikan temperatur (Sumber : SNI ) 4. Radiasi Permukaan Panas Benda yang memiliki permukaan panas akan melepaskan radiasi ke sekitarnya yang memiliki suhu yang lebih rendah, hal ini tentunya akan mempengaruhi kenyaman bagi penghuni. Suhu udara rata rata untuk permukaan panas diusahakan harus sama atau mendekati temperatur udara bola kering ruangan tersebut. Jika ternyata temperaturnya lebih panas dari temperatur bola kering ruangan (dalam kondisi nyaman) maka temperatur ruangan harus dibuat lebih rendah dari rancangan awal. 5. Aktivitas Penghuni. Aktivitas mempengaruhi kadar metabiosme tubuh sehingga mempengaruhi besarnya panas yang dilepaskan ke lingkungan, hal ini berarti suhu permukaan kulit akan berubah tergantung pada aktifitas yang dilakukan penghuni. Pelepasan kalor untuk tiap aktivitas akan berbeda dikarenakan tingkat metabolisme yang berbeda. Berbagai 12

7 aktivitas dan besaran energi panas yang dilepaskan ke lingkungan yang dilakukan oleh seorang pria dewasa dapat dilihat dalam tebel berikut (SNI, 2001): Tabel Laju pertambahan panas dari penghuni dalam ruangan (Sumber : SNI ) Selain dari besarnya kalor yang dilepaskan seperti dalam tabel diatas penghuni juga dapat dinyatakan dalam satuan met untuk satuan metabolisme, seperti dalam tabel berikut. Dimana 1 met = 58,2 Watt/m 2, m 2 dalam hal ini menunjukkan luas permukaan kulit tubuh. Sebagai gambaran pria dewasa dengan tinggi 180 cm dan berat badan 70 kg memiliki luas permukaan kulit 1,9 m 2. Berikut tabel metabolisme untuk berbagai aktivitas. 13

8 Tabel Besarnya metabolisme untuk berbagai aktifitas (Sumber : SNI ) 6. Pakaian yang dipakai Besarnya kalor yang dilepaskan oleh tubuh tentu saja akan terhalang oleh pakaian, jenis pakaian dan tebal bahan pakaian akan memiliki nilai isolasi termal (nilai konduksi bahan). Ketika tubuh suhu tinggi tinggi maka pakaian akan menjadi penghalang pelepasan kalor dari tubuh penghuni ke sekitarnya, begitu pula 14

9 sebaliknya ketika suhu tubuh lebih rendah maka pakaian akan menjadi isolator tubuh terhadap penyerapan kalor dari lingkungan. Isolasi termal dari bahan pakaian yang dipakai dinyatakan dalam clo, dimana : 1 clo = 0,155 m 2 K / Watt. Pada tebel 2.4 dapat dilihat besarnya isolasi thermal untuk berbagai jenis pakaian. Tabel Isolasi Thermal untuk berbagai jenis pakaian (Sumber : SNI ) 2.4. Peralatan Tata Udara Ada dua system utama Air conditioning yaitu Direct Expansion, dimana udara didinginkan langsung oleh refrigeran yang mengalir langsung melalui heat exchanger (evaporator) pada unit indoor dan Chiller system (central system), pada sistem ini refrigran pada sistem refrigrasi mendinginkan fluida pendingin yang melewati evaporator untuk kemudian digunakan mendinginkan udara di dalam ruangan melalui heat exchanger (cooling coil) yang ada pada FCU atau AHU. Peralatan utama yang utama pada sistem sentral Chiller adalah: 15

10 1. Chiller Chiller kompresi uap dibedakan berdasarkan fluida pendinginnya menjadi dua kelompok besar yaitu Water Cooled Chiller dan Air Cooled Chiller. Fluida pendingin yang dimaksud adalah pendingin yang mendinginkan refrigran yang mengalir melalui condenser dalam proses kompresi uap. Perbedaan pendingin ini dapat dilihat pada kontruksi condenser chiller, jika berpendingin udara menggunakan fin & tube heat exchanger, sementara yang berpendingin air menggunakan shell & tube heat exchanger. Gambar 2. 3 Water Cooled Screw Chiller (Sumber: CARRIER Inc.) Sementara jika di kelompokkan berdasarkan jenis kompresornya maka ada 4 jenis yaitu Scroll Chiller, Reciprocating Chiller, Screw Chiller, dan Centrifugal Chiller. Keempat jenis chiller ini memiliki rentang pendinginan yang berbeda yang mempengaruhi efisiensi mesin, dimulai dari scroll chiller yang akan cocok untuk beban pendingian terendah hingga centrifugal chiller yang memiliki kapasitas pendinginan yang tertinggi. Sebagai contoh ketika beban pendinginan cukup besar maka akan sangat tidak efisien ketika kita memilih menggunakan beberapa scroll chiller, begitu juga sebaliknya ketika beban rendah maka penggunaan centrifugal chiller juga tidak efisien. 16

11 Chiller merupakan alat paling utama dalam sistem pendingin terpusat. Pada chiller terjadi siklus refrigrasi yang menghasilkan air dingin yang digunakan untuk mendinginkan udara dalam ruang yang dikondisikan. Setelah menyerap panas dari ruang yang dikondisikan maka air pendingin kembali disirkulasikan melalui chiller untuk didinginkan kembali. Gambar Air Cooled Reciprocating Chiller (Sumber: CARRIER Inc.) 2. Pompa Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu sistem pemipaan dengan cara menambahkan energi pada cairan yang dipindahkan dan berlangsung secara terus menerus. Pompa beroperasi dengan prinsip membuat perbedaan tekanan antara bagian masuk (suction) dengan bagian keluar (discharge). Dengan kata lain, pompa berfungsi mengubah tenaga mekanis dari suatu sumber tenaga (penggerak) menjadi tenaga kinetis 17

12 (kecepatan), dimana tenaga ini berguna untuk mengalirkan cairan dan mengatasi hambatan yang ada sepanjang pengaliran. Gambar 2. 5 Pompa Sentrifugal dan Aksesorisnya (Sumber: Dokumen Pribadi) Pada sistem pendingin sentral pompa digunakan untuk mengalirkan air pendingin dari chiller ke seluruh sistem pendingin baik itu pada FCU maupun AHU. Melalui media sistem pemipaan pompa harus mampu mengalirkan air sesuai flow rate yang dibutuhkan oleh FCU / AHU. 3. Fan Coil Unit & Air Handling Unit Fan Coil Unit dan Air Handling Unit memiliki fungsi yang sama yaitu untuk menyerap panas udara dalam ruang yang dikondisikan. Udara disirkulasikan menggunakan blower melalui coil pendingin (fin & tube heat exchanger) yang menyerap panas udara yang melewatinya. Coil kemudian memindahkan panas ke dalam air sejuk yang dipompakan dari chiller. 18

13 Gambar 2. 6 Ducted Fan Coil Unit (Sumber: CARRIER Inc.) Gambar 2. 7 Cassette Fan Coil Unit (Sumber: CARRIER Inc.) Meskipun memiliki fungsi umum yang sama FCU dan AHU tetap memiliki perbedaan. Perbedaan mendasar dari keduanya terletak pada rentang kapasitas pendinginan dan filterisasinya. AHU memiliki kapasitas pendinginan yang besar dibandingkan dengan FCU dan filterisasi pada AHU juga lebih presisi dibandingkan dengan FCU, sehingga AHU memiliku tekanan statis yang relatif lebih besar untuk mengatasi tahanan pada filter. 19

14 Gambar 2. 8 Air Handling Unit (Sumber: CARRIER Inc.) Untuk mensirkulasikan udara kedalam ruangan yang dikondisikan baik FCU maupun AHU menggunakan saluran distribusi yang disebut ducting. Baik pada sisi suplainya maupun pada sisi return. Dengan menggunakan ducting maka udara dingin dapat disalurkan menyeluruh dalam ruangan untuk mendapatkan kondisi udara yang merata pada ruangan yang dikondisikan. 4. Cooling tower Unit pemindah panas ini hanya dipakai pada Chiller berpendingin air. Unit ini berfungsi untuk memindahkan / membuang panas yang diserap air pendingin pada condenser chiller. Untuk memindahkan massa air pendingin peralatan ini membutuhkan bantuan pompa sirkulasi. Dengan desain sederhana, terdiri dari dua komponen utama yaitu sirip fiber dan blower unit ini memindahkan panas dari air yang jatuhkan (spray) melalui sirip fiber, sementara blower menghisap udara disekitarnya melalui sirip fiber, sehingga air yang 20

15 meleleh melalui sirip sirip tersebut akan diserap panasnya oleh aliran udara yang lewat untuk kemudian panas dibuang ke lingkungan bersama udara Perpindahan Panas Gambar 2. 9 Cooling Tower (Sumber: Dokumen Pribadi) Panas dikenal manusia sebagai sensasi yang menghasilkan perasaan hangat atau bahkan panas. Penas merupakan salah satu bentuk energy, dan energi tidak dapat dimusnahkan ataupun diciptakan tetapi bentuk energi apapun dapat dirubah bentuknya. Maka dalam konsep penkondisian udara energi panas hanya dipindahkan dari ruangan yang dikondisikan keluar ruangan. Panas merupakan energi yang terbentuk karena perbedaan temperatur. Panas berpindah dari satu wilayah atau bagian ke wilayah lain melalui tiga metode yaitu: 1. Konduksi 2. Konveksi 3. Radiasi Ketiga metode ini dapat berlangsung jika terdapat perbedaan temperatur antara kedua benda. Dalam kaitannya dengan penkondisian udara, perpindahan panas 21

16 merupakan dasar perhitungan desain pengkondisian udara. Perpindahan panas menjadi dasar perhitungan beban pendinginan, kapasitas unit, ukuran heat exchanger, serta aliran fluida dalam peralatan pengkondisian udara Konduksi Konduksi adalah perpindahan energi (panas) dari zat yang memiliki energi lebih banyak ke zat didekatnya yang memiliki energi lebih sedikit sebagai akibat interaksi antar partikel. Konduksi dapat terjadi pada zat padat cair maupun gas. Pada cairan dan gas perpindahan panas terjadi akibat tumbukan atau difusi molekul yang selalu bergerak. Sementara pada benda padat perpindahan panas terjadi karena getaran molekul dalam kisi kisi dan perpindahan energi yang dibawa oleh elektron yang bergerak bebas. Konduksi terjadi melalui perantara dan tidak disertai perpindahan masa zat perantara. Laju perpindahan panas konduksi pada perantara tergantung pada bentuk, ketebalan, bahan, dan perbedaan temperaturnya. Berdasarkan yang telah dilakukan besarnya laju perpindahan panas didapatkan kesimpulan bahwa besarnya laju perpindahan melalui permukaan rata sama dengan pebedaan temperatur dan luas area permukaan dan berbanding terbalik dengan ketebalannya (Cengel, 1998) dan dapat dirumuskan sebagai berikut:...(2.5.1) Dimana: q cond : Laju perpindahan panas (W) k : Konduktivitas thermal (W/m C) A : Luas Area (m 2 ) : Perbedaan Temperatur ( C) 22

17 : Ketebalan Bidang (m) Konduktivitas thermal merupakan ukuran kemapuan material untuk mentransmisikan panas. Dalam tabel berikut dapat dilihat konduktivitas thermal dari beberapa material: Tabel 2. 5 Konduktivitas thermal material (Sumber: (ASHRAE, 1992) Konveksi Konveksi merupakan perpindahan panas yang terjadi disertai perpindahan masa. Konveksi umum terjadi pada cairan dan gas. Semakin cepat aliran fluida maka semakin cepat perpindahan panas terjadi. Dengan tidak adanya pergerakan fluida maka perpindahan panas pada permukaan padat terjadi karena konduksi murni. Ada dua jenis konveksi yang dikenal yaitu, konveksi alami dan konveksi paksaan. Konveksi alami terjadi karena energi yang ditransmisikan pada fluida disekitarnya sehingga fluida menjadi panas dan bergerak untuk digantikan oleh fluida yang lebih dingin. Konveksi alami terjadi murni karena perbedaan masa jenis fluida. 23

18 Konveksi paksa terjadi ketika adanya gaya yang memaksa fluida mengalir menuju permukaan panas. Perpindahan panas yang disertai perubahan fasa juga dikategorikan sebagai konveksi. Walaupun perpindahan panas jenis ini tergolong rumit, laju perpindahan panas konveksi telah diteliti dan diketahui sebanding dengan perbedaan temperaturnya dan berdasarkan hukum pendinginan Newton dirumuskan (Cengel, 1998):...(2.5.2) Dimana: h : Koefisien Konveksi (W/m 2 C) : Luas Area Permukaan (m 2 ) : Perbedaan temperatur antara permukaan panas dengan fluida ( C) Radiasi Radiasi merupakan energi yang dilepaskan oleh zat dalam bentuk gelombang elektromagnet atau Photon, sebagai akibat perubahan konfigurasi elektron dari atom atau molekul (Cengel, 1998). Berdasarkan hukum Stefan-Boltzman, laju perpindahan panas radiasi yang dipancarkan pada temperatur absolut disebut dengan blackbody radiation, pada kenyataannya laju perpindahan panas radiasi pada suatu permukaan lebih kecil dari blackbody dan dirumuskan sebagai berikut:...(2.5.3) 24

19 Dimana : : Kekuatan pancaran, : Radiasi maksimum yang dipancarkan oleh permukaan panas (W) : Konstanta Stefan-Boltzmann (5.67x10-8 W/m 2 K 4 ) : Luas area permukaan (m 2 ) : Temperatur absolut (K) Sementara besarnya energi (panas) yang diterima oleh suatu permukaan tergantung pada kemampuan serap material tersebut. Perbedaan daya pancar dan daya serap antara dua permukaan berbeda temperatur merupakan laju besarnya laju perpindahan panas radiasi. Ketika kedua permukaan dalam temperatur absolutnya, maka besarnya laju radiasi adalah:... (2.5.4) Dimana : : Temperatur absolut permukaan sekitar (K) Koefisien Perpindahan Panas Suatu material memiliki nilai tahanan yang menahan laju aliran panas yang melewatinya. Nilai tahanan pada suatu material nilainya bebanding terbalik terhadap nilai koefisien perpindahan panasnya. Pada perpindahan panas nilai tahanan berbanding terbalik terhadap koefisien konduksinya per satuan panjang.... (2.5.5) 25

20 Sementara pada perpindahan panas konveksi dan radiasi nilai tahanannya masing masing dinyatakan dengan persamaan:... (2.5.6)... (2.5.7) Pada dinding atau panel yang terdiri dari beberapa material maka tercipta jaringan tahanan yang berlapis, maka digunakan koefisien perpindahan panas total. Koefisien perpindahan panas total (U-Factor) ini merupakan nilai kebalikan dari nilai tahanan thermal total, yang dinyatakan dengan persamaan:... (2.5.8) Dimana: U : Koefisien perpindahan panas total (W/m2 C) R : Nilai tahanan total (m 2 C /W) 2.6. Psikometri Psikometri merupakan pengkajian thermodinamika terhadap properti udara campuran. Umumnya digunakan untuk menggambarkan dan menganalisa karakteristik dari berbagai proses dan siklus pengkondisian udara (ASHRAE, 1997). Dalam pengkondisian udara, udara harus melalui salah satu atau beberapa proses sebagai berikut: 26

21 1. Cooling (Pendinginan) : digunakan untuk mengontrol temperatur yaitu dengan menurunkan temperatur udara 2. Heating (Pemanasan) : Digunakan untuk mengontrol temperatur yaitu dengan menaikkan temperatur udara 3. Dehumidification : digunakan untuk mengontrol kelembaban udara yaitu dengan mengurangi kandungan uap air dalam udara 4. Humidification : digunakan untuk mengontrol kelembaban udara dengan menambahkan kandungan uap air dalam udara. Analisa psikometri dapat digunakan untuk memperkirakan perubahan lingkungan ketika panas atau uap air berubah dalam suatu sistem. Kegunaan analisa ini adalah untuk menentukan besarnya jumlah aliran udara (Flow Rate ) yang harus ditiupkan kedalam sistem serta untuk memudahkan pemilihan peralatan utama tata udara Definisi Udara Udara didefinisikan pada tiga jenis untuk berbagai kondisi yaitu: 1. Udara atmosfir : udara yang mengandung berbagai gas seperti oksigen, nitrogen, karbon dioksida, gas lain, dan elemen polutan lain seperti asap, debu, serta polutan lain. Udara ini yang kita gunakan untuk bernapas dan digunakan untuk ventilasi. 2. Udara kering : Merupakan udara atmosfir yang telah dihilangkan polutan dan uap airnya, udara ini digunakan sebagai dasar analisa psikometrik. 3. Udara lembab (basah) : merupakan campuran antara udara kering dan uap air. 27

22 2.6.2 Kelembaban udara Kelembaban udara mendefinisikan berapa besarnya jumlah uap air yang terkandung dalam satuan massa udara. Rasio kelembaban W, merupakan rasio campuran antara uap air dengan satuan masa udara. /...(2.6.1) Dimana: W : Rasio kelembaban (kg w / kg a ) : Massa air (kg w ) : Massa udara (kg a ) Sementara kelembaban spesifik yang dinotasikan dengan q, merupakan perbandingan massa uap air terhadap total massa udara campuran. Besarnya dinyatakan dengan persamaan: /...(2.6.2) Bentuk lain untuk mendefinisikan kelembaban adalah dengan kelembaban absolut yang dinotasikan dengan d v (kg w /m 3 ) kelembaban absolut merupakan perbandingan masa uap air dalam satuan volume udara campuran. /...(2.6.3) Dimana V adalah volume udara campuran dalam satuan (m 3 ). Kelembaban relatif merupakan bentuk yang umum digunakan untuk mendefinisikan kondisi kelembaban udara. Kelembaban relatif RH (%), merupakan 28

23 perbandingan masa uap air terhadap kapasitas maksimal uap air yang mampu diterima oleh udara sampai menjadi jenuh., %...(2.6.4) 2.7. Beban Pendinginan Beban Pendinginan merupakan jumlah panas yang harus dipindahkan dari dalam ruangan terkondisi untuk mencapai temperatur dan kelembaban optimal. Panas yang dimaksud adalah panas yang dihasilkan dari dalam ruangan maupun tambahan panas dari luar. Dalam kenyataannya jumlah panas yang masuk dalam suatu sistem pengkondisian udara berubah ubah, dikarenakan faktor faktor yang mempengaruhi penambahan panas tersebut juga berubah. Sebagai contoh panas yang dipengaruhi oleh kondisi lingkungan luar berubah seiring waktu yaitu udara akan lebih dingin di pagi hari dan akan semakin panas menuju sore hari. Beban pendinginan dalam ruangan terdiri dari dua komponen yaitu (SNI, 2001): 1. External Load ( Beban pendinginan luar) : beban ini diakibatkan penambahan kalor dari luar ruangan yang dikondisikan terdiri dari: 1. Radiasi matahari melalui kaca 2. Radiasi matahari melalui dinding dan atap 3. Perpindahan panas Konduksi akibat perbedaan temperatur luar denga ruangan yang terkondisi 4. Panas infiltrasi dari pintu dan jendela 5. Panas karena ventilasi 29

24 2. Internal Load (Beban Pendinginan dalam) beban ini diakibatkan penambahan kalor dari dalam ruangan yang dikondisikan, terdiri dari: 1. Panas yang ditimbuklan oleh aktivitas penghuni 2. Panas akibat lampu penerangan dan peralatan listrik 3. Panas akibat peralatan lain. Dalam sistem pengkondisian ada dua jenis panas yang dikenal yaitu: 1. Panas sensibel : Beban panas yang mempengaruhi perubahan temperatur tanpa mempengaruhi perubahan fasa. Semua jenis panas yang mempengaruhi temperatur bola kering disebut beban panas sensibel. 2. Panas laten : Beban panas yang mempengaruhi perubahan fasa tanpa memepengaruhi perubahan temperatur. Panas ini mempengaruhi perubahan kelembaban udara. Sesuai dengan ASHRAE Handbook 1997 Fundamentals dikenal 3 jenis metode perhitungan beban pendiginan yaitu: 1. Transfer Function Method (TFM) 2. Total Ekuivalen Temperatur Difference Time Average(TETD/TA) 3. Cooling Load Temperatur Difference / Solar Cooling Load / Cooling Lod Factor (CLTD/SCL/CLF) Banyak faktor yang mempengaruhi beban pendinginan, bahkan sebagian sangat sulit untuk dinyatakan secara detail besarnya. Banyak jenis beban yang bervariasi besarnya dalam waktu satu hari, karena besarnya nilai maksimum yag beragam dan terjadi tidak bersamaan dalam satu waktu maka perhitungan beban menjadi sulit dilakukan dengan presisi, maka dilakukan alasisa pada tiap komponen beban untuk mendapatkan perhitungan beban maksimum pada suatu ruang yang akan dikondisikan. 30

25 Dalam TFM perhitungan beban dilakukan dengan menggunakan temperatur udara luar tanpa perubahan akibat radiasi sebagai temperatur acuan udara luar. Kemudian temperatur dalam ruangan dianggap konsatan, serta konduktivitas thermal bahan pada sisi luar dan dalam ruang yang terkondisi dianggap sama. CLTD merupakan perhitungan beban berdasarkan dan merupakan penyempurnaan TFM.Pada metode ini TFM digunakan untuk memperkirakan beban pendinginan pada tiga komponen utama penambah beban yaitu, perhitungan trnasmisi pada permukaan, radiasi matahari serta perhitungan beban internal ruangan. Dalam CLTD data telah ditabulasikan baik koefisien perpndahan panas maupun koefisien perbedaan temperaturnya. TETD menggunakan dasar persiapan perhitungan sama dengan TFM, dimana sumber beban panas dikelompokkan menjadi beberapa kelompok. TETD merupakan prosedur perhitungan manual untuk beban pendinginan, sama dengan CLTD perhitungan ini menggunakan koefisien perbedaan temperatur, namun dalam metode ini koefisien tiap komponen disamaratakan baik untuk dinding maupun untuk atap. Dalam penulisan ini akan dibahas perhitungan berdasarkan CLTD maka komponen dan cara perhitungan perhitungan beban pendinginan akan dijelaskan berdasarkan metode tersebut Beban Pendinginan Luar (External) Komponen beban ini terdiri dari: 1. Beban Radiasi Matahari melalui kaca Radiasi yang terjadi pada kaca tidak semuanya masuk ke ruangan karena bangunan umumnya memiliki peneduh, baik peneduh dalam ruangan maupun peneduh luar ruangan. Dengan dasar inilah kemudian ada koefisien peneduh (SC) yang telah 31

26 ditabelkan oleh ASHRAE. Inc. Kemudian radiasi oleh matahari juga telah ditabelkan per satuan luas, sehingga didapatkan persamaan:.....(2.7.1) Dimana: q : Beban pendinginan (W) A : Luas permukaan kaca (m 2 ) SC : Koefisien penduh SCL : Faktor beban pendinginan matahari 2. Beban Konduksi melalui kaca, dinding, atap Sesuai dengan persamaan perpindahan panas konduksi ( persamaan 2.4.1) digunakan sebagai dasar perhitungan beban ini. Konduktivitas panas untuk tiap material kemudian diganti dengan koefisien perpindahan panas untuk satu jenis dinding (persatuan panjangnya) maka didapatkan persamaan:....(2.7.2) Nilai perbedaan temperatur selubung gedung pun kemudian ditabelkan untuk tiap jenis material sehingga didapatkan persamaan:.....(2.7.3) Dimana: q : Beban pendinginan (W) U : Koefisien perpindahan panas untuk atap, dinding atau kaca(w/ m 2 K) A : Luas permukaan ) : Perbedaan temperatur CLTD : Perbedaan temperatur beban pendinginan 3. Beban pendinginan melalui pertisi, langit langit dan lantai 32

27 Beban ini terjadi akibat perbedaan temperatur antara ruang yang dikondisikan dengan lingkungan sekitarnya yang bukan merupakan dinding luar. Panas yang ditransmisikan dihitung sama dengan persamaan (2.7.2) Beban Pendinginan Dalam (Internal) Komponen beban ini terdiri dari: 1. Penghuni Penghuni dalam ruangan yang terkondisi akan melepaskan kalor ke sekelilingnya melalui konveksi secara alami, hal ini dikarenakan adanya perbedaan temperatur antara tubuh dan sekelilingnya. Besarnya kalor yang dilepaskan oleh tubuh dapat dilihat pada tabel 2.2. Pada metode CLTD besarnya beban panas dari penghui dirumuskan sebagai berikut:.....(2.7.4) Dimana: q : Beban pendinginan (W) N : Jumlah Penghuni Q : Penambahan panas sensibel dan laten penghuni (W) CLF : Cooling Load Factor 2. Penerangan/Lampu Lampu memiliki nilai kalor yang dilepaskan baik secara konveksi dari permukaan lampu maupun secara radisai melalui cahaya yang dipancarkan oleh lampu, besarnya beban kalor oleh penerangan atau lampu dinyatakan dengan persamaan:....(2.7.5) Dimana : q : Beban pendinginan (W) 33

28 W : Daya listrik dari lampu (W) : Faktor penggunaan pencahayaan : Faktor toleransi khusus CLF : Cooling Load Factor 3. Daya Listrik Seperti kita ketahui tidak semua energi listrik dapat spenuhnya dirubah menjadi energi yang berguna dan akan menghasilkan sisa berupa panas yang dilepas ke sekelilingnya. Energi menjadi beban pendinginan yang dirumuskan sebagai berikut:.....(2.7.6) Dimana: P : Daya listrik peralatan (W) E F : Faktor Efisiensi CLF : Cooling Load Factor 4. Peralatan lainnya Sementara peralatan lain juga memiliki beban panas yang dilepaskan baik berupa beban sensibel maupun beban laten, yang dirumuskan sebagai berikut: Penambahan kalor sensibel :.....(2.7.7) Dan penambahan kalor laten Atau....(2.7.8).....(2.7.9) Dimana : q sensibel : Beban kalor sensibel (W) 34

29 q laten : Beban kalor laten(w) q is : Penambahan kalor sensibel peralatan (W) q il : Penambahan kalor laten peralatan (W) F ua : Faktor pemakaian F ra : Faktor radiasi F fl : Faktor kerugian pembakaran Beban Pendinginan Ventilasi dan Infiltrasi Terkadang dalam satu ruangn yang terkondisi diperlukan udara segar untuk mengganti udara yang tersirkulasi didalam ruangan. Udara yang sengaja dimasukkan kedalam ruangan merupakan ventilasi, sementara ada pula udara yang tidak diharapkan tetapi ikut masuk kedalam ruangan akibat perbedaan tekanan udara ini merupakan udara infiltrasi. Udara infiltrasi masuk kedalam ruangan melalui celah pintu, jendela, atau dapat juga ikut masuk ketika pintu atau jendela terbuka. Udara luar memiliki temperatur kelembaban yang berbeda dari ruangan yang dikondisikan sehigga menambah beban pendinginan, besarnya beban ini dirumuskan sebagai berikut,,.....(2.7.10),....(2.7.11),.....(2.7.12) Dimana: Q : Besarnya Ventilasi / Infiltrasi (m 3 /s) T o : Temperatur udara luar ( C) T i : Temperatur udara dalam ruangan ( C) W o : Kandungan uap air udara luar (kg w / kg a ) W i : Kandungan uap air udara dalam ruangan (kg w / kg a ) 35

30 H o : Enthalphi udara luar (kj/kg) H i : Enthalphi udara dalam ruangan(kj/kg) 2.8. Ducting Ducting merupakan saluran distribusi yang menyalurkan udara ke seluruh ruangan yang dikondisikan. Ducting ini harus mampu mengalirkan udara secara efisien sehinga biaya operasinya rendah, kebisingan yang ditimbukan rendah, penambahan beban panas yang ada dalam ducting dan kerugian gesekan dalam ducting rendah. Ducting juga harus mampu menahan tekanan udara didalamnya sehingga mampu mengalirkan udara dengan baik ke seluruh ruangan yang dikondisikan. Berdasarkan bentuk penampangnya, ducting dapat digologkan menjadi 3 jenis, yaitu round duct (ducting bulat), square duct (ducting persegi), dan flat oval duct (ducting oval).ketiga jenis ducting ini memiliki karakteristik masing-masing namun yang menjadi perbedaan utama adalah koefisien geseknya (friction coefcient) Metode Perhitungan Ducting Hal utama yang diperhatikan dalam perhitungan ducting adalah biaya instalasi (initial) dan biaya operasinya. Biaya operasi ducting merupakan penyebab utama ducting harus memiliki tekanan statis yang serendah mungkin sehingga energi yang hilang dalam sistem dapat diminimalkan. Ada tiga metode perhitungan ducting yang dikenal yaitu: 1. Equal Friction Method 2. Static RegainMethod 3. Velocity Reduction Method 36

31 Equal friction methode merupakan metode yang paling banyak digunakan, karena kemudahan dan fleksibilitas perhitungannya. Pada metode ini ditentukan terlebih dahulu kerugian tekanan per satuan panjang yang diguakan sebagai dasar untuk perhitungan pada bagian sistem yang lain. Keuntungan metode ini adalah dapat memberikan pengurangan kecepatan fluida pada bagian - bagian sistemnya sehingga kebisingan dapat sistem diantisipasi Aliran Fluida dalam Ducting Fluida dalam hal ini udara yang mengalir dalam ducting akan mengalami berbagai halangan yang mengakibatkan terjadinya turbelensi dalam alirannya. Seperti kita tahu fluida yang mengalir dalam suatu saluran akan mengalami dinamika gerak yang mengakibatkan perubahan aliran fluida. Kita ketahui dalam mekanika fluida aliran suatu fluida dapat dibedakan menjadi 3 jenis aliran yaitu: 1. Aliran Laminer, yaitu aliran fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar ini viskositas berfungsi untuk meredam kecendrungan terjadinya gerakan relatif antara lapisan. Sehingga aliran laminar memenuhi hukum viskositas Newton yaitu : τ = µ dy/du 2. Aliran turbelen, yaitu Aliran dimana pergerakan dari partikel partikel fluida sangat tidak menentu karena mengalami percampuran serta putaran partikel antar lapisan, yang mengakibatkan saling tukar momentum dari satu bagian fluida kebagian fluida yang lain dalam skala yang besar. Dalam keadaan aliran turbulen maka turbulensi yang terjadi membangkitkan 37

32 tegangan geser yang merata diseluruh fluida sehingga menghasilkan kerugian kerugian aliran. 3. Aliran transisi merupakan aliran peralihan dari aliran laminar ke aliran turbulen. Pada aliran fluida yang mengalir dalam suatu saluran akan terjadi kerugian akibat fitting (elbow, junction, branch) juga akibat gesekan fluida dengan dinding ducting. Kerugian ini harus mampu di atasi oleh fan sehingga udara dapat terdistribusi dengan tepat ke seluruh ruangan Persamaan Kontinuitas Aliran Aliran suatu fluida yang melewati suatu penampang memiliki kecepatan dan laju aliran. Pada fluida tak termampatkan besarnya laju aliran fluida dianggap sama sehingga ketika luas penampang berubah maka akan terjadi perubahan pada kecepatan aliran fluida. Besarnya laju aliran fuida dalam saluran dinyatakan dengan persamaan:.....(2.9.1) Dimana: Q : Laju volume aliran (m 3 /s) V : Kecepatan Aliran (m/s) A : Luas penampang (m 2 ) Sementara ketika suatu aliran fluda berubah penampangnya maka besarnya aliran akan tetap sama (Q1 = Q2) tetapi kecepatannya akan berubah, dan dinyatakan dengan persamaan:....(2.9.2) Persamaan ini berlaku pada fluida tak termampatkan dengan asumsi tidak ada kerugian aliran dalam saluran penampang. Namun kenyataanya aliran fluida tidak ada 38

33 yang ideal akan terjadi kerugian akibat gesekan antara fluida dengan dinding penampang Hukum Bernouli Prinsip Hukum Bernoulli dalam mekanika fluida menyatakan bahwa pada suatu aliran fluida jumlah energi pada suatu titik di dalam aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama (Brooks, 2010). Dengan = maka persamaan tersebut menjadi:...(2.9.3).....(2.9.4) Namun pada kenyataannya di lapangan terjadi kerugian/losses (hl) baik karena gesekan antara fluida dengan saluran maupun head losses akibat belokan. Head losses atau kerugian energi tersebut dapat dinyatakan dengan persamaan :...(2.9.5) Kerugian akibat Gesekan Kerugian ini terjadi akibat terjadinya gesekan antara fluida dengan dinding saluran. Kerugian ini akan mempengaruhi tekanan yang ada di dalam sistem dan laju alirannya, berdasarkan persamaan Darcy, besarnya kerugian ini dapat dinyatakan denagan persamaan (ASHRAE, 1997): (2.9.6) Dimana: : Kerugian tekanan akibat gesekan (Pa) f : Faktor gesekan 39

34 L : Panjang ducting (m) D h : diameter hidrolik (m) : Masa jenis (Kg/m 3 ) V : Kecepatan (m/s) Berdasarkan Althsul Tsal besarnya faktor gesekan dapat dihitung dengan persamaan (ASHRAE 1997):,,....(2.9.7) persamaan: Dimana Re adalah reynolds number yang besarnya dapat diketahui dengan......(2.9.8) Dimana : Re : Bilangan Reynolds Dh : Diameter hidrolik (m) V : Kecepatan (m/s) v : Viskositas kinematik (m 2 /s) Sementra untuk perhitungan ducting persegi maka besarnya diameter hidrolik pada penampang dapat dihitung dengan persamaan berikut:,,, Dimana: a : Panjang sisi / Lebar (m) b : Panjang sisi lainnya / Tinggi (m)....(2.9.9) 40

35 Kerugian akibat Fitting Kerugian ini disebut kerugian dinamik yang diakibatkan adanya ganguan pada aliran udara akibat adanya pemasangan peralatan lain yang terpasang, fitting yang mengakibatkan perubahan jalur dan arah aliran serta perubahan luas penampang ducting. Besarnya kerugian ini dapat dihitung dengan menggunakan persamaan: /.....(2.9.10) Dimana: : Kerugian dinamik (Pa) ρ : Masa jenis udara (kg/m 3 ) V : Kecepatan aliran udara (m/s) : Koefisien (Tabel fittings, ASHRAE) Tabel 2. 6 Nilai Koefisien untuk Elbow persegi (Sumber : ASHRAE,1997) 41

36 Tabel 2. 7 Nilai Koefisien untuk Elbow bulat (Sumber : ASHRAE,1997) Nilai kefisien C o telah ditabelkan oleh ASHRAE digunakan untuk berbagai jenis fitting, namun ada kalanya kondisi di dalam tabel tidak sama dengan kondisi aktual dilapangan, maka dilakukan pemilihan jenis fitting pada tabel yang paling mendekati dengan kondisi aktual di lapangan Daya Fan Besarnya kerja yang dilakukan oleh fan sama dengan besarmya total pressure fan, yaitu hasil penjumlahan static pressure fan dan dinamic pressure fan (velocity pressure)....(2.9.11) Dengan velocity presure p v = ρ.v 2 /2 maka persamaan tersebut diatas menjadi...(2.9.12) Fan harus mampu mengatasi tekanan statis dan mampu memberikan tekanan pada aliran yang melaluinya (Cengel & Cimbala, 2006) sehingga udara yang dialirkan 42

37 melalui ducting dapat disalurkan merata ke seluruh outlet yang ada. Besarnya daya yang dibutuhkan oleh fan adalah:...(2.9.13) Dimana : : Daya yang diperlukan oleh fan (W) : Fan total pressuere (Pa) Q : Laju aliran udara (m 3 /s) 43

BAB II TEORI. 2.1 Tinjauan Umum Perusahaan Berikut ini akan dipaparkan informasi umum tentang perusahaan tempat dilaksanakannya kegiatan Kerja Praktek

BAB II TEORI. 2.1 Tinjauan Umum Perusahaan Berikut ini akan dipaparkan informasi umum tentang perusahaan tempat dilaksanakannya kegiatan Kerja Praktek BAB II TEORI 2.1 Tinjauan Umum Perusahaan Berikut ini akan dipaparkan informasi umum tentang perusahaan tempat dilaksanakannya kegiatan Kerja Praktek 2.1.1. Sejarah Perusahaan PT. SELTECH UTAMA didirikan

Lebih terperinci

BAB 9. PENGKONDISIAN UDARA

BAB 9. PENGKONDISIAN UDARA BAB 9. PENGKONDISIAN UDARA Tujuan Instruksional Khusus Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan

Lebih terperinci

BAB IV. ducting pada gedung yang menjadi obyek penelitian. psikometri untuk menentukan kapasitas aliran udara yang diperlukan untuk

BAB IV. ducting pada gedung yang menjadi obyek penelitian. psikometri untuk menentukan kapasitas aliran udara yang diperlukan untuk BAB IV PERHITUNGAN RANCANGAN PENGKONDISI UDARA Pada bab ini akan dilakukan perhitungan rancangan pengkondisian udara yang meliputi perhitungan beban pendinginan, analisa psikometri, dan perhitungan rancangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

BAB III DASAR PERANCANGAN INSTALASI AIR CONDITIONING

BAB III DASAR PERANCANGAN INSTALASI AIR CONDITIONING BAB III DASAR PERANCANGAN INSTALASI AIR CONDITIONING 3.1 Perngertian dan Standar Pengkondisian Udara Bangunan Pengkondisian udara adalah suatu usaha ang dilakukan untuk mengolah udara dengan cara mendinginkan,

Lebih terperinci

BAB II LANDASAN LANDASAN TEORI

BAB II LANDASAN LANDASAN TEORI TEORI BAB II LANDASAN LANDASAN TEORI 2.1. Pengertian Umum Pengkondisian udara adalah usaha untuk merekayasa udara baik temperature maupun kelembabanya. Tujuan dari pengkondisian udara ini adalah untuk

Lebih terperinci

BAGIAN II : UTILITAS TERMAL REFRIGERASI, VENTILASI DAN AIR CONDITIONING (RVAC)

BAGIAN II : UTILITAS TERMAL REFRIGERASI, VENTILASI DAN AIR CONDITIONING (RVAC) BAGIAN II : UTILITAS TERMAL REFRIGERASI, VENTILASI DAN AIR CONDITIONING (RVAC) Refrigeration, Ventilation and Air-conditioning RVAC Air-conditioning Pengolahan udara Menyediakan udara dingin Membuat udara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Perencanaan pengkondisian udara dalam suatu gedung diperlukan suatu perhitungan beban kalor dan kebutuhan ventilasi udara, perhitungan kalor ini tidak lepas dari prinsip perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB IV DASAR TEORI 4.1 Sistem Pengkondisian Udara

BAB IV DASAR TEORI 4.1 Sistem Pengkondisian Udara 24 BAB IV DASAR TEORI 4.1 Sistem Pengkondisian Udara Sistem pengkondisian udara adalah usaha untuk mengatur temperatur dan kelembaban udara agar menghasilkan kenyamanan termal (thermal comfort) bagimanusia.

Lebih terperinci

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem Tata Udara [sumber : 5. http://ridwan.staff.gunadarma.ac.id] Sistem tata udara adalah proses untuk mengatur kondisi suatu ruangan sesuai dengan keinginan sehingga dapat memberikan

Lebih terperinci

Udara luar = 20 x 30 cmh = 600 cmh Area yang di kondisikan = 154 m². Luas Kaca (m²)

Udara luar = 20 x 30 cmh = 600 cmh Area yang di kondisikan = 154 m². Luas Kaca (m²) BAB IV ANALISIS DAN PERHITUNGAN 4.1 Perhitungan Beban Pendingin AC Sentral Lantai = 1 Luas = 154 m² Kondisi = CDB CWB R Kg/kg Luar ruangan = 33 27 7,24 Dalam ruangan = 24 16 45,11 Selisih = 9 11 25,13

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Pengertian Air Conditioner Air Conditioner (AC) digunakan untuk mengatur temperatur, sirkulasi, kelembaban, dan kebersihan udara didalam ruangan. Selain itu, air conditioner juga

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013 1.2.3 AC Central AC central sistem pendinginan ruangan yang dikontrol dari satu titik atau tempat dan didistribusikan secara terpusat ke seluruh isi gedung dengan kapasitas yang sesuai dengan ukuran ruangan

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara BAB II TEORI DASAR 2.1 Pengertian Sistem Tata Udara Sistem tata udara adalah suatu sistem yang digunakan untuk menciptakan suatu kondisi pada suatu ruang agar sesuai dengan keinginan. Sistem tata udara

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

Konservasi energi sistem tata udara pada bangunan gedung

Konservasi energi sistem tata udara pada bangunan gedung Konservasi energi sistem tata udara pada bangunan gedung 1. Ruang lingkup 1.1. Standar ini memuat; perhitungan teknis, pemilihan, pengukuran dan pengujian, konservasi energi dan rekomendasi sistem tata

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II TEORI DASAR. Laporan Tugas Akhir 4

BAB II TEORI DASAR. Laporan Tugas Akhir 4 BAB II TEORI DASAR Sistem tata udara adalah suatu proses mendinginkan/memanaskan udara sehingga dapat mencapai suhu dan kelembaban yang diinginkan/dipersyaratkan. Selain itu, mengatur aliran udara dan

Lebih terperinci

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap 4 BAB II DASAR TEORI 2.1 Sistem Pengkondisian Udara Pengkondisian udara adalah proses untuk mengkondisikan temperature dan kelembapan udara agar memenuhi persyaratan tertentu. Selain itu kebersihan udara,

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1. Prinsip Kerja Mesin Pendingin Penemuan siklus refrigerasi dan perkembangan mesin refrigerasi merintis jalan bagi pembuatan dan penggunaan mesin penyegaran udara. Komponen utama

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA

BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA Data analisa dan perhitungan dihitung pada jam terpanas yaitu sekitar jam 11.00 sampai dengan jam 15.00, untuk mengetahui seberapa besar pengaruh

Lebih terperinci

Pengaruh Kecepatan Dan Arah Aliran Udara Terhadap Kondisi Udara Dalam Ruangan Pada Sistem Ventilasi Alamiah

Pengaruh Kecepatan Dan Arah Aliran Udara Terhadap Kondisi Udara Dalam Ruangan Pada Sistem Ventilasi Alamiah Pengaruh Kecepatan Dan Arah Aliran Udara Terhadap Kondisi Udara Dalam Ruangan Pada Sistem Ventilasi Alamiah Francisca Gayuh Utami Dewi Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Malang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 19 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Sistem tata udara Air Conditioning dan Ventilasi merupakan suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai suhu dan kelembaban yang diinginkan

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

LAPORAN AKHIR PERAWATAN & PERBAIKAN CHILLER WATER COOLER DI MANADO QUALITY HOTEL. Oleh : RIVALDI KEINTJEM

LAPORAN AKHIR PERAWATAN & PERBAIKAN CHILLER WATER COOLER DI MANADO QUALITY HOTEL. Oleh : RIVALDI KEINTJEM LAPORAN AKHIR PERAWATAN & PERBAIKAN CHILLER WATER COOLER DI MANADO QUALITY HOTEL Oleh : RIVALDI KEINTJEM 13021024 KEMENTERIAN PENDIDIKAN NASIONAL POLITEKNIK NEGERI MANADO JURUSAN TEKNIK ELEKTRO 2016 BAB

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

ANALISA KEBUTUHAN BEBAN PENDINGIN DAN DAYA ALAT PENDINGIN AC UNTUK AULA KAMPUS 2 UM METRO. Abstrak

ANALISA KEBUTUHAN BEBAN PENDINGIN DAN DAYA ALAT PENDINGIN AC UNTUK AULA KAMPUS 2 UM METRO. Abstrak ANALISA KEBUTUHAN BEBAN PENDINGIN DAN DAYA ALAT PENDINGIN AC UNTUK AULA KAMPUS 2 UM METRO. Kemas Ridhuan, Andi Rifai Program Studi Teknik Mesin Universitas muhammadiyah Metro Jl. Ki Hjar Dewantara No.

Lebih terperinci

BAB V ANALISIS DAN INTERPRETASI HASIL

BAB V ANALISIS DAN INTERPRETASI HASIL BAB V ANALISIS DAN INTERPRETASI HASIL Pada bab ini diuraikan mengenai analisis dan interpretasi hasil perhitungan dan pengolahan data yang telah dilakukan pada bab IV. Analisis dan interpretasi hasil akan

Lebih terperinci

BAB III BAHASAN UTAMA

BAB III BAHASAN UTAMA BAB III BAHASAN UTAMA 3.1. Diagram Alir Perancangan Tata Udara Gambar 3. 1. Diagram alir prancangan [3] 3.2. Perancangan Tata Udara Dalam merancang suatu sistem tata udara, seorang perancang harus mampu

Lebih terperinci

BAB III PERANCANGAN.

BAB III PERANCANGAN. BAB III PERANCANGAN 3.1 Beban Pendinginan (Cooling Load) Beban pendinginan pada peralatan mesin pendingin jarang diperoleh hanya dari salah satu sumber panas. Biasanya perhitungan sumber panas berkembang

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Simulator Pengertian simulator adalah program yg berfungsi untuk menyimulasikan suatu peralatan, tetapi kerjanya agak lambat dari pada keadaan yg sebenarnya. Atau alat untuk melakukan

Lebih terperinci

SISTEM PENGKONDISIAN UDARA (AC)

SISTEM PENGKONDISIAN UDARA (AC) Pertemuan ke-9 dan ke-10 Materi Perkuliahan : Kebutuhan jaringan dan perangkat yang mendukung sistem pengkondisian udara termasuk ruang pendingin (cool storage). Termasuk memperhitungkan spatial penempatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Refrigerasi Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Refrigerasi dapat berupa lemari es pada rumah tangga, mesin

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

MAKALAH PRAKTIK PENSINGIN DAN TATAUDARA

MAKALAH PRAKTIK PENSINGIN DAN TATAUDARA MAKALAH PRAKTIK PENSINGIN DAN TATAUDARA AC SENTRAL ( CENTRAL ) Disusun Oleh: Asto Nur Wimantoro 11501244013 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA 2014 BAB

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

Pertemuan 6: SISTEM PENGHAWAAN PADA BANGUNAN

Pertemuan 6: SISTEM PENGHAWAAN PADA BANGUNAN AR-3121: SISTEM BANGUNAN & UTILITAS Pertemuan 6: SISTEM PENGHAWAAN PADA BANGUNAN 12 Oktober 2009 Dr. Sugeng Triyadi PENDAHULUAN Penghawaan pada bangunan berfungsi untuk mencapai kenyamanan thermal. Dipengaruhi:

Lebih terperinci

BAB III TEORI YANG MENDUKUNG

BAB III TEORI YANG MENDUKUNG BAB III TEORI YANG MENDUKUNG 3.1 TEORI DASAR Pengkodisian udara dan Refrigerasi merupakan terapan dari ilmu perpindahan kalor dan termodinamika, refrigerasi merupakan proses penyerapan kalor dari suatu

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) A634 Perencanaan Ulang Sistem Pengkondisian Udara pada Lantai 1 dan 2 Gedung Surabaya Suite Hotel di Surabaya Wahyu Priatna dan Ary Bachtiar Krishna Putra Jurusan Teknik Mesin, Fakultas Teknologi Industri,

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Penyejuk udara atau pengkondisi udara atau penyaman udara atau erkon atau AC (air conditioner) adalah sistem atau mesin yang dirancang untuk menstabilkan suhu udara

Lebih terperinci

AIR CONDITIONING (AC) Disiapkan Oleh: Muhammad Iqbal, ST., M.Sc Jurusan Teknik Arsitektur Universitas Malikussaleh Tahun 2015

AIR CONDITIONING (AC) Disiapkan Oleh: Muhammad Iqbal, ST., M.Sc Jurusan Teknik Arsitektur Universitas Malikussaleh Tahun 2015 AIR CONDITIONING (AC) Disiapkan Oleh: Muhammad Iqbal, ST., M.Sc Jurusan Teknik Arsitektur Universitas Malikussaleh Tahun 2015 Defenisi Air Conditioning (AC) merupakan ilmu dan praktek untuk mengontrol

Lebih terperinci

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor 4 BAB II TEORI DASAR.1 Perancangan Sistem Penyediaan Air Panas.1.1 Kualitas Air Panas Air akan memiliki sifat anomali, yaitu volumenya akan mencapai minimum pada temperatur 4 C dan akan bertambah pada

Lebih terperinci

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi I. PENDAHULUAN A. Latar Belakang Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi Tulen yang berperan dalam proses pengeringan biji kopi untuk menghasilkan kopi bubuk TULEN. Biji

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump BAB II DASAR TEORI 2.1 Pengertian Sistem Heat pump Heat pump adalah pengkondisi udara paket atau unit paket dengan katup pengubah arah (reversing valve) atau pengatur ubahan lainnya. Heat pump memiliki

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Menurut ASHRAE (American Society of Heating, Refrigerating and

BAB 2 TINJAUAN PUSTAKA. Menurut ASHRAE (American Society of Heating, Refrigerating and BAB 2 TINJAUAN PUSTAKA Menurut ASHRAE (American Society of Heating, Refrigerating and Airconditioning Engineers, 1989), kenyamanan termal merupakan perasaan dimana seseorang merasa nyaman dengan keadaan

Lebih terperinci

BAB III PERHITUNGAN BEBAN PENDINGIN

BAB III PERHITUNGAN BEBAN PENDINGIN 57 BAB III PERHITUNGAN BEBAN PENDINGIN 3.1 Beban Pendingin Tabel 3.1.1 Flow Chart Perhitungan Beban kalor gedung secara umum ada 2 macam yaitu kalor sensible dan kalor laten. Beban kalor laten dan sensible

Lebih terperinci

BAB III METODOLOGI PELAKSANAAN 3.1 PROSEDUR PERANCANGAN SISTEM PENGKONDISIAN UDARA. Penentuan Kondisi Ruang. Termal Dalam Gedung

BAB III METODOLOGI PELAKSANAAN 3.1 PROSEDUR PERANCANGAN SISTEM PENGKONDISIAN UDARA. Penentuan Kondisi Ruang. Termal Dalam Gedung 32 BAB III METODOLOGI PELAKSANAAN 3.1 PROSEDUR PERANCANGAN SISTEM PENGKONDISIAN UDARA MULAI Fungsi Penentuan Kondisi Ruang Termal Dalam Gedung Data Gedung Perhitungan Beban Pendingin Data Cuaca & ` Iklim

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Chiller atau mesin refrigerasi adalah peralatan yang biasanya menghasilkan media pendingin utama untuk bangunan gedung, dengan mengkonsumsi energi secara langsung

Lebih terperinci

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage BAB 5. HASIL DAN PEMBAHASAN Prinsip Kerja Instalasi Instalasi ini merupakan instalasi mesin pendingin kompresi uap hibrida yang berfungsi sebagai mesin pendingin pada lemari pendingin dan pompa kalor pada

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

TUGAS AKHIR. PERHITUNGAN BEBAN PENDINGIN RUANG UTAMA Lt. 3 KANTOR MANAJEMEN PT SUPERMAL KARAWACI DENGAN METODE CLTD

TUGAS AKHIR. PERHITUNGAN BEBAN PENDINGIN RUANG UTAMA Lt. 3 KANTOR MANAJEMEN PT SUPERMAL KARAWACI DENGAN METODE CLTD TUGAS AKHIR PERHITUNGAN BEBAN PENDINGIN RUANG UTAMA Lt. 3 KANTOR MANAJEMEN PT SUPERMAL KARAWACI DENGAN METODE CLTD Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1)

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split BAB II DASAR TEORI 2.1 AC Split Split Air Conditioner adalah seperangkat alat yang mampu mengkondisikan suhu ruangan sesuai dengan yang kita inginkan, terutama untuk mengkondisikan suhu ruangan agar lebih

Lebih terperinci

Bab 14 Kenyamanan Termal. Kenyaman termal

Bab 14 Kenyamanan Termal. Kenyaman termal Bab 14 Kenyamanan Termal Dr. Yeffry Handoko Putra, S.T, M.T E-mail: yeffry@unikom.ac.id 172 Kenyaman termal Kenyaman termal adalah suatu kondisi yang dinikmati oleh manusia. Faktor-faktor kenyamanan termal

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

BAB V KESIMPULAN UMUM

BAB V KESIMPULAN UMUM 177 BAB V KESIMPULAN UMUM Kesimpulan 1 Perilaku termal dalam bangunan percobaan menunjukan suhu pukul 07.00 WIB sebesar 24.1 o C,, pukul 13.00 WIB suhu mencapai 28.4 o C, pada pukul 18.00 WIB suhu mencapai

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

BAB III METODELOGI PENELITIAN. Hotel Sapadia Siantar. Hotel Danau Toba International Medan. Rumah Sakit Columbia Asia Medan

BAB III METODELOGI PENELITIAN. Hotel Sapadia Siantar. Hotel Danau Toba International Medan. Rumah Sakit Columbia Asia Medan BAB III METODELOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Tempat penelitian yang dilakukan dalam penelitian ini adalah: Hotel Sapadia Siantar Hotel Danau Toba International

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3 BAB II DASAR TEORI 2.1 Pengering Udara Pengering udara adalah suatu alat yang berfungsi untuk menghilangkan kandungan air pada udara terkompresi (compressed air). Sistem ini menjadi satu kesatuan proses

Lebih terperinci

Disusun oleh : Nama : Linggar G. C. M. A. Semester Genap SMK NEGERI 1 CIMAHI

Disusun oleh : Nama : Linggar G. C. M. A. Semester Genap SMK NEGERI 1 CIMAHI Disusun oleh : Nama : Linggar G. C. M. A. Kelas : XI TP A Semester Genap SMK NEGERI 1 CIMAHI Teknik Pendingin & Tata Udara 2010/2011 KATA PENGANTAR Allhamdulillahi rabbil alamiin, pertama-tama marilah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Air Conditioner Split Air Conditioner (AC) split merupakan sebuah alat yang digunakan untuk mengkondikan udara didalam ruangan sesuai dengan yang diinginkan oleh penghuni.

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Perhitungan Daya Motor 4.1.1 Torsi pada poros (T 1 ) T3 T2 T1 Torsi pada poros dengan beban teh 10 kg Torsi pada poros tanpa beban - Massa poros; IV-1 Momen inersia pada poros;

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengenalan Dasar tentang Beban Pendinginan Kita ketahui bahwa tujuan utama dalam melakukan pentataan udara, adalah agar kenyamanan dalam suatu ruang dapat dicapai, sehingga manusia

Lebih terperinci

II. TINJAUAN PUSTAKA. apartemen, dan pusat belanja memerlukan listrik misalnya untuk keperluan lampu

II. TINJAUAN PUSTAKA. apartemen, dan pusat belanja memerlukan listrik misalnya untuk keperluan lampu II. TINJAUAN PUSTAKA A. Sistem Tata Udara Hampir semua aktifitas dalam gedung seperti kantor, hotel, rumah sakit, apartemen, dan pusat belanja memerlukan listrik misalnya untuk keperluan lampu penerangan,

Lebih terperinci

Konservasi energi sistem tata udara pada bangunan gedung

Konservasi energi sistem tata udara pada bangunan gedung Standar Nasional Indonesia Konservasi energi sistem tata udara pada bangunan gedung ICS 91.160.01 Badan Standardisasi Nasional Daftar isi Daftar isi... i Pendahuluan... ii 1. Ruang lingkup... 1 2. Acuan...

Lebih terperinci

Pengantar Sistem Tata Udara

Pengantar Sistem Tata Udara Pengantar Sistem Tata Udara Sistem tata udara adalah suatu proses mendinginkan/memanaskan udara sehingga dapat mencapai suhu dan kelembaban yang diinginkan/dipersyaratkan. Selain itu, mengatur aliran udara

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem refrigerasi kompresi uap merupakan suatu sistem yang menggunakan kompresor sebagai alat kompresi refrigeran, yang dalam keadaan bertekanan

Lebih terperinci

Laporan Tugas Akhir BAB II TEORI DASAR

Laporan Tugas Akhir BAB II TEORI DASAR BAB II TEORI DASAR 2.1 Sistem Tata Udara Secara umum pengkondisian udara adalah suatu proses untuk mengkondisikan udara pada suatu tempat sehingga tercapai kenyamanan bagi penghuninya. Tata udara meliputi

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN ANALISIS

BAB III PERANCANGAN SISTEM DAN ANALISIS 19 BAB III PERANCANGAN SISTEM DAN ANALISIS 3.1 Kawasan Perumahan Batununggal Indah Kawasan perumahan Batununggal Indah merupakan salah satu kawasan hunian yang banyak digunakan sebagai rumah tinggal dan

Lebih terperinci

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING Bambang Setyoko, Seno Darmanto, Rahmat Program Studi Diploma III Teknik Mesin Fakultas Teknik UNDIP Jl. Prof H. Sudharto, SH, Tembalang,

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL

TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL Disusun Oleh: KELOMPOK 9 Angga Eka Wahyu Ramadan (2113100122) Citro Ariyanto (2113100158) Ahmad Obrain Ghifari (2113100183) INSTITUT

Lebih terperinci

BAB II DASAR TEORI. pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk

BAB II DASAR TEORI. pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk BAB II DASAR TEORI 2.1 Pengertian Umum Air Conditioning (AC) atau alat pengkondisi udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk memberikan udara

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy, Pengaruh Kecepatan Udara Pendingin Kondensor Terhadap Kooefisien Prestasi PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy Jurusan

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PADA KAPAL PENANGKAP IKAN DENGAN CHILLER WATER REFRIGERASI ABSORPSI MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) Nama Mahasiswa : Radityo Dwi Atmojo

Lebih terperinci

DAFTAR PUSTAKA. W. Arismunandar, Heizo Saito, 1991, Penyegaran Udara, Cetakan ke-4, PT. Pradnya Paramita, Jakarta

DAFTAR PUSTAKA. W. Arismunandar, Heizo Saito, 1991, Penyegaran Udara, Cetakan ke-4, PT. Pradnya Paramita, Jakarta DAFTAR PUSTAKA W. Arismunandar, Heizo Saito, 1991, Penyegaran Udara, Cetakan ke-4, PT. Pradnya Paramita, Jakarta Standar Nasional Indonesia (SNI) : Tata Cara Perancangan Sistem Ventilasi dan Pengkondisian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mesin Pendingin Mesin pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas ke suatu tempat yang temperaturnya

Lebih terperinci

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Definisi Vaksin Vaksin merupakan bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi

Lebih terperinci

STUDI EVALUASI SISTEM PENGKONDISIAN UDARA DI JURUSAN TEKNIK ELEKTRO KAMPUS BUKIT JIMBARAN DENGAN MENGGUNAKAN SOFTWARE

STUDI EVALUASI SISTEM PENGKONDISIAN UDARA DI JURUSAN TEKNIK ELEKTRO KAMPUS BUKIT JIMBARAN DENGAN MENGGUNAKAN SOFTWARE STUDI EVALUASI SISTEM PENGKONDISIAN UDARA DI JURUSAN TEKNIK ELEKTRO KAMPUS BUKIT JIMBARAN DENGAN MENGGUNAKAN SOFTWARE M. N. Hanifan, 1 I.G.D Arjana, 2 W. Setiawan 3 1,2,3 Jurusan Teknik Elektro, FakultasTeknik,UniversitasUdayana

Lebih terperinci